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Abstract. In this paper we introduce the quasi-upward planar drawing
convention and give a polynomial time algorithm for computing a quasi-
upward planar drawing with the minimum number of bends within a
given planar embedding. Further, we study the problem of computing
quasi-upward planar drawings with the minimum number of bends of
digraphs considering all the possible planar embeddings. The paper con-
tains also experimental results about the proposed techniques.

1 Introduction

An upward drawing of a digraph is a drawing such that all the edges are repre-
sented by curves monotonically increasing in the vertical direction. A digraph is
upward planar if it has a planar upward drawing.

Planar upward drawings have been deeply investigated and several theoret-
ical and application-oriented results can be cited in this intriguing field. What
follows is a limited list containing a few examples (a survey on upward planarity
can be found in [I0]). Upward planarity of specific families of digraphs has been
studied in: planar st-digraphs [14], [7], embedded and triconnected digraphs [3],
single source digraphs [13], [4], bipartite digraphs [6], outerplanar digraphs [17],
trees [18], and hierarchical digraphs [15]. The NP-completeness of upward pla-
narity testing is proved in [9]. Further, an impressive set of results on upward
drawings can be found in the literature on ordered sets.

Despite such a long list of results, upward planar drawings have found limited
applicability. The reasons for this are mainly in the tightness of the upward
planar standard that can be satisfied for “a few” digraphs. Also, the applications
require very often a similar but slightly different standard, where the drawing is
upward “as much as possible”. This is the case, for example, of Petri Nets or of
certain types of SADT diagrams.

In this paper we introduce and investigate quasi-upward planar drawings. A
quasi-upward drawing I' of a digraph is such that the horizontal line through
each vertex “locally splits” the incoming edges from the outgoing edges. More
formally, for each vertex v there exists a connected region R of the plane, properly
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containing v, such that, in the intersection of R with I', the horizontal line
through v separates the incoming edges from the outgoing edges. Examples of
quasi-upward (planar) drawings of Petri Nets are shown in Fig. [l

(a) (b)

Fig. 1. Two quasi-upward drawings of Petri Nets.

Observe that an upward drawing is quasi-upward and that, while an upward
drawing requires the acyclicity of the digraph, any digraph can be drawn quasi-
upward.

In a quasi-upward drawing we call bend a point on an edge where the tangent
moves from the interval 0, 7 to the interval 7, 27 or viceversa. In other words, a
bend is a point on an edge where the edge is tangent to a horizontal line. The
quasi-upward drawings of Fig.[Ila and Fig. [lb have 2 and 8 bends, respectively.
An upward drawing is a quasi-upward drawing with 0 bends.

The main contributions of this paper are summarized as follows: we introduce
the quasi-upward planar drawing convention (Section B); we give a polynomial
time algorithm for computing a quasi-upward planar drawing with the minimum
number of bends of an embedded “bimodal” digraph and show how to extend the
technique to deal with non-bimodal digraphs; we use a min-cost flow technique
that unifies the techniques for orthogonal drawings presented in [T9] with those
presented in [3] for upward planarity (Section 3.

Motivated by the practical applicability of quasi-upward planar drawings we
study the problem of computing quasi-upward planar drawings with the min-
imum number of bends of digraphs considering all the possible planar embed-
dings. Thus, we present: lower bounds techniques for quasi-upward planar draw-
ings (Section H); a branch-and-bound algorithm for computing a quasi-upward
planar drawing with the minimum number of bends of a biconnected digraph
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(Section Bl). Such a technique is a variation of the technique presented in [2]
for orthogonal drawings and can be used for each biconnected component of a
digraph, constituting the basis of a powerful drawing heuristic. Further, it al-
lows to test if the digraph is upward planar. An implementation of the above
branch-and-bound algorithm and the results of experiments performed on a test
suite of 300 biconnected digraphs with number of vertices in the range 10 — 200.
The experiments show a reasonable time performance in the selected range.
(Section [).

