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Abstract 

In this paper we construct the first publicly verifiable non-interactive zero-knowledge proof 
for any NP statement under the general assumption that one way permutations exist. If 
the prover is polynomially bounded then our scheme is based on the stronger assumption 
that trapdoor permutations exist. In both cases we assume that P and V have a common 
random string, and use it to prove a single theorem (which may be chosen as a function of 
the known string). 

1 Introduction 

The notion of a non-interactive zero-knowledge (NIZK) proof was introduced by 
[BlFeMi]. It all ows a prover to prove in writing (without interaction) any NP- 
theorem to a polynomially bounded verifier, without revealing any knowledge be- 
sides the validity of the theorem, provided that they possess a common random 

string (such as the l,OOO,OOO random digits published by the RAND corporation). 
These NIZK proofs should be p&ZicIy wetifiaHe (i.e. checkable by anyone rather 
than directed at a particular verifier) and zero-knowledge to any coalition of veri- 
fiers. Such proofs have important cryptographic applications, such as digital signa- 
tures, message authentication (see [BeGo]), and protection of public key cryptosys- 
terns against chosen ciphertext attacks (see[NaYu]). 
[BlFeMi] and [DeMiPe] d escribe concrete implementations of this model based on 
the difficulty of specific computational problems (distinguishing products of two 
primes from products of three primes or distinguishing quadratic residues from 
quadratic non residues). Under the assumption that Oblivious Transfer protocols 
exist, [KiMiOs] and [BeMi] h s ow h ow after an initial preprocessing stage, the prover 
can noninteractively prove polynomially many NP-statements, but these proofs are 
not publicly verifiable and all of them are directed to a particular verifier. 
Finally the scheme of [DeMiPel] and the preliminary scheme we present in section 2 
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are based on a model in which the prover proves a random theorem in an interactive 
preprocessing stage and then uses it to prove the actual theorem noninteractively. 
These two schemes can be implemented using any one-way function. 
Our main result in this paper is a publicly verifiable NIZK proof with a common 
random string, for any  NP-theorem, under the general assumption that one-way 
permutations exist. The protocol remains zero-knowledge even when the theo- 
rem is chosen as a function of the random string. If the prover is polynomial time 
bounded, then our scheme is based on the stronger assumption that trapdoor per- 
mutations exist. This is the fist known protocol of this type which is not based on 
the difficulty of specific computational problems. 
Our result together with the result of [XaYu] imply that under the general assump- 
tion that trapdoor permutations exist, there exists a public key cryptosystem which 
is provably secure against chosen ciphertext at tacks. 
The paper is organized in the following way: In Section 2 we present a new construc- 
tion of NIZK proofs with preprocessing which axe its efficient as their interactive 
counterparts. In Section 3 we describe our main result and in Section 4 we prove 
its correctness. Section 5 is devoted to several extensions and applications of the 
main result. 

