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Abstract 

Suppose that two ZKIPs are given for language Li and Lz. The 

total number of bits communicated is the sum of the two. This paper 

shows that it is possible to get the same effect in less amount of com- 

munication. We call such protocols “multi-language zero knowledge 

interactive proof systems”. 
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I Introduction 

In zero knowledge interactive proof systems (ZKIPs) [GMR89], a large amount 

of communication is the bottleneck. Suppose that Alice wants to  convince 

Bob of two theorems in zero knowledge, such as z is a quadratic residue mod 

N and G is Hamiltonian. The easiest way is to concatenate the two ZKIPs. 

The total number of bits communicated is the sum of the two. It will be nice 

if Alice can do that in shorter conversation. 

This paper shows that it is possible. Alice can convince Bob in  zero 

knowledge that x1 E L1 and x 2  E L2 independently, and the total number of 

bits communicated is less than the sum of the two. We call such protocols 

”multi-language zero knowledge interactive proof systems (MZKIP)”. 

The paper is organized in the following way: In section 2, the defi- 

nition of ZKIP is reviewed. In subsection 3.1, Kurosawa’s cryptosystem is 

shown. (This cryptosystem itself is interesting.) In subsection 3.2, we define 

conditioned QNR and present a ZKIP for that by using Kurosawa’s cryp- 

tosystem. In section 4, the definition of MZKIP is given. In section 5 ,  we 

show an example of MZKIP for conditioned QNR and Hamilton problem. 

2 ZKIP 

For the definition of ZKIP, we refer the reader t o  [GMR89]. 

(Definition) 

(A, B) is an interactive proof system for L if we have the following. 

(I) Completeness 

For each k, for sufficiently large x in L, B accepts with probability at 

least 1 - 

(2) Soundness 

For each k, for sufficiently large x not in L, for any A’, on input x to 



341 

(A’, B), B accepts x with probability at most ~ z I - ~ .  (The probabilities here 

are taken over the coin tosses of A’ and B) 

Let P(U, C ,  X) be the probability that a poly-size circuit C, outputs 

1 on input a random string distributed according to U(x). 

(Definition) 

(A, B) is zero-knowledge on L for B’ if there exists a probabilistic 

turing machine MB,,  running in expected polynomial time, such that, for all 

poly-size family of circuits C ,  for all constant c > 0 and all sufficiently long 

strings z E L ,  

lP(View,,j,C,(z,H)) - P ( M w , C , ( z , H ) ) I  < IzI-‘ 

where H is an extra input tape to B’. 
(A,  B) is zero-knowledge on L if it is zero-knowledge on L for all B’. 
(Definition) 

(A,  B) is a zero-knowledge proof system for L if i t  is an interactive 

proof system for L and zero-knowledge protocol on L. 

3 Kurosawa’s cryptosystem 

3.1 Proposed public key cryptosystem [KIT871 

RSA is not know to be as hard as factorization. Rabin’s cryptosystem is as 

hard as factorization. However, it is not uniquely deciphered because four 

different plaintexts produce the same ciphertext. Williams showed that this 

disadvantage can be overcome if the secret two prime numbers, p and q, are 

chosen such that p=q=3 mod 4. In Kurosawa’s cryptosystem, 

(1) p and q are arbitrary. 

(2) It is as hard as factorization. 

(3) It  is uniquely deciphered. 

The cryptosystem is as follows. 
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(Secret key) Two prime numbers, p and q. 

(Public key) R(=pq) and c, where 

(Plaintext) M 
(Ciphertext) (E, s, t ) ,  where 

E = M + ( c / M )  mod R 

O if ( M / R ) = 1  

1 if ( M / R ) = - 1  
3 = {  

0 if M < ( c / M  mod R)  

1 if M > ( c / M  mod R )  

(Decryption) 

From eq.(2), we obtain 

(4) 

M2 - E M +  c = 0 (5) 

Let a1 and a2 be the roots of eq.(5) mod p, and bl and bz be the roots of 

eq.(5) mod q. ([R80] shows how to find them.) Then, eq.(5) mod R has the 

following four roots. 

Ml = I% bl l ,  M2 = [az ,  bz] 

M3 = [ a l , b z ] ,  M4 = [a2,bl]  

where MI = [u l , b l ]  means 

MI = a1 mod p ,  MI = bl mod q 

The original plaintext M is one of the four roots. "s" and "t" tell which one 

the plaintext M is, as we will see. 

