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Abstract. In kernel methods, all the information about the training
data is contained in the Gram matrix. If this matrix has large diagonal
values, which arises for many types of kernels, then kernel methods do not
perform well. We propose and test several methods for dealing with this
problem by reducing the dynamic range of the matrix while preserving
the positive de�niteness of the Hessian of the quadratic programming
problem that one has to solve when training a Support Vector Machine.

1 Introduction

Support Vector Machines (SVM) and related kernel methods can be considered
an approximate implementation of the structural risk minimization principle
suggested by Vapnik (1979). To this end, they minimize an objective function
containing a trade-o� between two goals, that of minimizing the training error,
and that of minimizing a regularization term. In SVMs, the latter is a function of
the margin of separation between the two classes in a binary pattern recognition
problem. This margin is measured in a so-called feature space H which is a
Hilbert space into which the training patterns are mapped by means of a map

� : X ! H: (1)

Here, the input domain X can be an arbitrary nonempty set. The art of designing
an SVM for a task at hand consist of selecting a feature space with the property
that dot products between mapped input points, h�(x); �(x0)i, can be computed
in terms of a so-called kernel

k(x; x0) = h�(x); �(x0)i (2)
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which can be evaluated eÆciently. Such a kernel necessarily belongs to the class
of positive de�nite kernels (e.g. Berg et al. (1984)), i.e., it satis�es

mX
i;j=1

aiajk(xi; xj) � 0 (3)

for all ai 2 R; xi 2 X ; i = 1; : : : ;m. The kernel can be thought of as a nonlinear
similarity measure that corresponds to the dot product in the associated feature
space. Using k, we can carry out all algorithms in H that can be cast in terms
of dot products, examples being SVMs and PCA (for an overview, see Sch�olkopf
and Smola (2002)).

To train a hyperplane classi�er in the feature space,

f(x) = sgn(hw; �(x)i + b); (4)

where w is expanded in terms of the points �(xj),

w =

mX
j=1

aj�(xj); (5)

the SVM pattern recognition algorithm minimizes the quadratic form4

kwk2 =
mX

i;j=1

aiajKij (6)

subject to the constraints

yi [h�(xi);wi+ b] � 1; i.e., yi

2
4

mX
j=1

ajKij + b

3
5 � 1 (7)

and
yiai � 0 (8)

for all i 2 f1; : : : ;mg. Here,

(x1; y1); : : : ; (xm; ym) 2 X � f�1g (9)

are the training examples, and

Kij := k(xi; xj) = h�(xi); �(xj)i (10)

is the Gram matrix.
Note that the regularizer (6) equals the squared length of the weight vector

w in H. One can show that kwk is inversely proportional to the margin of

4 We are considering the zero training error case. Nonzero training errors are incorpo-
rated as suggested by Cortes and Vapnik (1995). Cf. also Osuna and Girosi (1999).
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separation between the two classes, hence minimizing it amounts to maximizing
the margin. Sometimes, a modi�cation of this approach is considered, where the
regularizer

mX
i=1

a2i (11)

is used instead of (6). Whilst this is no longer the squared length of a weight
vector in the feature space H, it is instructive to re-interpret it as the squared
length in a di�erent feature space, namely in Rm .

To this end, we consider the feature map

�m(x) := (k(x; x1); : : : ; k(x; xm))
>; (12)

sometimes called the empirical kernel map (Tsuda, 1999; Sch�olkopf and Smola,
2002). In this case, the SVM optimization problem consists in minimizing

kak2 (13)

subject to
yi [h�m(xi); ai+ b] � 1 (14)

for all i 2 f1; : : : ;mg, where a = (a1; : : : ; am)
> 2 R

m . In view of (12), however,

the constraints (14) are equivalent to yi

hPm

j=1 ajKij + b
i
� 1, i.e. to (7), while

the regularizer kak2 equals (11).
Therefore, using the regularizer (11) and the original kernel essentially5 cor-

