
VGJ: Visualizing Graphs Through Java

Carolyn McCreary1 and Larry Barowski2

1 Tufts University, Medford, MA 02155, USA
2 Auburn University, Auburn, AL 36849

1 Introduction

VGJ is an automated system capable of converting a textual description or a
drawing of a graph into a well organized and readable layout of the graph. VGJ
(visualizing graphs with Java), includes a graph editor and a set of algorithms
that will automatically layout and draw a graph. The graph drawing package can
be accessed through the web at: www.tufts.edu/ mccreary/graph drawing.html.

2 Graph Editing Capabilities

The user interface of VGJ is very intuitive and contains both the typical features
of tools that support drawing graphs as well as some additional features.. With
a click of the mouse, a user can create nodes and edges, select single or multiple
nodes and edges, and move selected objects. Initially the graph is directed and
the edges are drawn with an arrow to indicate direction. The user can set the
graph type to undirected by selecting an option in the properties menu. A dialog
box allows the user to specify a node’s (i) shape (oval or rectangle), (ii) label, (iii)
label position, (iv) exact node position and (v) node dimensions. The label can
be placed in one of three ways: below the node, centered in the node or autosized.
If the node is autosized, the label is placed inside the node and the node is sized
to encompass the label. Associated with selected nodes are handles that allow
then to be dragged, scaled proportionally or scaled in either dimension. Nodes
can be combined and displayed as a single node through the ”group control”
menu. Groups can be created in stages and separated in reverse stages.

A dialogue box with edge attributes is associated with each edge. The at-
tributes include edge label, line style, bend points and data. Edge labels are
drawn parallel to the edge so that edge identification is clear. Bends can be
inserted by specifying the x- and y-coordinates of each of the bend points.

Corresponding to every visual graph is a textual representation in GML
(Graph Modeling Language)[1]. The user can also convert the VGJ drawn graph
to PostScript format.

3 Layout Algorithms

Currently VGJ offers three layout algorithms: Tree, to layout rooted trees; CGD,
for directed graphs; and spring, for undirected graphs.There is also an algorithm
to test a graph for biconnectivity or make it biconnected by adding edges.

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 454–455, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



VGJ: Visualizing Graphs Through Java 455

Tree and Undirected Graph Layout: The tree algorithm implementation
is that of Walker [4]. Trees are drawn so that nodes at same level lie on a
straight line; parents are centered over their children; there is vertical symmetry;
isomorphic subtrees are drawn identically.

The undirected graph algorithm is that of Kamada and Kawai[2]. Their al-
gorithm defines ‘energy’ between pairs of graph points and works to minimize
the total energy of the graph.

Directed Graph Layout: CGD, clan-based graph drawing, produces a layout
for directed graphs[3]. The goals of the layout are to (1) follow the direction of
the arcs so that ancestor nodes always lie above their descendants; (2) balance
the nodes horizontally within each level; (3) have few edge crossings; (4) have few
edge bends. The node layout is determined by the combination of (1) parsing of
the graph into logically cohesive subgraphs and (2) defining layout attributes to
apply to the resulting parse tree. The parse is based on a simple graph grammar,
and the attributes that are now programmed into CGD produce a layout whose
nodes are balanced both vertically and horizontally. Its parser is the first we
know about that decomposes directed graphs into a tree of subgraphs (clans).

CGD defines an attribute grammar for the parse tree, and computes node lay-
out through the attributes. Graph parsing in an improvement over the hierarchi-
cal approach because it discovers clans, structures which have two-dimensional
affinity rather than layers which have only one-dimensional similarity. The use of
graph parsing distinguishes CGD from all other general directed graph drawing
schemes.

CGD’s drawings are unique in several ways: (1) The node layout is balanced
both vertically and horizontally. (2) Nodes within a clan, a subgraph of nodes
that have a common relationship with the rest of the nodes in the graph, are
placed close to each other in the drawing. (3) Nodes are grouped according to
a two-dimensional affinity rather than a single dimension such as level. (4) The
layout can easily display nodes of varying sizes because space is reserved for each
node in the bounding box attribute of the parse tree.

References

1. Himsolt, M.: GML: the Graph Modeling Language. on the internet at:
http://www.uni-passau.de/Graphlet/GML/

2. Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters31 (1989) 7–15

3. McCreary, C., Chapman, R., and Shieh, Fwu-Shan Using Graph Parsing for Auto-
matic Graph Drawing IEEE Trans. on Systems, Man and Cybernetics, Sept. 1998.

4. Walker, J. Q.: A Node-positioning Algorithm for General Trees. Software Practice
and Experience 20, 7 (1990) 685–705


	Introduction
	Graph Editing Capabilities
	Layout Algorithms
	References