From eq.(5) and eq.( l ) ,  we obtain 

( % / P ) ( a z l P )  = (./I+ = -1 
We thus set 
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{ajp) = 1, (a2/p) = - 1 (6)

Similarly, we set

(bxjq) = 1, (62/9) = - 1 (7)

We then obtain

(Mx/R) = (Ma/pHMa/g) = (ai/p)(&i/«) = 1

Similarly, we obtain

(M3/R) = (M</R) = - 1

Therefore, the receiver sees that

f Mi or M2 if 3 = 0 .
M = < Is)

I MI or M2 if s = 0

Now, suppose that s=0. From eq.(5), we get

Hence

M2 = c/Mi mod R

Therefore, the receiver sees that

. min(M1,M2) if t = 0
M = < (9)

.. M2) if t = 0

When s=l ,

M = | mi<M^M<) i f i = 0
 ( 1 0 )

M4) if t = 0

Thus, any ciphertext is uniquely deciphered.

It is clear that the cryptosystem is broken if one can factor R=pq.

We will prove the converse.

[Lemma 1]

a\ 76 a-2 mod p, bi ^ 62 mod q

(Proof)

It is clear from eq.(6) and eq.(7).
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Q.E.D. 

[Theorem 11 

Suppose that there exists a probabilistic polynomial time algorithm 

finding a plaintext from any ciphertext. Then, there exists a probabilistic 

polynomial time algorithm factoring R=pq. 

(Proof) 

Choose at random c such that (c /R)=l .  Such c satisfies eq.(l) with 

probability 1/2.  Let (R, c) be a public key of the cryptosystem. 

Choose M randomly and compute M’ as follows. 

M -+ ( E , s , t )  (encryption) 

-+ ( E , O )  
+ M‘ (decryption) 

where s’ = s + 1 mod 2. Let M = [fl,gl]. Since s’ = 8 + 1 mod 2, 

M’ = [ f l J 2 1  OT [fzi,g1] 

First, consider the case of M’ = [fl,g2]. Then, 

- M’ = [f17gl] - [ f l , g 2 ]  = [o,gl - 9 2 1  

From lemma 1, 

M - M’ = 0 mod p ,  M - M‘ # 0 mod q 

Therefore, 

gcd(M - M’, R )  = p .  

The case of [fZ,gl] is similar. 

Q.E.D. 

[Theorem 21 

Suppose that there exists a probabilistic polynomial time algorithm 

finding a plaintext from l/poly(n) of all ciphertexts, where n = IRI. Then, 

there exists a probabilistic polynomial time algorithm factoring R=pq. 
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3.2 Conditioned QNR 

QNR (quadratic non-residue) is defined as follows. 

QNR = { ( c , N ) ( ( c / N )  = 1, N = f l p : ; ,  ( . / p i )  = -1 for some j.} 
i 

We define "conditioned QNR" as follows. 

conditioned QNR = { ( c , N ) l ( c / N )  = 1, 

(c/p,T') = -1 for some j.} 

N = n p f ' ,  
8 

We present a ZKIP for conditioned QNR below. 

Without loss of generality, let ( c / p I ' )  = -1 and set Q = N / # .  z = [a ,b]  

denotes 

z = a mod Q, x = b mod p;l 

Repeat step 1-4 n times, where n = IN(. 

(step 1) 

A chooses a random number r and computes 

y = T + ( c / T )  mod N 

A sends y to B. 

(step 2) 

(step 3) 

B sends randomly e=l  or -1 to A. 

A computes 

.=( if ( r / N )  = e 

[ T , c / T ]  if ( r / N )  = --e 

A sends x to B. 

(step 4) 

B checks that 

y = z + (c/z) mod N 
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(x/N) = e 

(Remarks) 

1. The validity of the above protocol is proved by using the same discus- 

sion of 3.1. 

2. The number of bits communicated is l / n  of [GMR89!. 

3. The above ZKIP is also an Arthur-Merlin game. 

4 Multi-language zero knowledge interactive 

proof systems 

4.1 Probabilities and bit complexity 

ZKIPs require a large amount of bits communicated so that the probabilities 

of soundness and zero-knowledgeness get sufficiently small. In other words, 

such probabilities are functions of the number of bits communicated. 

Let F(=(A,  B))  be a ZKIP for L. Let x be an input to  F. 
(Definition) 

Let ai (and b , )  be the i-th message of A(and B) Let 

A a, = {zlz E ( O , l } * ,  121 = n} 

Then, we define 

where the maximum is taken over all z E H,, and the coin tosses of A and B. 

(Definition) 

n P,(F,z )  = max Pr (B accepts z) 
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where the maximum is taken over all A ’  and the coin tosses of A’ and B. 

(Definition) 

n Pz(  F,  z)  = mrqxmin max I P (  ViewAB,, C, (z, H ) )  - P ( M E ~ ,  C ,  (z, A))/ 
B M B ,  C 

4.2 Multi-language zero knowledge interactive proof 

systems 

Suppose that two languages are given, L1 2 { O , l } *  and Lz { O , l } * .  Let 

K ( = ( A ?  B))  be an interactive protocol with an input z = (z l rz2) ,  where 

1x11 = / z 2 / .  B accepts nothing, x l ,  zz or both z 1  and 2 2 .  