responds to using a standard SVM with the empirical kernel map. This SVM
operates in an m-dimensional feature space with the standard SVM regularizer,
i.e., the squared weight of the weight vector in the feature space. We can thus
train a classi�er using the regularizer (11) simply by using an SVM with the
kernel

km(x; x
0) := h�m(x); �m(x0)i ; (15)

and thus, by de�nition of �m, using the Gram matrix

Km = KK>; (16)

where K denotes the Gram matrix of the original kernel. The last equation
shows that when employing the empirical kernel map, it is not necessary to use
a positive de�nite kernel. The reason is that no matter what K is, the Gram
matrix KK> is always positive de�nite,6 which is suÆcient for an SVM.

The remainder of the paper is structured as follows. In Section 2, we introduce
the problem of large diagonals, followed by our proposed method to handle
it (Section 3). Section 4 presents experiments, and Section 5 summarizes our
conclusions.

5 disregarding the positivity constraints (8)
6 Here, as in (3), we allow for a nonzero null space in our usage of the concept of
positive de�niteness.
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2 Orthogonal Patterns in the Feature Space

An important feature of kernel methods is that the input domain X does not
have to be a vector space. The inputs might just as well be discrete objects such
as strings. Moreover, the map � might compute rather complex features of the
inputs. Examples thereof are polynomial kernels (Boser et al., 1992), where �
computes all products (of a given order) of entries of the inputs (in this case,
the inputs are vectors), and string kernels (Watkins, 2000; Haussler, 1999; Lodhi
et al., 2002), which, for instance, can compute the number of common substrings
(not necessarily contiguous) of a certain length n 2 N of two strings x; x0 in
O(njxjjx0j) time. Here, we assume that x and x0 are two �nite strings over a
�nite alphabet �. For the string kernel of order n, a basis for the feature space
consists of the set of all strings of length n, �n. In this case, � maps a string
x into a vector whose entries indicate whether the respective string of length n

occurs as a substring in x. By construction, these will be rather sparse vectors |
a large number of possible substrings do not occur in a given string. Therefore,
the dot product of two di�erent vectors will take a value which is much smaller
than the dot product of a vector with itself. This can also be understood as
follows: any string shares all substrings with itself, but relatively few substrings
with another string. Therefore, it will typically be the case that we are faced with
large diagonals. By this we mean that, given some training inputs x1; : : : ; xm;
we have7

k(xi; xi) >> jk(xi; xj)j for xi 6= xj ; i; j 2 f1; : : : ;mg: (17)

In this case, the associated Gram matrix will have large diagonal elements.8

Let us next consider an innocuous application which is rather popular with
SVMs: handwritten digit recognition. We suppose that the data are handwritten
characters represented by images in [0; 1]N (here,N 2 N is the number of pixels),
and that only a small fraction of the images is ink (i.e. few entries take the value
1). In that case, we typically have hx; xi > hx; x0i for x 6= x0, and thus the
polynomial kernel (which is what most commonly is used for SVM handwritten
digit recognition)

k(x; x0) = hx; x0id (18)

satis�es k(x; x) >> jk(x; x0)j already for moderately large d | it has large
diagonals.

Note that as in the case of the string kernel, one can also understand this
phenomenon in terms of the sparsity of the vectors in the feature space. It is

7 The diagonal terms k(xi; xi) are necessarily nonnegative for positive de�nite kernels,
hence no modulus on the left hand side.

8 In the machine learning literature, the problem is sometimes referred to as diagonal
dominance. However, the latter term is used in linear algebra for matrices where the
absolute value of each diagonal element is greater than the sum of the absolute values
of the other elements in its row (or column). Real diagonally dominant matrices with
positive diagonal elements are positive de�nite.
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known that the polynomial kernel of order d e�ectively maps the data into a
feature space whose dimensions are spanned by all products of d pixels. Clearly,
if some of the pixels take the value zero to begin with, then an even larger fraction
of all possible products of d pixels (assuming d > 1) will be zero. Therefore, the
sparsity of the vectors will increase with d.