2 A NIZK proof with preprocessing 

Consider a prover who wants to prove the Hamiltonicity of an arbitrary graph G 
with n nodes. We assume that the prover and the verifier can execute a preliminary 
interactive stage which is independent of G (i.e. at this stage they know that in the 
non-interactive stage the prover will prove the Hamiltonicity of an n node G, but 
they don’t know which graph it will be). Only after the termination of this inter- 
active stage, they get G and execute the non-interactive move in which the prover 
sends a written message to the verifier in order to convince him in zero-knowledge 
that G is Hamiltonian. The verifier is not allowed to ask the prover any questions 
and should be convinced just by reading this message. 
The Basic Step 
Let H be a randomly chosen Hamiltonian cycle on n nodes. The adjacency ma- 
trix of H is a permutation matrix with a single 1 in each row and column, and a 
single cycle. Let S be such a n  adjacency matrix in which each entry is replaced 
by a string which hides it ( for example: by the hard bit construction of [GoLe] 
or by a probabilistic encryption), so that a polynomially bounded observer cannot 
determine the locations of the 1’s. 
Assume now that S is given to P and V, and that P wants to prove to V the 
Hamiltonicity of some graph G with n nodes. Since P is infinitely powerful, he can 
recover the original Hamiltonian cycle H from S and determine the permutation 
T that maps H onto the Hamiltonian cycle of G (i.e.’ x ( H )  2 G). To convince V 
that G is Hamiltonian, P just sends him (in writing) the permutation ir and the 
original values of all the entries in x ( S )  which do not correspond to edges in G. V 
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accepts the proof iff all the revealed entries are 0, since this implies that the n 1’s 
that remain in T ( S )  correspond to edges of G . The proof is zero knowledge since 
all the verifier gets is a random permutation and a collection of encryptions of O’S, 
which can be easily simulated. 
The resulting NIZK proof with preprocessing (regardless of whether P is polynomi- 
ally bounded or not) is executed as follows: In the preliminary interactive stage P 
sequentially sends k (=security parameter) such random matrices 4, Sz, . . . , Sk to 
V and receives k random bits bl .  6 2 , .  . . , b k  from V. In the non-interactive move he 
reveals all the entries of those S,’s for which b, = 0, and executes the basic step for 
those S, for which b, = 1. If all the S, with h, = 0 are of the appropriate form, V 
can conclude with high probability that at least one of the other S, is also proper, 
in which case G is guaranteed to  be Hamiltonian. 
In order to compare this protocol to Blum’s protocol for Hamiltonicity [Bl], lets re- 
call that in the f i s t  move of Blum’s scheme P randomly permutes G and sends V 
the encrypted adjacency matrix of this isomorphic copy. V then sends a random 
bit to P and according to that bit P either reveals all the entries in the matrix and 
the permutation, or reveals only the entries whch correspond to the edges of the 
Hamiltonian cycle. Our protocol resembles Blum’s protocol, with one major dif- 
ference: In Blum’s protocol all the moves depend on G, while in our protocol only 
the last move depends on G. -4s a result, Blum’s protocol cannot be split into a 
preprocessing stage and a non-interactive proof as we did in our protocol. 
Remark: 
The NIZK proof with preprocessing can be extended to a variety of graph theoretic 
problems which are satisfied by a single minimal graph (under isomorphism). This 
family includes: Clique, Graph partition into triangles, Graph partition into cliques 
(and therefore also Graph coloring), 3-Dimensional Matching etc. 

3 A NIZK Proof with A Common Random String 
In this section we show that under the assumption that oneway permutations exist, 
if the prover and the verifier initially share a common random string then the initial 
preprocessing stage of our protocol can be discarded, yielding a NIZK proof for any 
NP statement in the original noninteractive model of Blum, Feldman and Micali. 

3.1 Definitions 
Definition: For any NP language L,  Let RL be the relation which contains all the 
pairs ( x , w )  such that 2 E L and w is a witness for that. 
The input of P is a pair of words ( z , w )  and the common random string 0 whose 
length is polynomial in the size of z and in the security parameter k .  
Notation: A ( z , y , z )  denotes the output of a probabilistic algorithm A on input 

Definition: A non interactive proof system for an N P  language L is a pair of 

0 

( X ’  Y’ 2). 
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probabilistic algorithms (P, V )  (where V is polynomially bounded) satisfying: 

1. Completeness: V(z,w) E RL, Vo V ( z , o , P ( z , w , o ) )  =accept  . 

2. Soundnes~ : If o is a random string then the probability of succeeding in 
proving a false statement is negligible, even if the theorem is chosen by P 
after seeing c. Formally: 

36 3c Qd 3N s.t. Vk > N 

at least (1 - $) of the strings u of length Islbk' satisfy: 

Vx' 6 L Vy V(x', o, y) = reject .  

Definition: A non-interactive proof system for an NP-language L is zero-knowledge 
if there exists a random polynomial time simulator M such that for any ( o , w )  E RL, 
the two ensembles (a ,P( r ,w ,  o)) and M ( o )  are polynomially indistinguishable (by 
nonuniform distinguishers). Formally: 

3M 3 . t .  VD V(X,U) E Rr, Vd 

1 
I P r ( D ( M ( z ) )  = 1) - P r ( D ( u , P ( s , w , o ) )  = I ) /  < - kd 

for all sufficiently large k. 
The probabilities are taken over the choices of u and over the coin tosses of P and 
M .  

