A Combinatorial Framework for Map Labeling *

Frank Wagner and Alexander Wolff

Institut fr Informatik
Fachbereich Mathematik und Informatik
Takustrae 9, D-14195 Berlin
Freie Universitt Berlin
{awolff,wagner}@inf.fu-berlin.de

Abstract. The general map labeling problem consists in labeling a set
of sites (points, lines, regions) given a set of candidates (rectangles, cir-
cles, ellipses, irregularly shaped labels) for each site. A map can be a
classical cartographical map, a diagram, a graph or any other figure that
needs to be labeled. A labeling is either a complete set of non-conflicting
candidates, one per site, or a subset of maximum cardinality. Finding
such a labeling is NP-hard.

We present a combinatorial framework to attack the problem in its full
generality. The key idea is to separate the geometric from the combina-
torial part of the problem. The latter is captured by the conflict graph
of the candidates and by rules which successively simplify this graph
towards a near-optimal solution.

We exemplify this framework at the problem of labeling point sets with
axis-parallel rectangles as candidates, four per point. We do this such
that it becomes clear how our concept can be applied to other cases. We
study competing algorithms and do a thorough empirical comparison.
The new algorithm we suggest is fast, simple and effective.

1 Introduction

Map labeling is a classical problem of cartography. Since the first attempts of
automating map production, an abundance of approaches has been applied to
this problem: expert systems, 0-1 integer programming, and simulated annealing
to name only a few. Map labeling is usually divided into point, line and area
labeling. In recent years, especially the problem of point labeling has achieved
some attention in the algorithms’ community. Two interesting sub-problems have
been studied. In both cases, an instance consists of a set of sites and a set of
label candidates for each site.

1. The Label Size Mazximisation Problem: Find the maximum factor o such
that each site gets a label stretched by this factor and no two labels overlap.
Compute the corresponding complete label placement.

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under
grants Wa 1066/1-1, 3-1, and 3-2

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 316-[331] 1998.
© Springer-Verlag Berlin Heidelberg 1998

A Combinatorial Framework for Map Labeling 317

2. The Label Number Maximisation Problem: Find a maximum subset of the
sites, and for each of these sites a label from its set of candidates, such that
no two labels overlap.

The decision versions of both problems are NP-hard [FW91| [FPT81|; size
maximisation only if the sites have more than two label candidates. In the fol-
lowing we assume that a label candidate touches its site. This makes it easier to
match label and site.

There is an approximation algorithm which maximises the size of uniform
axis-parallel square labels. It is optimal in respect to both, its approximation
factor of 1/2 and its running time of O(nlogn) [FW91l [Wag94]. For the same
problem, there is an algorithm which keeps the theoretical optimality of the
approximation algorithm, but performs close to optimal in practice [WW97].

For square labels of arbitrary orientation and for circular labels there are
approximation algorithms maximising label size, again under the restriction that
all labels are uniform, i.e. of equal size [DMM™97]. In the same paper, Doddi
et al. suggest a bicriteria algorithm which mediates between the two problems
mentioned above. Given an £ > 0, the algorithm labels at least a (1—¢) - fraction
of the points with axis-parallel uniform square labels of size at least OPT/(1+¢),
where OPT is the edge length of the squares in an optimal solution of all points.
The algorithm puts 1/e equidistant markers on each label edge and places the
label such that one of the markers coincides with the point to be labeled.

The complexity of the label number maximisation problem is quite different.
Even for axis-parallel rectangular labels of arbitrary height and width, there is
an approximation algorithm, however with a ratio of just 1/O(logn) [AvKS97].
If the label height (or width) is fixed though, the problem can be approximated
by a factor of 1/2 in O(nlogn) time. For maximising the size of uniform rect-
angular labels, this approximation factor is optimal, but for maximising the
number of fixed-height labels, Agarwal et al. also presented a polynomial time
approximation scheme (PTAS) in the same paper.

If fixed-height rectangular labels are allowed to touch their sites anywhere
on the rectangle boundary, there is still a PTAS and an O(nlogn) algorithm
that guarantees to label at least half the number of sites labeled in an optimal
solution [vKSW9S].

Very recently, Kakoulis and Tollis suggested a more general approach to la-
beling [KT98]. They compute the candidate conflict graph and its connected
components. Then they use a heuristic similar to the greedy algorithm for max-
imum independent set to split these components into cliques. Finally they con-
struct a bipartite “matching graph” whose nodes are the cliques of the previous
step and the sites of the instance. In this graph, a site and a clique are joined
by an edge if the clique contains a candidate of the site. A maximum cardinality
matching yields the labeling. Due to the last step, their algorithm takes O(k+/n)
time in practice.

The algorithm for label number maximisation we present in this paper has
the following advantages compared to previously suggested algorithms. Our al-
gorithmic approach

318 Frank Wagner and Alexander Wolff

e does not depend on the shape of labels,
e can be applied to point, line, or area labeling (even simultaneously) if a finite

set of label candidates has been precomputed for each site,
e is easy to implement,
runs fast, and
e returns good results in practice.