In practice, it has been observed that SVMs do not work well in this situa-
tion. Empirically, they work much better if the images are scaled such that the
individual pixel values are in [�1; 1], i.e., that the background value is �1. In this
case, the data vectors are less sparse and thus further from being orthogonal.

Indeed, large diagonals correspond to approximate orthogonality of any two
di�erent patterns mapped into the feature space. To see this, assume that x 6= x0

and note that due to k(x; x) >> jk(x; x0)j,

cos(\(�(x); �(x0))) =
h�(x); �(x0)ip

h�(x); �(x)i h�(x0); �(x0)i
=

k(x; x0)p
k(x; x)k(x0; x0)

� 0

In some cases, an SVM trained using a kernel with large diagonals will mem-
orize the data. Let us consider a simple toy example, using X as data matrix
and Y as label vector, respectively:

X =

0
BBBBBB@

1 0 0 9 0 0 0 0 0 0
1 0 0 0 0 8 0 0 0 0
1 0 0 0 0 0 0 9 0 0
0 0 9 0 0 0 0 0 0 0
0 0 0 0 0 0 8 0 0 0
0 0 0 0 0 0 0 0 0 9

1
CCCCCCA
; Y =

0
BBBBBB@

+1
+1
+1
�1
�1
�1

1
CCCCCCA

The Gram matrix for these data (using the linear kernel k(x; x0) = hx; x0i) is

K =

0
BBBBBB@

82 1 1 0 0 0
1 65 1 0 0 0
1 1 82 0 0 0
0 0 0 81 0 0
0 0 0 0 64 0
0 0 0 0 0 81

1
CCCCCCA
:

A standard SVM �nds the solution f(x) = sgn(hw; xi + b) with

w = (0:04; 0;�0:11; 0:11; 0; 0:12;�0:12; 0:11; 0;�0:11)>; b = �0:02:
It can be seen from the coeÆcients of the weight vector w that this solution has
but memorized the data: all the entries which are larger than 0:1 in absolute value
correspond to dimensions which are nonzero only for one of the training points.
We thus end up with a look-up table. A good solution for a linear classi�er, on the
other hand, would be to just choose the �rst feature, e.g., f(x) = sgn(hw; xi+b),
with w = (2; 0; 0; 0; 0; 0; 0; 0; 0; 0)>; b = �1.
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3 Methods to Reduce Large Diagonals

The basic idea that we are proposing is very simple indeed. We would like to
use a nonlinear transformation to reduce the size of the diagonal elements, or,
more generally, to reduce the dynamic range of the Gram matrix entries. The
only diÆculty is that if we simply do this, we have no guarantee that we end up
with a Gram matrix that is still positive de�nite. To ensure that it is, we can use
methods of functional calculus for matrices. In the experiments we will mainly
use a simple special case of the below. Nevertheless, let us introduce the general
case, since we think it provides a useful perspective on kernel methods, and on
the transformations that can be done on Gram matrices.

Let K be a symmetric m �m matrix with eigenvalues in [�min; �max], and
f a continuous function on [�min; �max]. Functional calculus provides a unique
symmetric matrix, denoted by f(K), with eigenvalues in [f(�min); f(�max)]. It
can be computed via a Taylor series expansion in K, or using the eigenvalue
decomposition of K: If K = S>DS (with D diagonal and S unitary), then
f(K) = S>f(D)S, where f(D) is the diagonal matrix with f(D)ii = f(Dii).

The convenient property of this procedure is that we can treat functions of
symmetric matrices just like functions on R; in particular, we have, for � 2 R,
and real continuous functions f; g de�ned on [�min; �max],

9

(�f + g)(K) = �f(K) + g(K)

(fg)(K) = f(K)g(K) = g(K)f(K)

kfk1;�(K) = kf(K)k
�(f(K)) = f(�(K)):

In technical terms, the C�-algebra generated by K is isomorphic to the set of
continuous functions on �(K).