3.2 Informal Description 

Assume that P and V possess a common random string (CRS) and P wants to send 
V a non-interactive zero-knowledge proof based on the CRS, (rather than on an 
interactive preprocessing stage) that an arbitrary n node graph G is Hamiltonian. 
We do this by mapping the CRS into an appropriate sequence of matrices which 
contain with high probability at least one Hamiltonian matrix. P can then proceed 
exactly as in the final non-interactive step of the protocol described in Section 2. 
How can P construct such matrices? It is possible to get a sequence of hidden 
random bits from the CRS by calculating an appropriate hard bit of a one-way 
permutation with respect to each segment of it. But if we naively pack such a block 
of n2 hidden random bits into a n x n 0/1 matrix, the probability that this is a 
Hamiltonian matrix is exponentially small. Therefore in order to solve this problem 
we have to transform the CFS into a matrix in a more complicated way. 
Assume that the CRS defines a n2 x n2 matrix B of zeroes and ones, such that 
Pr{B;,j = 1) = l /n3 for each ( i , j )  and this matrix has the same security properties 
tts S. In order to construct a matrix such as S from a given matrix B and to prove 
that G is Hamiltonian P has to execute the following: 
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1. If the number of 1’s in B is different from n or there exists a row or a column 
which contains at least two l’s, then P proves this fact by revealing all the 
entries in B.  

2. Otherwise (i.e. B contains a n x n permutation submatrix), P reveals to V 
all the entries in the n2 - n rows and the n2 - n columns which contain only 
zeroes, and removes them from B. If the resulting n x n matrix does not 
represent a single cycle, P proves this fact to V by revealing all the entries of 
the remaining matrix. 

3. Otherwise (i.e. the remaining matrix represents a single cycle), the original 
matrix B is called good and P must use the resulting n x n matrix in the 
execution of the protocol described in the previous section. 

What’s left is to show how to transform the CRS into B and to prove that such a 
matrix is good with sufficiently high probability. 
Consider the CRS as a concatenation of polynomially many blocks of k random bits. 
Let f be a one way ,permutation that both P and V can evaluate but only P can 
invert. [GoLe] prove the existence of a hard bit in any one way function. Therefore 
if we associate such a hard bit with each block of the CRS, we get a new hidden 
random string (HRS). More precisely, let r’ and r” be two consecutive blocks of k 
bits in the CRS, let o = f-’(r’) and y = r” and let s be the hidden random bit 
defined by the scalar product of the boolean vectors z,y. This process transforms 
the sequence of blocks in the CRS into a sequence of hidden random bits. 
All we have to show is how to transform the HRS into a sequence of matrices such as 
B. Consider the HRS as a concatenation of polynomially many consecutive blocks 
of m bits where m = log(n3) (w.1.g. we can assume that it is an integer). We in- 
terpret a block as 1 if all its rn bits are 1 and 0 otherwise, and thus we can pack 
each consecutive segment of n4m hidden random bits into the desired n2 x n2 0/1 
matrix B discussed above. In Section 4.2 we prove that the probability that such 
a matrix is good is -, and therefore if the length of the CRS is large enough 
(polynomial in k and n )  then with high probability at least one of the segments de- 
fines a Hamiltonian matrix for which P must executes the basic step described in 
section 2. 
In order to formally describe the scheme (which is slightly more efficient than the 
informal scheme described above) and prove its correctness we introduce some no- 
tations and definitions. 