2 Preliminaries

We assume familiarity with planarity and connectivity of graphs [16]. Since we
consider only planar graphs, we use the term embedding instead of planar embed-
ding. The following definitions, usually introduced for graphs, are used here for
digraphs. Let G be a biconnected digraph. A split pair of G is either a separation-
pair or a pair of adjacent vertices. A split component of a split pair {u, v} is either
an edge (u,v) or a maximal subgraph C of G such that C contains « and v, and
{u,v} is not a split pair of C. A vertex w distinct from u and v belongs to ex-
actly one split component of {u,v}. Suppose G, ..., G are some pairwise edge
disjoint split components of G with split pairs w1, vy . .. ug, vk, respectively. The
digraph G’ C G obtained by substituting each G; (i = 1,..., k) with any simple
path p; between u; and v; in G; is a partial digraph of G. Paths p; are called
virtual paths. We denote EV™ the set of the edges of the virtual paths of G’ and
we denote E™°™"t the set of the edges of G’ that are not in the virtual paths.
We say that G; is the pertinent digraph of p; and that p; is the representative
path of Gj.

Let ¢ be an embedding of G and ¢ an embedding of G'. We say that ¢
preserves ¢ if G, can be obtained from G by substituting each component G;
with its representative path.

In the following we revise SPQR-trees [8], with the purpose to use them
to decompose digraphs instead of graphs. SPQR-trees are closely related to the
classical decomposition of biconnected graphs into triconnected components [12].
Let {s,t} be a split pair of G. A maximal split pair {u,v} of G with respect to
{s,t} is a split pair of G distinct from {s,¢} such that for any other split pair
{u,v'} of G, there exists a split component of {u’,v'} containing vertices wu,
v, s, and t. Let e(s,t) be an edge of G, called reference edge. The SPQR-tree
T of G with respect to e describes a recursive decomposition of G induced by
its split pairs. Tree 7 is a rooted ordered tree whose nodes are of four types:
S, P, Q, and R. Each node p of 7 has an associated biconnected multigraph
containing directed and undirected edges, called the skeleton of i, and denoted
by skeleton(u). Also, it is associated with an edge of the skeleton of the parent
v of p, called the virtual edge of u in skeleton(v). Tree T is recursively defined
as follows. If G consists of exactly two parallel edges between s and ¢, then 7
consists of a single Q-node whose skeleton is G itself (trivial case). If the split
pair {s,t} has at least three split components Gy, - - -, Gy, (k > 3), the root of 7 is
a P-node p. Graph skeleton(u) consists of k parallel undirected edges between s
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and ¢, denoted eq, - - -, e, with e; = e. Otherwise, the split pair {s, ¢} has exactly
two split components, one of them is the reference edge e, and we denote with
G’ the other split component. If G’ has cutvertices c1,---,cx—1 (k > 2) that
partition G into its blocks G1, - - -, Gy, in this order from s to ¢, the root of 7 is
an S-node p. Graph skeleton(u) is the cycle of undirected edges eg,eq, - - -, ek,
where eg = e, ¢p = 8, ¢, = t, and e; connects ¢;—1 with ¢; (i = 1---k). If none
of the above cases applies, let {s1,%1}, -+, {sk, tx} be the maximal split pairs of
G with respect to {s,t} (k> 1), and for i = 1,--- k, let G; be the union of all
the split components of {s;, t;} but the one containing the reference edge e. The
root of 7 is an R-node p. Graph skeleton(u) is obtained from G by replacing
each subgraph G; with the undirected edge e; between s; and t;.

Except for the trivial case, u has children g, - - -, pug in this order, such that
1; is the root of the SPQR-tree of graph G; U e; with respect to reference edge
e; (i=1,---,k). Edge e; is said to be the virtual edge of node u; in skeleton(u)
and of node p in skeleton(u;). Digraph G; is called the pertinent digraph of node
1, and of edge e;.