The input to our algorithm is the conflict graph of the label candidates.
The algorithm is divided into two phases similar to the first two phases of the
algorithm for label size maximisation described in [WW97]. In phase I, we apply
a set of rules to all sites in order to label as many of them as possible and to
reduce the number of label candidates of the others. These rules do not destroy
a possible optimal placement. Then, in phase II, we heuristically reduce the
number of label candidates of each site to at most one.

For the rules we apply in phase I, there is a more general concept discussed
in the artificial intelligence community under the name constraint satisfaction
which was independently introduced into the discrete mathematics community
by Knuth and Raghunathan under the name problem of compatible representa-
tives [KR92]. The difference of our approach to that of the artificial intelligence
community is that we try to maximise the number of variables (sites) with a
conflict-free assignment, while their objective is to either list all assignment tu-
ples without conflicts [MES5], to minimise the number of conflicts [FW92], or to
find the maximum weighted subset of constraints which still allows an assign-
ment.

This paper is structured as follows. In Section Blwe describe our ideas within
the framework of constraint satisfaction. In Section [3] we specialise this general
concept to the context of point labeling and give the details of our two-phase
algorithm. The rules of phase I are derived from the general case. In Section llwe
describe the set-up and the results of our experiments. We compare our algorithm
to two other methods, namely simulated annealing and a greedy method.

Part of the examples, on which we do the comparison, are benchmarks that
were already used in [WWO97] to evaluate the algorithm that maximises the size
of uniform square labels. We added examples for placing rectangular labels of
varying size, both randomly generated and from real world data. Our samples
come from a variety of sources; they include the location of some 19,400 ground-
water drill holes in Munich, 373 German railway stations, and 357 shops. The
latter are marked on a tourist map of Berlin, which is labeled on-line by our
algorithm. The algorithm is also used by the city authorities of Munich to label
their drill-hole maps. All example generators, real world data and algorithms are
available on the World Wide We

Our tests differ from experiments performed by other researchers [Hir82l
CMS95| [CEFMS97, vKSWI8| [KT98] in that we included example classes where we
could measure our results with respect to tight bounds on the optimal solution.

! Refer to http://www.inf.fu-berlin.de/map-labeling/

A Combinatorial Framework for Map Labeling 319

2 Framework

A constraint satisfaction problem (CSP) is defined as follows. Given a set of
n variables v1,...,v,, each associated with a domain D; and a set of relations
constraining the assignment of subsets of the variables, find all possible n-tuples
of variable assignments that satisfy the relations [MF85]. Often variable domains
are restricted to discrete finite sets, and only binary relations are considered.

Graph colouring is a special case of a CSP where the variables are nodes, the
domains a given set of colours, and binary relations express the fact that a node
cannot have the same colour as any of its neighbours. Since graph colouring is
NP-complete, one cannot expect to solve general CSPs in polynomial time. For
this reason, the class of network consistency algorithms has been invented. These
algorithms use local arguments to exclude values from the domain of a variable
that cannot be part of a global solution. Network consistency algorithms can be
seen as a preprocessing step to backtracking since they often reduce the search
space very effectively.

An m-consistency algorithm removes all inconsistencies among m of the given
n variables. In the special cases of m = 1, 2, and 3, these algorithms are called
node, arc, and path consistency algorithms, respectively. Mackworth and Freuder
have shown that arc consistency can be achieved in O(a3k) where a is the size
of the variable domains and &k the number of binary relations [ME85].

This framework can be used nearly one-to-one for attacking the label size
maximisation problem. When maximising simultaneously the sizes of all labels,
one can do a binary search on conflict sizes, i.e. label sizes for which label can-
didates start to touch. For each conflict size, one then tries to find a complete
labeling. Obviously, a site can be seen as a variable, the set of label candidates of
a site then corresponds to the variable domain and intersections between label
candidates are the constraining binary relations. Instead of computing all satis-
fying variable assignments, finding one is usually sufficient in the map labeling
context. This allows to reduce the search space dramatically since a variable
can immediately be assigned an unconstrained value from its domain if there is
such a value. The algorithm for label size maximisation suggested in [WW97]
uses this property and implicitly achieves arc consistency in time linear in the
number of sites.

When maximising the number of labeled sites, label sizes are fixed and one
cannot give up and try a smaller label size as soon as it turns out that there is
no complete labeling for the current label size. Systems where one cannot expect
to find a complete solution, i.e. a non-conflicting variable assignment, are called
over-constrained systems. In such systems one has to be content with imperfect
solutions. Most effort in the CSP community has been directed to finding solu-
tions that violate as few constraints as possible [FW92), [Tam96, [TEM96]. When
labeling maps, such violations would result in label overplots and thus poor leg-
ibility. It would be possible to take the output of an algorithm which mimimises
the number of violated constraints and then do some postprocessing. In order
to get rid of the violations, one could drop a subset of the variables and re-
sign from labeling the corresponding sites. Unfortunately the problem of finding

320 Frank Wagner and Alexander Wolff

the smallest subset of variables such that all constraints between the remaining
variables are satisfied, corresponds to the vertex cover problem and is in itself
NP-complete.