3.3 Notations and Definitions 
Let 1‘1 or2 0.. .0rpoly(k,,,) (where ER (0, l} for each I ,  and o denotes concatenation) 
be the common random string (CRS), shared by P and V. Let f be a one-way 
permutation whose definition is known to both of them. Let u1 o ~2 0.. . 0 
(where U; E (0’1) for each z)  be an intermediate random string (1%) which is 
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defined as follows: For each j 2 1, 

f(sj,l) = Yj,1 and xj,2 = ~ j , 2  

where: 
"j,l = % k ( j - l ) + l  U2k(j-1)+2 . . * u2k(j - l )+k 

Xj ,2  = U 2 k ( j - 1 ) + ~ + 1  0 U ~ k ( j - l ) + k + ~  0 . - .  0 U2kj 

Y j , l  = r 2 k ( j - l ) + l  r2k(j-1)+2 . . * r2k(j-l)+k 

yj ,2  = r2k(j - l )+k+l  0 rZk(j-l)+k+2 . . . r 2 k j .  

Let s1 o s2 0 . . . 0 Spo{y(k,n)/2k be the hidden random string (HRS) which is defined 
as follows: for each j 2 1, s j  is the scalar product of the boolean vectors ~ j , i  and 
x j , 2 .  This construction is based the theorem of [GoLe] which says that, according 
to these notations, given random yj,l and Y , , ~ ,  sj is a hard bit. 
For each z >_ 1 let a; be such that its binary representation is 
s ( ; - ~ ) ~ + ~  o ~ ( ; - 1 ) ~ + 2  o . . . o sim. Lets define for each i: 

1 if a; = 2 " - l  
bi = { 0 otherwise 

Let B; be a n2 x n2 matrix which is defined as follows: B;(j ,  Z) = b(i-l)n4+(j-l)nZ+l 

for every 1 5 i ,j ,  1. 
Definition: We say that B; is a proper matrix if it contains exactly n ones and 
each column and row contains at most a single one. 
If B; is a proper matrix let N; be the n x n matrix obtained by removing all the 
n2-n columns and n2-n rows which contain only zeroes. Otherwise N; is undefined. 
Definition: We say that N; is a Hamiltonian matrix if there is a permutation 
?I, E S,, with a single cycle such that for each N ; ( l , j )  which is equal to 1 j = $(I). 
In this case we say that B; is a good matrix. 

3.4 The Scheme 
Assume that P and V have a CRS with 2n7km bits and a common one-way permu- 
tation f .  
P's protocol: 
For each 1 5 i 5 n3 do the following: 

1. If Bi contains more than n ones then reveal n + 1 of them. 

2. If B; contains fewer than n ones then reveal all the entries. 

3. If there is a column or row which contains two ones then reveal the two entries. 

4. (B;  is a proper matrix) Reveal and remove all the n2 - n columns and all the 
n2 - n rows which contain only zeroes. If Ni is not a Hamiltonian matrix then 
reveal the n ones. Otherwise use N; in the execution of the protocol described 
in section 2. 
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V’s protocol: 
For each 1 5 i 5 n3 do the following: 

1. If P reveals n + 1 entries then check that all of them are 1. 

2. If P reveals all the entries then check that Bi contains fewer than n ones. 

3. If P reveals two entries then check that both of them are 1 and in the same 
column or row. 

4. If P reveals TL’ - n columns and n2 - n rows then check that all the entries in 
these rows and columns are zeroes. 

5. If P reveals n entries then check that all of them are 1 and ;V; is not a 
Hamiltonian matrix. 

6. Otherwise check that the protocol described in Section 2 is carried out cor- 
rectly. 

Accept the proof iff for each 1 5 i 5 n3 one of thcsc checks is successful. 

3.5 

The same technique can be used (without reductions) to prove other NP-complete 
statements. Consider for example the 3-Dimensional Matching (3DM) problem. 
Each instance of the problem is a 3-dimensional 0/1 matrix M ( n  x R x n)  and P’s 
goal is to prove that there are R ones in M such that no two of them agree in any 
coordinate. 
Consider each block in the CRS as a hidden random 3-dimensional 0/1 matrix 
whose size is n2 x n2 x n2 and set the probability of 1 at each entry to l/n5. The 
same proof technique implies that with high probability there is a block in the CRS 
which hides a good matrix B ,  namely a matrix with exactly n ones such that no 
two of them agree in any coordinate. P reveals all the 2-dimensional submatrices 
of B which contain only zeroes so that the remaining n x n x n hidden matrix N 
forms a random minimal example for 3-dimensional matching. 
To prove that a given iM contains a 3 0  matching, P sends to V the permutation 
that moves the n ones in N to the locations of the matching in M ,  and then proves 
that every 0 in M corresponds to a zero in the permuted N .  