The tree 7 so obtained has a Q-node associated with each edge of G, except
the reference edge e. We complete the SPQR-tree by adding another Q-node,
representing the reference edge e, and making it the parent of u so that it
becomes the root. Let u be a node of 7. We have: if i is an R-node, then
skeleton(u) is a triconnected graph; if  is an S-node, then skeleton(u) is a cycle;
if 1 is a P-node, then skeleton(u) is a triconnected multigraph consisting of a
bundle of multiple edges; and if u is a Q-node, then skeleton(u) is a biconnected
multigraph consisting of two multiple edges. The SPQR-trees of G with respect
to different reference edges are isomorphic and are obtained one from the other
by selecting a different Q-node as the root. Hence, we can define the unrooted
SPQR-tree of G without ambiguity. The SPQR-tree 7 of a digraph G with n
vertices and m edges has m Q-nodes and O(n) S-, P-, and R-nodes. Also, the
total number of vertices of the skeletons stored at the nodes of 7 is O(n).

By applying the above definitions, the skeletons of the nodes of 7 contain
both directed and undirected edges. To avoid this, we modify 7 as follows. For
each node p, each virtual edge (u,v) of skeleton(u) is replaced by any simple
path (virtual path) of the pertinent digraph of (u,v) between u and v. Also, we
call reference path the path that substitutes the reference edge. Observe that,
after this modification, skeleton(u) is directed and is a subgraph of G.

An SPQR-tree 7 rooted at a given Q-node represents all the planar embed-
dings of G having the reference edge (associated to the Q-node at the root) on
the external face.

3 Quasi-Upward Planarity

Let G be an embedded planar digraph. A vertex of G is bimodal if its incident list
can be partitioned into two possibly empty linear lists one consisting of incoming
edges and the other consisting of outgoing edges. If all its vertices are bimodal
then G and its embedding are called bimodal. A digraph is bimodal if it has a
planar bimodal embedding.
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We define the operation insert-switch on an edge of an embedded digraph.
Operation 2k-insert-switch on edge (u,v) removes (u,v) and inserts vertices

V1, U1, V2, U, - . ., Uk, U and edges (u,v1), (u1,v1), (u1,v2), (u2,v2),..., (ug,v).
See Fig. Bl The new path is embedded in place of (u,v). Observe that vertices
Uiy ... uk (v1,...,0;) are k new sources (sinks) of the digraph.

O—0 CO——a—f—=—0)

u v u ¥y u; ' u; v

Fig. 2. An example of 4-insert-switch.

Let G be a bimodal digraph that is not upward planar and let G’ be a digraph
obtained from G by performing one 2k-insert-switch operation on (u,v). Sup-
pose that G’ is upward planar (and, of course, acyclic) and consider an upward

drawing I'” of G’. Reverse the direction of edges (uy,v1), (u2,v2),. .., (ug,vg) of
I'". We have that I is a quasi-upward drawing with 2k bends of GG, where edge
(u,v) of G is “represented” by the drawing of path vy, uy, va, us, ..., vk, ur of G'.
Each of vy, u1, v, us, ..., vk, ur corresponds to a bend.

In Fig. Bla we show a bimodal digraph that is not upward planar. Observe
that if we perform a 2-insert-switch operation on edge (3,2), then the resulting
digraph becomes upward planar. See Fig.[3lb. Observe that the resulting draw-
ing can be simply modified into a quasi-upward planar drawing of the original
digraph (Fig. Blc) by reversing one edge. The best aesthetic results are obtained
by smoothing the bends (Fig. Bld).

We consider the following problem. Given a bimodal digraph G we want to
determine a quasi-upward planar drawing of G with the minimum number of
bends. In this section we restrict our attention to a given planar embedding,
while in the next sections we shall consider also the possibility of changing the
embedding.