(Definition) 

We say that K is a concatenatable ZKIP (CZKIP) for L1 and Lz, if we 

have the following. 

(1)  Completeness 

If xi E L;,  B accepts z; with probability at least 1 - I z ; I - ~  for all k 

and xi large enough, where i= l ,  2. 

(2)  Soundness 

If xi # L,, then for any A’, B accepts xi with probability at most 

It;(-k for all k and zi large enough, where i= l ,  2. 

(3 )  Zerc-knowledgeness 
A K is zero-knowledge on L, where L = {(z1,x2)1z1 E L1 and zz E Lz}. 

(Remarks) 

1. The completeness is independent of the other 2;. The soundness is also. 

2. Therefore, CZKIP is different from a ZKIP for 

Let K(=(A,  B)) be a CZKIP for L 1  and L 2 .  Let z(= (21~22)) be an 

input to K. 
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(Definition) 

Let a; (and b;)  be the i-th message of A(and B). Let 

Then, we define 

where the maximum is taken over a l l  (z1,z2) E Hk and the coin tosses of A 

and B. 

(Definition) 

A P:(K,z)  = maxPr (B accepts z;) 

where the maximum is taken over all A’ and the coin tosses of A’ and B. 

(Definition) 

Let K be a CZKIP for L1 and L z .  Let F; be a ZKIP for L;, i= l ,  2. 

(Definition) 

We say that K is a multi-language ZKIP (MZKIP) for F1 and F2 if we 

have the following. Let z = (z1 ,z2) ,  Izl( = 1z21 = n. Then, for sufficiently 

long n, 

1. t’(K,n) < t(F1,n) + t(F2,n) for any n. 

3- P:(K’4 5 max(P,(F~,zl),P,(Fz,22)) 
if x;  E L; for i = l ,  2. 

(Remark) 

MZKIPs for more than two languages are defined in a similar way. 
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5 Examples of MZKIP 

5.1 Conditioned QNR + Hamiltonian 

Let 

L1 = {(c, N)I c is a conditioned QNR mod N } 

L2 = {a graph GI G is Hamiltonian } 

ZKIP1 = the ZKIP for L1 given in 3.2. 

ZKIPz = the ZKIP for L2 given by [B87]. 

We present a MZKIP for ZKIPl  and Z K I P 2 .  Let 

S = a Hamilton tour of G. 

n = IN1 = m(m - 1)/2 

where m is the number of nodes of G. 

(step 1) 

A publicizes a one way permutation f. 

Repeat step 2-5 n times. 

(step 2) 

A permutes the nodes of G by a random permutation ?r. Let the 

incidence matrix of the resulted graph be D = {d;,}. A chooses random 

numbers r;j such that 

(rij + c/r;j mod N )  = d,, mod 2 

A computes 

gij = f ( ~ ; j  + c / T ; ~  mod N )  

and send {g ; j }  to B. 

(step 3) 

B chooses (e1,e2) at random and sends it to B, where 

el = 1 or - 1, e2 = O or 1 
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(step 4) 
A computes 

If e2 = 0, A sends K and {xij) to B. 

If ez = 1, A sends n(S) and those xi ,  such that edge ij is in ~ ( 5 ' ) .  

(step 5 )  

B checks what he received. 

(Remarks) 

1. It is easily verified that the above protocol satisfies the conditions of 

MZKIP. 

2. The number of bits communicated is nearly the same as that of ZKIP2. 

That of ZKIPI is saved. 

3. e; is a question for L;, i=l, 2. 

4. If (c ,  N )  $! L1 and G E L 2 ,  B accepts only G with overwhelming 

probability, and vice versa. 

5.2 Other examples 

The following ZKIPs are known. 

ZKIP3 : 

ZKIP4 : L4 = { ( z , u , p ) ( r  = a' mod p}[TW87] 
ZKIP ,  : 

L3 = { ( z , N ) I z  is a quadratic residue mod N } [GMR89] 

45 = (Nlp' divides N and pi+' does not, 

where p = 3 mod 4 is prime and i is odd } [B82] 

ZKIP ,  : Le = (3-colorable graph } [GMW87] 

ZKIP7 : L.r = {SAT} [BCCSS] 
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A MZKIP is obtained for any one of ( Z K I P , ,  ZKIPS, ZKIP4, Z K I P S )  

and any one of ( Z K I P , ,  ZKIP, ,  ZKIP7) .  

Z K I P 5  is also possible. 

A MZKIP for Z K I P ,  and 

6 Summary 

This paper proposed the notion of ”multi-language zero-knowledge interac- 

tive proof systems”. Some examples were given. 

It will be a further work to clarify what kinds of ZKIPs can be com- 

bined so that the MZKIP is obtained. 
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