NIZK Proof for Some Other NP-Statements 

4 Correctness 

4.1 Completeness 

The non-interactive proof of Hamiltonicity is complete because in every n2 x n2 
matrix that does not yield a Hamiltonian matrix, all P has to do is to open some 
of its entries, and V will accept his proof as valid. 
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4.2 Soundness 

Lemma : The probability that B, contains exactly n 1’s is >_ 1/3n , for every 2 .  

Proof : The bits of the HRS are unbiased and independent, and for each j the 
probability that bj = 1 is l /n3.  Therefore the expected number of 1’s in B; is n. If 
5 denotes the number of 1’s then Chebyshev’s Inequality implies that 

therefore 
2n 

C P r ( 5  = i} > 1 - n-’. 
;=0 

Since the maximal probability is at z = n 

1 - n-l 
272 + 1 

P r { s  = n}  > ~ > 1/3n 0 

The size of B; is n2 x n2 and therefore by the birthday paradox if B; contains exactly 
n 1’s then the probability that each row and each column contains at most one 1, 
is a constant. 
The number of permutations in S,, which consist of a single cycle (of length n )  is 
( n  - l)!, therefore the probability that Ni is a Hamiltonian matrix, given that it is 
a permutation matrix, is n-l. 

We conclude that, for every i ,  the probability that B; yields a Hamiltonian matrix 
N; is 2 dn-’, where d is a constant. Thus if the length of the CRS is O(n7km) bits 
then with probability (1 - c-”) at least one of the Bi’s yields a Hamiltonian matrix. 
Any such matrix will expose a cheating P. 
Remark: If Zog(n3) is not an integer, we have to set rn = [10g(n3))l and choose B; 
as a [bn21 x n2 matrix where b = 5 (1 < b < 2). 

4.3 Zer 0- Know ledge 
In order to simplify the proof of zero-knowledge we refer only to the informal scheme 
described in (3.1). We construct a random polynomial time simulator M which gen- 
erates a ”random string” and a ”proof” of Hamiltonicity which are polynomially 
indistinguishable (by nonuniform distinguishers) from those generated by a real ex- 
ecution of the protocol. 
We use the transitivity of the property of indistinguishability: First we construct a 
random polynomial time algorithm P’ (with access to the Hamiltonian cycle of G) 
whose oiitpit is indistinguishable from a truly random string appended to a proof 
of the real prover, and then we construct a random polynomial time simulator M 
(who does not know the Hamiltonian cycle) whose output is polynomially indistin- 
guishable from that of P’. Therefore these constructions imply that our scheme is 
zero- knowledge. 
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Let P' be the random polynomial time algorithm which executes the real protocol 
with the following exception: it chooses a sequence of truly random bits (IRS), and 
then gets the CRS by applying the one-way permutation f in the forward direction. 
Clearly the output of I" is indistinguishable from that of the real prover. 
The simulator M accepts G and the security parameter k as inputs, and outputs a 
string b k  of length 2n7km bits and a "prooftl in the following way: 

1. M randomly chooses a sequence of Zn'km truly random bits and uses them as 
the intermediate random string (IRS). In every segment that yields a Hamil- 
tonian matrix it randomly changes the interpretation of all the ones to zeroes. 
More precisely: For each i for which N ,  is a Hamiltonian matrix and for each 
j, I such that N 2 ( j ,  I )  = 1, M randomly and independently chooses 2km bits in- 
dead of: ~ ( ( : - i ) n ' + ( ~ - i ) d + ( / - i ) ) m 2 k + l  . . . "((i-l)n'+(j-l)n2+i)rn2k until N+(j,Z) = 0 
(the probability of success is 1 - 5).  

2. M transforms the modified IRS into a common random string (CRs) gk by 
applying f in the forward direction and computes the [GoLe] hidden random 
string (HRS) as the dot product, of consecutive pairs of blocks in the IRS. 