Let G be an embedded bimodal planar digraph and let S (T') be the set of its
sources (sinks). Let f be a face of G. We visit the contour of f counterclockwise
(i.e. such that the face remains always to the left during the visit). Let 2ny be
the number of pairs of consecutive edges ej, ea such that the the direction of ey
is opposite to the direction of es. The capacity c¢ of f is ny —1if f is an internal
face and ny + 1 if f is the external face.

Lemma[l and Theorem [ have been shown in [3].

Lemma 1. The sum of the capacities of all the faces is equal to |S| + |T.

An assignment of the sources and sinks of G to the faces such that the
following properties hold is upward consistent: (1) a source (sink) is assigned to
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Fig. 3. (a) A non upward planar digraph; (b) An upward planar drawing after a
2-insert-switch operation; (c¢) A quasi-upward planar drawing; and (d) A quasi-
upward planar drawing with smoothed bends.

exactly one of its incident faces; for each face f, the number of sources and sinks
that are assigned to f is equal to c;.

Theorem 1. Let G be an embedded bimodal digraph; G is upward planar if and
only if it admits an upward-consistent assignment.

Consider again Fig. Bl If we interpret the 2-insert-switch in terms of capacity
and assignment we have that before the insertion (Fig.[3la) the capacity of the
external face h was equal to 2 while the capacity of all the internal faces was
equal to 0. Also, the external face had one source (vertex 0) to accomodate while
face f had one sink (vertex 4). Hence, we had a surplus of capacity on h and
a deficiency of capacity on f. The effect of the insertion was to increase the
capacity of both f and A of one unit. At the same time we have now two more
sources and sinks to assign. However, such vertices can be both assigned to h.

A maximal path whose edges share two (not necessarily distinct) faces is a
boundary path.

We extend the concept of upward consistent assignment, that has been used
for upward planarity, by introducing a new flow network that models quasi-
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upward planarity of a digraph within a given planar embedding. Namely, each
quasi-upward planar drawing corresponds to a flow in the network. Further, each
flow corresponds to an equivalence class of quasi-upward planar drawings. For
each element of the equivalence class we have the same number of bends along
each boundary path. Also, for each sink ¢, consider the horizontal line A through
t and a sufficiently small region R properly enclosing t; the intersection between
R and the halfplane “above” X is a subset of the same face for each drawing of
the class; and for each source s, consider the horizontal line A through s and a
sufficiently small region R properly enclosing s; the intersection between R and
the halfplane “below” A is a subset of the same face for each drawing of the
class.

The flow network N associated to an embedded bimodal digraph G is defined
as follows: nodes have supplies and demands; arcs have a capacity § and a cost
x; the nodes of N are the sources, the sinks, and the faces of G; a source or sink
node v produces a flow o(v) = 1; a face-node f consumes a flow o(f) = ¢y, where
cr is the capacity of f. Observe that if f is internal and is a directed cycle then
¢y = —1. This corresponds to a production of flow rather than a consumption;
for each vertex-node v we have one arc from v to every its incident face f. Such
arcs have zero cost and capacity B(v, f) = 1; for each boundary path between
faces f and g we have arcs (f, g) and (g, f). Arcs have cost x(f,9) = x(g, f) =2
and a capacity 3(f,g) = B(g, f) = +oo.

By Lemma [0 it follows that the sum of the amounts of flow supplied by
the vertex-nodes is equal to the sum of the amounts of flow consumed by the
face-nodes. Considering that arcs between face-nodes have infinite capacity we
have:

Lemma 2. Network N admits a feasible integer flow.