A related problem, Max-CSP, has also been investigated. There, one is inter-
ested in finding a maximum (weighted) subset of the constraints such that there
is an assignment that satisfies them all. In order to reduce label number max-
imisation to Max-CSP, one adds a new value A to the domain of each variable.
A has a unary constraint of low weight; i.e. it only constrains itself. A variable
which is assigned A then corresponds to an unlabeled site in our setting. The
bad news is, however, that for general Max-CSP even arc consistency is NP-hard
[SEV95].

/ Therefore we took a different ap-
proach. We developed a weak form of
local consistency for our context and
then wrote a map labeling algorithm
based on this concept. The algorithm
first establishes local consistency. Then
it repeatedly makes a heuristical deci-
sion and restores local consistency un-
til each site is either labeled or known
to constrain too many other sites and
therefore not labeled at all, see Sec-
tion Bl

From now on an instance will still
consist of a set of variables vq,...,v,,
their domains and binary constraints
excluding pairs of variable values, but

for us an optimal solution is a violation-
free assignment for as many variables
as possible. We say that the size of an
optimal solution is the number of vari-
ables in the assignment.

We present a set of rules which,

applied exhaustively, achieve a weak

Fig. 3. applying rule G3 form of local consistency. We refer to

it as weak since we only proof that ap-

plying these rules does not destroy an optimal solution. It would be interesting

to see whether they are complete in the sense that after their application no

domain of a variable can be further reduced without risking to reduce the size of

the optimal solution if only subsets of 1, 2, or k variables are taken into account.
This would correspond to node, arc, and k-consistency for classical CSP.

In Figure [to Bl typical situations before and after the application of a rule
are depicted. The domain of a variable is represented by a rectangle with round
corners, the values of a variable are dotted boxes, and the fact that two values of
different variables exclude each other is marked by a dashed line connecting the

A Combinatorial Framework for Map Labeling 321

corresponding boxes. Bold dashed lines mean that the corresponding constraints
are responsible for the application of the depicted rule. Dashed lines not ending
in a box indicate that the value from which they are emanating might constrain
further variables.

(G1) If a variable v has two values w; and ws, and all values constrained by
wy are also constrained by ws, then set D, = D, — {wa}, see Figure [

Special case: If a variable v has a value w without constraints, then set
D, = {w}.

(G2) If there is a subset V of variables v1,...,v;, each with a value w; such
that w; only constrains variables in V' but does not exclude any w; for
i # j, then set D, = {w;} fori =1,...,1.

Special case: If a variable v has a value w that only constrains a variable
v’, and v’ has a value w’ which constrains only v and does not exclude w,
then set D, = {w} and D,, = {w'}, see Figure

(G3) If the domain D, of a variable v consists only of one value w, and the
values wi,...,w; excluded by w belong to different variables vy,..., v,
and pairwise exclude each other (i.e. if w,wy,...,w; form a clique in the
constraint graph), then set D,, = D,, —{w;} fori =1,...,l, see Figure Bl

Note that if V' is the set of all variables in the instance, then G2 yields a
complete solution — if there is one. We show that our rules are conservative in
the following sense.

Corollary 1. If there is an optimal solution of size k for the given instance
before applying any of the rules G1 to G3, then there is still a an optimal solution
of size k after applying one of these rules.

Proof. Assume to the contrary that the size of the optimal solution decreases
after we remove a value u from the domain D, of its variable v. Then every
optimal solution 7 before the elimination must have assigned u to v. Consider
the circumstances under which u can be removed.

— There is a value w # u of v which excludes only a subset of the values of u
(see rule G1). But then we could replace v by w in 7.

— There is a subset V of variables vy, vs,...,v;, each with a value w; (w1 # u)
such that w; only constrains variables in V' but does not exclude any w; for i # j
(see G2). Then we could replace 7(v;) by w; for i = 1,...,1 without reducing
the size of 7.

— The variables vq,...,v; constrained by u each have a value w; such that
u, w1, ..., w; pairwise exclude each other, and there is a w; among the w;’s which
does not exclude any other value and which is the only value in the domain of
its variable, i.e. D,;, = {w;} (see G3). Then we could replace the assignment of
u to v by that of w; to v;, again without reducing the size of 7.

322 Frank Wagner and Alexander Wolff
3 Algorithm

Our algorithm consists of two phases. In phase I, we apply a set of rules to all sites
in order to label as many of them as possible and to reduce the number of label
candidates of the others. These rules don’t destroy a possible optimal placement.
Then, in phase II, we heuristically reduce the number of label candidates of each
site to at most one.

Phase 1

In the first phase, we apply all of the following rules to each of the sites. Let p;
be the candidate label of site p in position i. For each of the rules we supply a
sketch of a typical situation in the context of point labeling with four rectangular
label candidates per point. In the pictures, we shaded the candidates which are
chosen to label their site, and we used dashed edges to mark candidates which
are eliminated after a rule’s application.