3. For each i such that B, has not changed in the first step M reveals all the 
entries of B,. For each of the other Bl's it randomly reveals n2 - n rows and 
n2 - n columns. Since the resulting n x n matrix contains only zeroes, M can 
easily simulate the basic step by choosing a random permutation II, ER S, and 
revealing every B,(j ,  I) such that there is no edge between j and I in II,(G). 

The output of M is denoted by ( B k , p T o O f ' ( c r k ,  G)) where the second component 
includes all the revealed bits and permutations. Let rk be a string of length 2n7km 
bit, and denote by p r O O f ( T k ,  G) a proof of P' based on G and 
For any nonuniform distinguisher D, let D( z) denote the 0/1 output of D on input 
x. Let 

p P , k  = Pr{D((rk,proof(rk,G)),G) = 1) 

P M , k  = Pr{D((ak,proof'(gk, G)), G) = 1). 
The probabilities are taken over the choices of Tk and over the coin tosses of P' and 
M .  
Theorem: For any Hamiltonian graph G , for any nonuniform random polynomial 
time distinguisher D and for any polynomial Q : 

1 

for all sufficiently large k. 
Proof: Assume that there exists an efficient distinguisher D, a polynomial 
an infinite subset 1 c n/ such that for every k E 1: 

and 
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Let I; be an element in 2. Let ct = (zl,. . . , z t ,  . . ,w,) (1 5 z 1  < . . . < t t  I: 7~’m 
and for each 1 5 z 5 u 4, E S,,) and let Pa,k (P;,J be the probability that S,, , . . . , s,, 
are the hidden bits revealed by P’ ( M I  and &, . . . . v,, are the permutations given 
by P’ (A!) (each one associated with a Hamiltonian matrix). Since 7-k is a truly 
random string, M simulates P’ and all the choices of M are random we conclude 
that for any a: 

pa,k = PL,k. 
Let p o o f ( T k , G , ( Y )  and proof l (ok,G,a)  denote proofs of P’ and 111 based on r k  

and gk respectively, in which the revealed bits and the random permutations are 
according to a. It is obvious that in the case of P’, once r is chosen. a is fixed. 
Denote by ~ r $ . ~ , k  the probability that D outputs 1 on the input ( T ~ , ~ T O O ~ ( Q ,  G,a ) )  
(while r is a truly random string) and by P,M,~,~ the probability that outputs 1 
on input ( g k , p o O f ’ ( g k ,  G, a ) ) .  
It is obvious that 

(**) PP,k = CPu,kPP,n.k 
a 

and 

u 

The following Lemma claims that for any a ,  D is unable to  distinguish between 

Lemma: For every a 
( % , p T O o f ( T k ’ G ,  a ) )  and ( ‘ k , p r O ~ f ( ~ k , G ,  a ) ) .  

Proof: Assume that this is not true, namely there is a for which w.1.g. 

1 

For every 1 5 j 5 n7m,, P;fA[,a,k denotes the probability that D outputs 1 on the 
following (string, proof): The first 2 k ( j  - 1) bits in the string are randomly chosen 
(a  prefix of a real CRS) and associated with a proof of P’ until that point, while 
all the other bits and the rest of the proof are generated by M and both of these 
parts follow the vector a. Following the well known Hybrid argument of [GoMi] we 
conclude that there is 1 5 i 5 n7m for which : 

From the description of P’ and M we conclude that i is the index of one of the 
hidden bits of one of the appearances of 1,1,.. . ,1 in a segment which defines a 

Hamiltonian matrix in the simulation of P’ .  We’ll construct a random polynomial 
time nonuniform algorithm C;, whose auxiliary input is the graph G ,  including the 
definition of a Hamiltonian cycle, a and i which on input (f(r), y) ( 2 ,  y are randomly 

- 
m 
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chosen) outputs a bit h which is the hard bit of (f(z),  y) with probability 2 ++&. 
This is a contradiction to the assumption that f is one-way. This algorithm uses 
P’, M and I) as subroutines and executes the following steps: 

1. Run P’ so that the indices of the hidden bits which are revealed and the 
permutations associated with the Hamiltonian matrices are according to a. 