Theorem 2. Let G be an embedded bimodal digraph and let N be the associated
flow network. For each feasible integer flow o of N there is a quasi-upward planar
drawing I' of G, and for each quasi-upward planar drawing I' of G there is a
feasible integer flow o of N such that:

1. The number of bends of I' is equal to the cost of o.

2. The number of bends in I' along each boundary path between faces f and g
is equal to X(f,9)o(f,9) + x(g, f)o(g, f)-

3. for each sinkt, let f be the face such that o(t, f) = 1; consider in I" the hor-

izontal line \ through t and a sufficiently small region R properly enclosing
t; the intersection between R and the halfplane “above” X\ belongs to f; and

4. for each source s, let f be the face such that o(s,f) = 1; consider in I’

the horizontal line A through s and a sufficiently small region R properly
enclosing s; the intersection between R and the halfplane “below” X\ belongs

to f.

Proof. Intuitively, k units of flow from face f to its adjacent face g through the
arc (f, g) associated to boundary path p (shared by f and g) represent a 2k-insert
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switch operation performed on any edge e of p. The flow ¢ is interpreted as an
assigment of sources and sinks to faces. The set of sources and sinks includes
the new sources and sinks introduced by the insert switch operation. The 2k
new sources and sinks introduced on e from the 2k-insert-switch operation are
assigned to face g. An analysis based on the effect of the insert switch opera-
tions on the capacity of the faces shows that the resulting assignment is upward
consistent.

Theorem [2] allows to reduce the problem of finding a quasi-upward planar
drawing of an n-vertex embedded bimodal digraph G with the minimum number
of bends to a minimum cost flow problem. The flow problem can be solved in
time O(T'(n)), where T'(n) is equal to O(n?logn), using a standard technique
(see e.g. [I]). The T'(n) bound can be reduced to O(n"/*\/logn) with a technique
presented in [TT].

If the digraph is not bimodal, a planarization technique can be used in a
preprocessing step, where dummy vertices are introduced into the digraph to
represent crossings.

Once the min-cost-flow problem has been solved a planar st-digraph including
the given digraph can be found in time O(n+b), where b is the number of bends,
with a technique similar to the one presented in [3] to “saturate” the faces of an
upward planar embedding. The enclosing planar st-digraph can be drawn with
any of techniques for drawing planar st-digraphs (see [5]) and, eventually, the
bends are smoothed.

Fig. 4. A quasi-upward planar drawing

An example of drawing constructed with the algorithm presented in this
section is shown in Fig. [
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4 Lower Bounds on the Number of Bends of Quasi-Upward
Planar Drawings

Let G = (V, E) be a biconnected bimodal digraph and I" be a quasi-upward
planar drawing of G, we denote by b(I") the total number of bends of I" and by
br/(I") the number of bends along the edges of E' (E' C E). Let G; = (V;, E;),
i=1,...,kbe ksubgraphs of G such that E;NE; = 0 ¢ # j,and Uj—1, 1 E; = E.
Let I'; be an optimal quasi-upward planar drawing of G;. We have:

.....

Property 1. b(I') > 32, b(L3).

Let G:;s' be an embedded partial digraph of G with respect to the split com-
ponents Gy, ..., Gy.

Let I'), be a quasi-upward planar drawing of G7;,. Suppose I, is such that
bgnonvirt (I (2’5,) is minimum. Consider an embedding ¢ of G that preserves ¢’ and
an optimal quasi-upward planar drawing Iy of G.

Lemma 3. bgronvirt (Fqﬁ,) < bpnonvire (Iy).

Proof. Suppose, for a contradiction, that bgnonvire (1) > bgnonvirt (I'y). For each
component G; of G, the virtual path p; is represented in Iy by a polygonal line.
We can derive from I'y a quasi-upward planar drawing fqy of G:;s' by simply
substituting the quasi-upward planar drawing of G; with p;, for each G;. It is
easy to see that bgnonvire (I yr) = bgnonvirt (). Hence, 'y has less bends along
the edges that do not belong to virtual paths than I’ <z/5” a contradiction.

From Property [l and Lemma [ it follows a first lower bound.