,,,,,,,,,,,,

P 3 | poi

pPi

Fig.4. Rule L1 Fig. 5. Rule L2 Fig. 6. Rule L3 Fig. 7. Rule L4

(L1) If p has a candidate p; without any conflicts, declare p; to be part of the
solution, and eliminate all other candidate labels of p, see Figure €l

(L2) If p has a candidate p; which is only in conflict with some g, and ¢ has a
candidate ¢; (j # k) which is only overlapped by p; (I # i), then add p;
and g; to the solution and eliminate all other candidates of p and g, see
Figure

(L3) If p has only one candidate p; left, and the labels overlapping p; form a
clique, then declare p; to be part of the solution and eliminate all labels
which overlap p;, see Figure [6

(L4) If p has two neighbouring label candidates left, say p; and p;, and p; is
only overlapped by labels which also overlap p;, then eliminate all labels
which overlap both of them and put p; in the solution, see Figure [7l

Rule L4 can only be applied if p; and p; completely share a vertical (horizon-
tal) edge, if all labels have the same width (height) and if they are not allowed
to obstruct a site. Otherwise an optimal solution can be destroyed. Due to these
restrictions, we have not used rule L4 in our experiments.

A Combinatorial Framework for Map Labeling 323

We want to make sure that the rules are applied exhaustively. Therefore,
after eliminating a candidate, we check whether they can be applied in its neigh-
bourhood, i.e. to the site of the eliminated candidate or to the sites of its conflict
partners.

Since the rules L1 to L4 are restrictions of the more general rules G1 to G3,
it is clear that they also have the property that if there is a solution of size k
(i.e. k sites can be labeled) before applying any of the rules, then this is also the
case after the rule’s application.

Phase 11

If we have not managed to reduce the number of candidates to at most one per
site in the first phase, then we must do so in phase II. Since phase II is a heuristic,
we are no longer able to guarantee optimality. The heuristic is conceptionally
simple and makes the algorithm work well in practice, see Section @l The intuition
is to start eliminating troublemakers where we still have a choice. Spoken more
algorithmically, we go through all sites p which have the maximum number of
candidates, and delete the candidate with the maximum number of conflicts
among the candidates of p. This process is repeated until each site has at most
one candidate left. These candidates then form the solution.

As in phase II, after eliminating a candidate, we check whether our rules
can be applied to the site of the deleted candidate or to the sites of its conflict
partners.

Analysis

In order to simplify the analysis of the running time, we assume that the number
of candidates per site is constant. Then it is easy to see that in phase I, rule L1
and L2 can be checked in constant time for each site. We use a stack to make sure
that our rules are applied exhaustively. After we have applied a rule successfully
and eliminated a candidate, we put all sites in its neighbourhood on the stack
and apply the rules to these sites. Since a site is only put on the stack if one of
its candidates was deleted or lost a conflict partner, this part of phase I sums
up to O(n + k) time, where n is the number of candidates and & the number of
pairs of intersecting candidates in the instance, i.e. the number of edges in the
candidate conflict graph. For rule L3, we have to check whether a candidate is
intersected by a clique. In general, this takes time quadratic in the number of
conflict partners. Falling back on geometry, however, can help to cut this down.
In the case of axis-parallel rectangles for instance, a clique can be detected in
linear time by testing whether the intersection of all conflicting rectangles is not
empty. A simple charging argument then yields O(k?) time for checking L3.

The time needed for checking 1.4 is subsumed by that of L3. For both rules,
checking can be done in constant time if we apply them only to candidates with
less than a constant number of conflicts. This makes sense since it is not very
likely that the neighbourhood of a candidate with many conflicts is a clique. In
this case, phase I can be done in O(n + k) time.

324 Frank Wagner and Alexander Wolff

In phase II, we can afford to simply go through all sites sequentially and
check whether they have the current maximum number of candidates. If so,
we go through the candidates of the current site and determine the one with
the maximum number of conflicts. The amount of time needed to delete this
candidate and apply our rules has already been taken into account in phase I.
Thus phase II needs only linear extra time.

Putting things together, we get an O(n + k?) algorithm if rule L3 can be
checked in linear time, and an O(n+k) algorithm if we allow only constant effort
for checking L3 and L4. In our experiments, we have not bounded this effort,
yet this part of the algorithm showed a linear-time behaviour. Finally, for axis-
parallel rectangular labels, the conflict graph can be determined in O(nlogn)
time.

4 Experiments

We compare our algorithm to two other algorithms; simulated annealing and a
greedy method.

The simulated annealing algorithm we used relies on the experiments per-
formed by Christensen et al. and follows their suggestions for the initial config-
uration, the objective function, a method for generating configuration changes,
and the annealing schedule [CMS95]. In order to save time, we allowed only 30
instead of the proposed 50 temperature stages in the annealing schedule. This
did not seem to influence the quality of the results.