2. Run A4 according to the same rule. 

3. Erase from the output of P’ all the bits coming after the ( i  - 1)’th block, 
namely remain with the first 2(i  - l ) k  bits of the string appending the revealed 
bits and the permutations associated with the Hamiltonian matrices (call this 
prefix S p ) .  

4. Erase from the output of M the first i blocks, namely remain with the 1 s t  
2n7km - 2ik  bits of the string appending the revealed bits and the permuta- 
tions associated with the Hamiltonian matrices (call this suffix SM). 

5. Feed D with Sp o f(x) o y o Sht. 

6. If D(Sp o f ( x )  o y o S,) = 1 then h = 1 else b = 0. 

It is easy to verify that with probability 2 f + - h is the hard bit of ( f ( x ) , ~ )  
and this is a contradiction to the assumption that f is one-way. 
This lemma together with (**) and ( * *  *) contradicts (*) which completes the proof 
of the theorem. 
Remark: Consider an NP-statement which is polynomially chosen as a function of 
the random string namely, there is a nonuniform random polynomial time algorithm 
which gets a random string and outputs an NP-statement (which is a function of 
it) including an appropriate witness. 
The simulator generates the ”random string” independently of the NP-theorem. 
Therefore considering the construction of the appropriate Ck, we conclude that: 
Corollary: Our non-interactive proof remains zero-knowledge even if the NP- 
statement (of size n )  is polynomially chosen as a function of the common random 
string. 

poly(k).’ 
0 

5 Extensions and Applications 

5.1 A Polynomial Time Prover 

If the prover is polynomial time bounded then our scheme is based on the stronger 
assumption that trapdoor permutations exist. In fact, we assume that for every 
security parameter there exists an exponentially large family of trapdoor permuta- 
tions whose indices are nc bit strings ( c  is constant). The only difference from the 
scheme described in section 3 is that now P randomly chooses a trapdoor pernu- 
tation f from that family, sends its index to V and keeps the trapdoor information 
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secret. Now the ability of P to invert f is implied by his knowledge of the trapdoor. 
The proof of completeness remains unchanged, but there might be a problem with 
the soundness: In contrast to the scheme described in section 3 in which the (un- 
bounded) prover does not choose the one-way permutation, in this scheme a cheat- 
ing prover may choose a particularly useful trapdoor permutation after seeing the 
CRS. TO overcome this difficulty, we only have to extend the CRS: If the number 
of bits in it is O(n"+"km) then the probability of cheating in our scheme is at most 
O($)  since this is an upper bound on the fraction of random strings which can be 
bad for any trapdoor permutation. 
The proof of the zero-knowledge property resembles its counterpart for the original 
scheme, except that we have to consider all the choices of trapdoor permutations. 

5.2 Public-Key Cryptosystems Secure against Chosen Ci- 
phertext Attacks 

The existence of public-key cryptosystems which are secure against passive eaves- 
dropping under the assumption that trapdoor permutations exist is well known. 
[NaYu] show how to construct a public-key cryptosystem which is provably secure 
against chosen ciphertext attacks (CCS-PKC), given a public-key cryptosystem 
which is secure against passive eavesdropping and a non-interactive zero-knowledge 
proof system in the shared string model. Using their result together with our con- 
struction (for polynomial time provers) we have: 
Corollary: CCS-PKC exist under the general assumption that trapdoor permuta- 
tions exist. 
This is the first known CCS-PKC which is not based on the difficlilty of specific 
computational problems. 

5.3 Multiple NIZK Proofs 

We have to emphasize that our scheme is a bounded NIZIC proof system in the 
sense that using a random string, the prover can prove in zero-knowledge only 
a single theorem. Recently, Feige, Lapidot and Shamir [FeLaSh] have shown how 
to transform any bounded NIZK proof system with polynomial time provers into a 
general NIZK proof system in which polynomially many independent provers can 
share the same random string and use it to prove polynomially many statements of 
polynomial length in a completely memoryless way. 
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