Theorem 3. Let G = (V, E) be a biconnected bimodal digraph and G7, an em-
bedded partial graph of G. For each virtual path p; of G', i = 1,...,k, let b;
be a lower bound on the number of bends of any quasi-upward planar drawing
of the pertinent digraph G; of p;. Consider a quasi-upward planar drawing F{;,
of GYy such that bgnonvire (L)) is minimum. Let ¢ be an embedding of G that
preserves ¢, consider any quasi-upward planar drawing I'y of Gy. We have that:

B(Ip) > bignansire () + X,

A quasi-upward planar drawing I, of G, such that bgnonvir:(I7,) is min-
imum can be easily obtained by using the algorithm presented in Section Bl
Namely, when two faces f and g share a virtual path, the corresponding edge of
N in the minimum cost flow problem is set to zero.

A further lower bound is described in the following property.

\ bi-

.....

Property 2. Let Gy be an embedded bimodal digraph and G:zﬁ’ an embedded
partial digraph of G, such that ¢ preserves ¢’. Consider an optimal quasi-upward
planar drawing I (2’5, of Gib’ and a quasi-upward planar drawing Iy of Gg. Then
we have that: b(I'y) > b(I';,)

The next theorem allows us to combine the above lower bounds into a hybrid
technique.
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Theorem 4. Let G4 be an embedded biconnected bimodal digraph and G:;s' an
embedded partial graph of G. Consider a subset FV" of the set of the virtual
paths of Gizﬁ" Denote by Er the set of edges of FV". For each virtual path
p; & FU let b; be a lower bound on the number of bends of the pertinent
graph G; of p;. Consider a quasi-upward planar drawing F(;, of Gfb” such that
bgnonvirt (Fqlb’) +bg, (Fqlb’) is minimum. Let I'y be a quasi-upward planar drawing
of Gy, we have that: b(I'y) > bgnonvirt(I'y) +be, (1) + Zj:pngvm b;

5 Computing Optimal Drawings with Branch and Bound
Techniques

Let G be a biconnected bimodal digraph. We describe a technique for enumer-
ating all the possible quasi-upward planar drawings of G and strategies to avoid
examining all of them in computing a quasi-upward planar drawing with the
minimum number of bends. Such a technique is a variation of the one presented
in [2] for orthogonal drawings.

The enumeration uses the SPQR-tree 7 of G. Namely, we enumerate all the
quasi-upward planar drawings of G with edge e on the external face by rooting 7
at e and exploiting the capacity of 7 rooted at e in representing all the embed-
dings having e on the external face. A complete enumeration is done by rooting 7°
at all the possible edges. Actually, in general, 7 represents also the embeddings of
G that are not bimodal. To solve this problem, before computing 7", we perform
an “expansion” on all the vertices of G with more than one incoming or outgoing
edge. The expansion replaces vertex v with its incoming edges (u1,v),. .., (up,v)
with h > 1 and its outgoing edges (v, w1),..., (v, wg) with & > 1 with vertices
vy, v and edges (u1,v1),. .., (up,v1), (v1,v2), (Va,w1), ..., (ve, wr). We call edge
(v1,v2), that represents vertex v, straight edge. Now, the edges incident on v
must enforce the bimodal constraint in any computed embedding. Observe that
the straight edges are boundary paths.

We encode the embeddings of G as follows. We visit 7 in such a way that a
node is visited after its parent, e.g. depth-first or breadth-first. This induces a
numbering 1, ..., r of the P- and R-nodes of 7. We define an r-uple of variables
X = =x1,...,x, that are in one-to-one correspondence with the P- and R-nodes
1, -,y of 7. Each variable x; of X that corresponds to an R-node u; can be
set to three values corresponding to two swaps of the pertinent digraph of pu;
plus one unknown value. Each variable z; of X that corresponds to a P-node
p; with degree k (including the reference edge) can be set to up to (k — 1)!
values corresponding to the possible permutations of the pertinent digraphs of
the children of y; plus one unknown value. Unknown values represent portions
of the embedding that are not yet specified.