The greedy algorithm picks repeatedly the leftmost label (i.e. the label whose
right edge is leftmost), and discards all candidates that intersect the chosen label.
This simple algorithm runs in O(nlogn) time and has an approximation factor
of 1/(H + 1), where H is the ratio of the greatest and the smallest label height
[VKSW9Sg].

We run our algorithm and those described above on the following instance
classes. Figures [[7] to 24 depict an example of each of these classes.
RandomRect. We choose n points uniformly distributed in a square of size
25m x 25n. To determine the label size for each site, we choose the length of both
edges independently under normal distribution, take its absolute value and add
1 to avoid non-positive values. Finally we multiply both label dimensions by 10.
DenseRect. Here we try to place as many rectangles as possible on an area of
size a14/n X aj4/n. a1 is a factor chosen such that the number of successfully
placed rectangles is approximately n, the number of sites asked for. We do this by
randomly selecting the label size as above and then trying to place the label 50
times. If we don’t manage, we select a new label size and repeat the procedure. If
none of 20 different sized labels could be placed, we assume that the area is well
covered, and stop. For each rectangle we placed successfully, we return its height
and width and a corner picked at random. It is clear that all points obtained
this way can be labeled by a rectangle of the given size without overlap.
RandomMap and DenseMap try to imitate a real map using the same point
placement methods as RandomRect and DenseRect, but more realistic label

A Combinatorial Framework for Map Labeling 325

sizes. We assume a distribution of 1:5:25 of cities, towns and villages. After ran-
domly choosing one of these three classes according to the assumed distribution,
we set the label height to 12, 10 or 8 points accordingly. The length of the label
text then follows the distribution of the German Railway station names (see
below). We assume a typewriter font and set the label length to the number of
characters times the font size times 2/3. The multiplicative factor reflects the
ratio of character width to height.

VariableDensity. This example class is used in the experimental paper by
Christensen et al. [CMS95]. There the points are distributed uniformly on a
rectangle of size 792 x 612. All labels are of equal size, namely 30 x 7. We
included this benchmark for reasons of comparability.

HardGrid. In principle we use the same method as for Dense, that is, trying
to place as many labels as possible into a given area. In order to do so, we use a
grid of |agy/n| X [ag+/n] cells with edge lengths n. Again, s is a factor chosen
such that the number of successfully placed squares is approximately n. In a
random order, we try to place a square of edge length n into each of the cells.
This is done by randomly choosing a point within the cell and putting the lower
left corner of the square on it. If it overlaps any of the squares placed before, we
repeat at most 10 times before we turn to the next cell.

RegularGrid. We use a grid of |/n] X [y/n] squares. For each cell, we randomly
choose a corner and place a point with a small constant offset near the chosen
corner. Then we know that we can label all points with square labels of the size
of a grid cell minus the offset.

MunichDrillholes. The municipal authorities of Munich provided us with the
coordinates of roughly 19,400 ground water drillholes within a 10 by 10 kilometer
square centered approximately on the city center. From these sites, we randomly
pick a center point and then extract a given number of sites closest to the center
point according to the L,,—norm. Thus we get a rectangular section of the map.
Its size depends on the number of points asked for. The drillhole labels are
abbreviations of fixed length. By scaling the x-coordinates, we make the labels
into squares and subsequently apply an exact solver for label size maximisation.
This gives us an instance with a maximal number of conflicts which can just be
labeled completely.

In addition to these example classes, we tested the algorithms on the following
point sets.

German Railway Stations. We were given the names and coordinates of 373
German railway stations. Each station was supplied with a priority ranging from
100 to 5000. The priority does not only refer to the size of a city, but also to
its importance in the railway network. Stations on the border have a relatively
high priority, for example. It would be interesting to find a way to modify our
algorithm such that it takes priorities into account as well — otherwise cities like
Frankfurt or Stuttgart might not get a label while relatively small towns are
labeled properly, see Figure [26.

Berlin Shops. The designer of a tourist map gave us the location and names
of 357 shops in Berlin offering books, second hand cloths, records, watches,

326 Frank Wagner and Alexander Wolff

antiquities, toys, jewellery, and art. The data is special in that the labels must
be rather long to accommodate the shop names and in that it is very densely
packed, see Figure 25

Results

We used examples of 250, 500, ..., 3000 points. For each of the example classes
and each of the example sizes, we generated 30 files. Then we labeled the points
in each file with axis-parallel rectangular labels. We used four label candidates
per sites, namely those where one of the label’s corners is identical to the site.
We allowed labels to touch each other but not to obstruct sites.

The graphs in Figures[@ to [6lshow the performance of the three algorithms.
The average example size is shown on the x-axis, the average percentage of
labeled sites is depicted on the y-axis. Note that we varied the scale on the y-
axis from graph to graph in order to show more details. The worst and the best
performance of the algorithms are indicated by the lower and upper endpoints
of the vertical bars. The results of the greedy algorithm are indicated by dotted
lines and squares, simulated annealing has dashed lines and rhombic markers,
while our algorithm has solid lines and triangles.

The example classes are divided into two groups; those that have a com-
plete labeling and those that have not. For the former group, the percentage
of labeled points expresses directly the performance ratio of an algorithm. For
examples of the latter group, which consists of RandomRect, RandomMap and
VariableDensity, there is only a very weak upper bound for the size of an optimal
solution, namely the number of labels needed to fill the area of the bounding box
of the instance completely. Thus for VariableDensity at most 2539 points can
possibly be labeled. Experiments we performed with an exact solver on examples
of up to 200 points showed that on an average about 85% of the points in an
instance of RandomRect and usually less than 80% in the case of RandomMap
can be labeled. Other than VariableDensity, these classes are designed to keep
their properties with increasing point number. This is reflected by the fact that
the algorithms’ performance was nearly constant on these examples. It might be
worth to note that we used the same set of rules as in phase I of our algorithm
to speed up the exact solver.

For all examples, which have a complete labeling, our algorithm labeled be-
tween 95 and 100% of the points. Experiments on small examples hint that the
same holds for larger RandomRect and RandomMap examples. The greedy al-
gorithm performed well given that it makes its decisions only based on local
information. It was outperformed clearly by our algorithm in all example classes
but one. On regular grid data, it achieved 100%, followed very closely by the other
algorithms. For some of the example classes, simulated annealing outperformed
our algorithm by one to two percent. However, in order to achieve similarly good
results, simulated annealing needed much longer, in spite of the fact that both
implementations use the same fast O(nlogn) algorithm for detecting rectangle
intersections (based on an interval tree).

A Combinatorial Framework for Map Labeling 327

Our Algorithm ‘%— Simulated Annealing + Greedy Algorithm %{ -

100 T T T 180 T T T

J 160 - o

p
300 | /T E 10 - /%y 7
250 120 [/%/ 4
50 - |

100 | & g
200 |- Y, B =

80 - 4
150 /?/ E B

?/ 60 |- 2 4
S

=

100 / i -
P4 or @/)?/ =]
50 - e 2 20 | /g/'g = B
ol g R 5 om 5 B X K R A P " A

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Fig. 8. MunichDrillholes (left) and VariableDensity: point number versus run-
ning time

In Figure [we present the running times of our implementations in CPU
seconds on a Sun UltraSparc. We show the two example classes where simulated
annealing performed most slowly and fastest. Our implementation of the greedy
algorithm is simply based on lists and uses brute force to find the next leftmost
label candidate. Given heaps and priority search trees, it would run faster. Our
implementation of simulated annealing seems to be slower by a factor of 2 to 3
than that of Christiansen et al. [CMS95|. This difference in running time may
be due to the machines on which the times were measured.

Conclusion

We have presented a simple and fast heuristic for a very general version of the
labeling problem. Due to this generality, we could not expect to achieve any
approximation guarantee as algorithms focussing on special label shapes. Still,
our technique works very well in practice. The results are similar to those of
simulated annealing, but obtained much faster. Compared to the approach in
[K'T98], our main emphasize was on a set of rules. It would be interesting to see
whether it was worth to integrate the time costly matching step suggested there
into our algorithm.

Acknowledgments

We thank Vikas Kapoor for implementing most of the algorithms and spending
days (and nights!) with the experiments, Christian Knauer for technical support,
Lars Knipping for implementing the example generators, Alexander Pikovsky
for his experiments with simulated annealing, Tycho Strijk for insight in his
implementation of the greedy algorithm, and Rudi Krmer, Frank Schumacher
and Karsten Weihe for supplying us with real world data.

328

Frank Wagner and Alexander Wolff

B om e g =N g

L L L L L
0 500 1000 1500 2000 2500 3000

Fig. 9. RandomMap

100 > P—o— —— 7 o <
98

96

922 +

20
&

86 L L

BW Oy g B R ogok R

L L L L
0 500 1000 1500 2000 2500 3000

Fig.11. DenseMap

& BB R OHRE g

L L L L L
0 500 1000 1500 2000 2500 3000

Fig.13. HardGrid

=3
[z 4
5 g

2 PN

]‘T T T T * T =
9.8 |- ¥ B B g ¥
B

99.6 - PR

L L L L L
0 500 1000 1500 2000 2500 3000

Fig. 15. MunichDrillholes

Our Algorithm ‘%—

Simulated Annealing #

| B.og ¥ oEowog Bou
0 550 10‘00 15‘00 20‘00 25‘00 SU‘UU
Fig.10. RandomRect
| 2% ey 5= o8 B
0 550 10‘00 15‘00 20‘00 25‘00 SU‘UU
Fig. 12. DenseRect