A search tree B is defined as follows. Each node 3 of B corresponds to a
different setting Xz of X. Such a setting is partitioned into two contiguous (one
of them possibly empty) subsequences 1, ...,2, and Zp41,...,z,. Elements of
the first subsequence contain values specifying embeddings, while elements in
the second subsequence contain unknown values. The leaves of B are in corre-
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spondence with settings of X with no unknown values. Internal nodes of B are
in correspondence with settings of X with at least one unknown value. The set-
ting of the root of B consists only of unknown values. The children of § (with
subsequences z1,...,2p and Zp41,...,2,) have subsequences x1, ..., 241 and
Th+2,- .., Zr, one child for each possible value of xp1.

Observe that there is a mapping between the embedded partial digraphs of
G and the nodes of B. Namely, the embedded partial digraph G of G associated
to node 3 of B with subsets z1,...,x, and zp41,...,2, is obtained as follows.
First, set G to skeleton(u1), embedded according to 1. Second, substitute each
virtual path p; of u; with the skeleton of the child p; of p;, embedded accord-
ing to z;, only for 2 < ¢ < h. Then, recursively substitute virtual paths with
embedded skeletons until all the skeletons in {skeleton(u1),. .., skeleton(uy)}
have been used.

We visit B breadth-first starting from the root. At each node § of B with
setting X3 we compute a lower bound and an upper bound of the number of
bends of any quasi-upward planar drawing of G such that its embedding is
(partially) specified by X 3. The current optimal solution is updated accordingly.
The subtree rooted at 3 is not visited if the lower bound is greater than the
current optimum.

For each 8, lower bounds and upper bounds are computed as follows.

1. We construct G by using an array of pointers to the nodes of 7.

2. We compute lower bounds by using the results presented in Section [l

G is a partial digraph of G, with embedding derived from Xg. Let EV"*
(Ememvirt) he the set of edges (not) belonging to the virtual paths of Gg.
For each virtual path p; of Gz consider the pertinent digraph G; of p; and
compute a lower bound b; on the number of bends of G;. Denote by FVirt
the set of virtual paths p; such that b; = 0 and by Er the set of edges of
such paths.

We apply the algorithm presented in Section [3] on G, assigning zero costs
to the arcs of N associated to the virtual paths of Gg that are not in FV"t.
In order to have no bends on the straight edges we set the cost of the cor-
responding arcs to infinity. Observe that after this setting the flow problem
remains feasible. In fact, the straight edges cannot cause cycles in any partial
digraph. We obtain a quasi-upward planar drawing I'g of G with minimum
number of bends on the set E"°""t U Er. Let b(I') be such a number of
bends. Then, by Theorem H we compute the lower bound Lg at node 3, as
L =0b(Ig) + > i, ¢pvirt bi-

Lower bounds b; can be pre-computed with a suitable pre-processing by
visiting 7 bottom-up. The pre-computation consists of two phases. (a) We
apply the algorithm presented in Section Bl on the skeletons of each R~ and
P-node, with zero cost for the arcs associated to the virtual paths; in this
way we associate a lower bound to each R- and P-node of 7. Note that these
pre-computed bounds do not depend on the choice of the reference edge, so
they are computed only once, at the beginning of the computation. (b) We
visit 7 bottom-up summing for each node p the lower bounds of the children
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of p to the lower bound of u. Note that these pre-computed bounds depend
on the choice of the reference edge, so they are re-computed at any choice
of the reference edge.

3. We compute upper bounds. Namely, we consider the embedded partial di-
graph G and complete it to a pertinent embedded digraph Gy. The em-
bedding of G is obtained by substituting the unknown values of Xz with
embedding values in a random way. Then we apply the algorithm presented
in Section Bl to G4 so obtaining the upper bound. We also avoid multiple
generations of the same embedded digraph in completing the partial digraph.