L L 1
0 500 1000 1500 2000 2500 3000

Fig.14. RegularGrid

L L L L
0 500 1000 1500 2000 2500 3000

Fig. 16. VariableDensity

Greedy Algorithm - %

A Combinatorial Framework for Map Labeling 329

P = [e
e S, 0 g il DEP:CIDD itl%
= e B dﬁ%ﬂﬁul} =0
= =" 5= DD;:D:"'DEIDE
== == T o
e = Qﬁﬁﬁu&‘ R
:-::.' 2= = i) By Oomap DDE E![%
=t 1] oo
= et e ‘:"£? T OF =
E%Eg%% ot E‘E‘DQDB:.:[
= CEncEEee—=— nncglmg&bﬂl}. g

Fig.19. DenseMap: 253 points, 249 la- Fig.20. DenseRect: 261 points, 258 la-
beled beled

TI\ []

Fig. 21. HardGrid: 253 points, 252 lab. Fig. 22. RegularGrid: 240 points labeled

1
?

e

= s

I

u[nﬂ it
il
§

e Tyom Ll ..
v T A o
a7 SN b i s

Fig. 23. MunichDrillholes: 250 points lab. Fig. 24. VariableDensity: 250 points lab.

330 Frank Wagner and Alexander Wolff

JuFu’s Trodelkist®

An- und Verkauf Schiirer WElla’s Kinder Paradies
Antiques Dockal, Modellbahnen Brause,

Anuk und Trédel Nehring
Trodel Rode
Trdelsprouc® Juwelier Stem Jechnikeenter “Antiquariat Doering
: Schmuck Seestr. 4f Gelegenheus—shop Modelleisenbahnen Peter
. Platten Unrest Kmderklsle Antik & Kun: Anuquanal Toewe
Antiquititen ~ Trodel Grathe, “Gebrauchtwaren Randjelovic Manu’s Trodelladen
Antik Leonhard® * Yundgrube BIKE Markeg, JPrlon
Antiquititen ARBES
Elegam aus 2. Hancf * M:men—Anuquanal
Buffa]o Record.\s -ond Hand D ll .
Trodelschatull® & Gebrauchtwaren aller Art econd Hand Dolle® .Anllqundten Lauterbach
Antiquititen An-und Verkauf, LP COVER An und Verkauf Winklof ¢\ntiguariat Giintheroth
Buch- und Kunstantiquariat Haucké® Humana Sec""d Hand Antiquititen Zinif

Schmékerkabinett
Humana Second Hand A ntiquariat Zeisi
Antiques Sophienstrale® CAntiquariat Kunze q 1s1g

Fig. 25. left: 357 tourist shops in Berlin, right: 45 of 63 labeled

Niebiill \W/\&wauu
Dagebill MoldFlensburé’ bek ot
ube 4 assnitz Hafen
Husum, ! Putgaden g auf Ruge.nf‘mw
Kie}Kiel Oslo-Kai ~ Stralsund Riigendamny
Rendsbur, . Stralsund
Heid® Neumiinster ~ Warnemiind¢,
* ostock Greifswald
. ek, | wigmaf, Plzow
Cuxha sl s)
e FImShom g Kleiner? Gistrow” % gjendort
Bremerhaven, Hamburg—. Alwna,,Hamhurg Schwerin® Kurov\a Waren Neubrandenburg
Buxtehudd Buchen . JHagenow Lan
{‘)'fjf b Buchhol?”
enourg, BremengRotenburg
{

Neustrelitz Pasewalk
urg -
'Lnnebmg Siid AVL W‘"‘{;’?k. Firstenberg
Delmenhors® alk Angermiinde
cmenor ¢ Wittenberg® Neuruppin,
Bassun® Nerden Uelren Lowenbers Eberswalde
b . ernau
Nienburg” Selle Rathenow, Nauer, s
Bohm, WO, amnover Oebisfelde
*Biinde, ,

Bad Bentheim,
Rheind *

L engench
Miins

Berlin-Lichtenberg
Berlin-Spanday
Mmden 2% chrte Braumschweig Brandénburg”

erlin-Schonef. Flug
** Blankent
Magdeburg, Belzig
Bickteld, Herford 41 gy Mildesheim — * C U ¢
Gliersloh Robla
Kreiensen ‘¢
i C (b
K,Cchml Rheda-Wiedenbriick® Altenbeken “Northeim Kother, essau st
™ Ljnen, o paderbon? . Biterfeld o Spremberg,
nmop ordhause
Warburg, - &N B . Hallg Falkenbers Rup
Brilon Wald, gey, dincfelde Leiprig,
Hager® Kasseh %ichenber, i
Viersers o0 ¢ Korbact® enbers Weibenfely, ©
Solingen-Ohligs 'Gumcrshnu<cn Noumburd®
Koln DomiKgln-Deutz o o Wabem - Fisenach NeOUTE
o O Troisdort .S‘Cfc“ cidenat gopr® * Gotnd Yafult @
Aacher? PMTHE 18N Marburg Amstadf
Dillenburg® Gieben g, Sth
Andernach Wetzlar Grimmenthal
Mayen Osf, © Niederlahnstein Friedberg ¥lieden Eisfeld ¢0MeDere
Gerolsteir®

Emmerich

Frankfurt/Oder
“Zossen

ratau Libbenay — Guber®
Krefeld, oo

and .
Elserwerdd |+ Sentienber
riestewitz.
Ries & Gerlitz
Dresder,
Gty ik,
onr?

"E wickau
L Seatter ¢ Remhenbauh.

Z\lluu.
Bad Schandau
ichtentanne

..luhunngsurgsn:lddl
Schirding
Bamberg p e Markiredwitz
Y Kirchenlaibach
'Wunhmg
fppenein Weide®
Mannheing, ® Eberbach ® Firthy -l
Neunkircher, . .
o Homburg Neustadt Neckarelz AMSPachy
Saarbriicker? Bru
Karlsruhe-Durlacl °

Jichtenfels
Wiesbaden,® Semiinde .
"brfcnbncn Hemiingen

3

Ehran; Binger 'Mdm Siid “Aschaffenburg
Tie® Bad Kreuzmaott Darmstad?

Worms,

*Niimberg *Amberg
Schwandorf Furth i Wald
Crailsheim
. Treuchi Bayerisch Eisenstein
Mibfacker Goldshife & UPINEN Regensburg
Baden- deenuk““““ o Backnangs
.
Kehl,

len dngolstadt ppygin
Plochinger’ bbppmgen Donauwarth =
011=nburg‘Appe"W“'°'

Landshut o
“libingen “oure Neumarki-St Vet
Hechinger® UnnNeu-Ulm “Augsburg “Mihldorf
— Miinchen
Sigmaringen, Geltendorf, ~ edflinchen -
P ingert g Memminger, Buetioe “Miinchen Ost
Donaueschingen 'lmmemlmoenAulendon
Schaffhausen,

Rosenhein
e Kongtanz Kempten Weilheim
Basel Bad® Konstan Hafer®

Freilassing’
Pfronten-Steinach
Linda® G misch-parienk® Mittenwald

Fig. 26. 373 German railway stations, 270 labeled

A Combinatorial Framework for Map Labeling 331

References

[AVKS97]

[CFMS97]

[CMS95]

[DMM*97]

[FPTS1]

[FWO1]

[FW92]
[Hirg2]
[Jam96]
[JFMO6]
[KR92]

[KT98]

[MF85]

[SFV95]

[VKSWOS]

[Wag94]

[(WW97]

Pankaj Agarwal, Marc van Kreveld, and Subhash Suri. Label placement
by maximum independent set in rectangles. In Proceedings of the 9th
Canadian Conference on Computational Geometry, pages 233238, 1997.
Jon Christensen, Stacy Friedman, Joe Marks, and Stuart Shieber. Empiri-
cal testing of algorithms for variable-sized label placement. In Proceedings
of the 13th Annual ACM Symposium on Computational Geometry, pages
415417, 1997.

Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study
of algorithms for point-feature label placement. ACM Transactions on
Graphics, 14(3):203-232, 1995.

Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M.E.
Moret, and Binhai Zhu. Map labeling and its generalizations. In Pro-
ceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages
148-157, 1997.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal
packing and covering in the plane are NP-complete. Inform. Process.
Lett., 12(3):133-137, 1981.

Michael Formann and Frank Wagner. A packing problem with applica-
tions to lettering of maps. In Proc. 7th Annu. ACM Sympos. Comput.
Geom., pages 281-288, 1991.

Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction.
Jour. Artificial Intelligence, 58:21-70, 1992.

Stephen A. Hirsch. An algorithm for automatic name placement around
point data. The American Cartographer, 9(1):5-17, 1982.

Michael B. Jampel. QOver-Constrained Systems in CLP and CSP. PhD
thesis, Dept. of Comp. Sci. City University, London, sept 1996.

Michael Jampel, Eugene Freuder, and Michael Maher, editors. QOver-
Constrained Systems. Number 1106 in LNCS. Springer, August 1996.
Donald E. Knuth and Arvind Raghunathan. The problem of compatible
representatives. STAM J. Discr. Math., 5(3):422-427, 1992.
Konstantinos G. Kakoulis and Ionnis G. Tollis. A unified approach to
labeling graphical features. In Proc. 14th Annu. ACM Sympos. Comput.
Geom., pages 347-356, June 1998.

Alan K. Mackworth and Eugene C. Freuder. The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction prob-
lems. Jour. Artificial Intelligence., 25:65-74, 1985.

Thomas Schiex, Hélene Fargier, and Gérard Verfaillie. Valued constraint
satisfaction problems: Hard and easy problems. In Proc. International
Joint Conference on Al aug 1995.

Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point set labeling
with sliding labels. In Proc. 14th Annu. ACM Sympos. Comput. Geom.,
pages 337-346, June 1998.

Frank Wagner. Approximate map labeling is in 2(nlogn). Information
Processing Letters, 52(3):161-165, 1994.

Frank Wagner and Alexander Wolff. A practical map labeling algorithm.
Computational Geometry: Theory and Applications, 7:387-404, 1997.

	Introduction
	Framework
	Algorithm
	Experiments