A further speed-up of the branch-and-bound technique can be obtained by
suitably choosing the paths used as virtual paths in the skeletons of the nodes
of T. We call switches the vertices of a simple path where the direction of the
edges changes. Observe that, in general, a boundary path with a few switches
has less degrees of freedom in a quasi-upward planar drawing than a path with
many switches. Hence, to have tighter lower bounds it is a good choice to select
as virtual paths those that have a minimum number of switches. The feasibility
of this approach is guaranteed by the following theorem.

Theorem 5. Let G be a digraph with n vertices and m edges and let v and v be
two distinct vertices of G. A simple path with the minimum number of switches
between u and v can be computed in O(n + m) time.

Proof. An algorithm that works in O(n+m) time computes a sequence of depth-
first-search, “moving from u to v” and alternating in considering the direction
of the edges.

6 Experimental Results

The algorithm presented in Section [ has been implemented and extensively
tested. It constitutes a fundamental “subroutine” for the implementation of the
algorithm presented in Section [ for biconnected digraphs. We have tested such
branch and bound algorithm against a randomly generated test suite consisting
of about 300 digraphs. The test suite is available on the Web and has been gen-
erated as follows (www.dia.uniroma3.it/people/gdb/wp12/ LOG.html). Any
embedded planar biconnected graph can be generated from the triangle graph
by means of a sequence of insert-vertex and insert-edge operations. Insert-vertex
subdivides an existing edge into two new edges separated by a new vertex. Insert-
edge inserts a new edge between two existing vertices that are on the same
face. We have implemented a generation mechanism that at each step randomly
chooses which operation to apply and where to apply it. After the generation,
edges are randomly oriented, and then the digraph is discarded if it is not bi-
modal. The density (number of edges over number of vertices) of the generated
graphs is in the range 1.2-2.

The implementation uses the C++ language and the GDToolkit library
(www.dia.uniroma3.it/people /gdb/wpl2). Experiments have been done with
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a Sun Ultrasparc 1. The results of the experiments are summarized in the graph-
ics of Fig. bl To check the applicability of the algorithm we have measured the
CPU time (Fig.[Bla). To better understand the features of the test suite we have
measured the number of embeddings (Fig. B.b) and the number of components
affecting the computation time (Fig. [Elc).
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Fig. 5. Graphics summarizing the experiments: (a) CPU time (seconds), (b)
number of embeddings (log. scale), and (¢) number of components (sum of P
and R nodes). The z-axis represents the number of vertices and in the y-axis we
give average values.

All the figures presented in this paper have been drawn with the GDToolkit
system with an implementation of the algorithms of Sections[3 and [

7 Conclusions and Open Problems

We have presented a new approach in constructing drawings of digraphs. Such
approach can be considered as an equivalent of the popular topology-shape-
metrics approach (that constructs orthogonal drawings of undirected graphs;
see e.g. [19] 20]) for drawing digraphs. In fact, the drawing process presented in
this paper can be seen as a sequence of steps. During the first step a topology is
found in terms of a bimodal planar embedding of the digraph. Dummy vertices
representing crossings may be inserted. During the second step a shape is found
with the minimum number of bends (within the given topology) in terms of
an intermediate representation of the drawing. During the last step the final
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drawing is constructed by using any of the technique for drawing planar st-
digraphs (see [5]) and, eventually, the bends are smoothed. Further, for the
applications for which to have a tidy drawing it is really important, even at
the expense of a higher computation time, we have shown a branch-and-bound
technique that minimizes the number of bends of each biconnected component
by searching all the possible topologies of the component. We have also shown
that the algorithm has a reasonable time performance for digraphs up to 200
vertices.

This paper also opens several problems related to quasi-upward planarity.
Is there a relationship between the minimum-feedback arc set problem and the
minimization of the number of bends? How is such minimization related to the
search of a maximum upward planar subgraph of a given digraph?
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