For our problems, functional calculus can be applied in the following way.
We start o� with a positive de�nite matrix K with large diagonals. We then
reduce its dynamic range by elementwise application of a nonlinear function,
such as '(x) = log(x + 1) or '(x) = sgn(x) � jxjp with 0 < p < 1. This will
lead to a matrix which may no longer be positive de�nite. However, it is still
symmetric, and hence we can apply functional calculus. As a consequence of
�(f(K)) = f(�(K)), we just need to apply a function f which maps to R+0 . This
will ensure that all eigenvalues of f(K) are nonnegative, hence f(K) will be
positive de�nite. One can use these observations to design the following scheme.

For positive de�nite K,

1. compute the positive de�nite matrix A :=
p
K

2. reduce the dynamic range of the entries of A by applying an elementwise
transformation ', leading to a symmetric matrix A'

3. compute the positive de�nite matrix K 0 := (A')
2 and use it in subsequent

processing. The entries of K 0 will be the \e�ective kernel," which in this case
is no longer given in analytic form.

9 Below, �(K) denotes the spectrum of K.
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Note that in this procedure, if ' is the identity, then we have K = K 0.
Experimentally, this scheme works rather well. However, it has one downside:

since we no longer have the kernel function in analytic form, our only means
of evaluating it is to include all test inputs (not the test labels, though) into
the matrix K. In other words, K should be the Gram matrix computed from
the observations x1; : : : ; xm+n where xm+1; : : : ; xm+n denote the test inputs.
We thus need to know the test inputs already during training. This setting is
sometimes referred to as transduction (Vapnik, 1998).

If we skip the step of taking the square root of K, we can alleviate this
problem. In that case, the only application of functional calculus left is a rather
trivial one, that of computing the square of K. The m � m submatrix of K2

which in this case would have to be used for training then equals the Gram
matrix when using the empirical kernel map

�m+n(x) = (k(x; x1); : : : ; k(x; xm+n))
>: (19)

For the purposes of computing dot products, however, this can approximately
be replaced by the empirical kernel map in terms of the training examples only,
i.e., by (12). The justi�cation for this is that for large r 2 N, 1

r
h�r(x); �r(x0)i �R

X
k(x; x00)k(x0; x00) dP (x00); where P is assumed to be the distribution of the

inputs. Therefore, we have 1
m
h�m(x); �m(x0)i � 1

m+n h�m+n(x); �m+n(x
0)i. Al-

together, the procedure then boils down to simply training an SVM using the
empirical kernel map in terms of the training examples and the transformed
kernel function '(k(x; x0)). This is what we will use in the experiments below.10

4 Experiments

4.1 Arti�cial Data

We �rst constructed a set of arti�cial experiments which produce kernels ex-
hibiting large diagonals. The experiments are as follows: a string classi�cation
problem, a microarray cancer detection problem supplemented with extra noisy
features and a toy problem whose labels depend upon hidden variables; the vis-
ible variables are nonlinear combinations of those hidden variables.

String Classi�cation We considered the following classi�cation problem. Two
classes of strings are generated with equal probability by two di�erent Markov
models. Both classes of strings consist of letters from the same alphabet of a = 20
letters, and strings from both classes are always of length n = 20. Strings from
the negative class are generated by a model where transitions from any letter to
any other letter are equally likely. Strings from the positive class are generated
by a model where transitions from one letter to itself (so the next letter is the
same as the last) have probability 0:43, and all other transitions have probability
0:03. For both classes the starting letter of any string is equally likely to be any

10 For further experimental details, cf. Weston and Sch�olkopf (2001).
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letter of the alphabet. The task then is to predict which class a given string
belongs to. To map these strings into a feature space, we used the string kernel
described above, computing a dot product product in a feature space consisting
of all subsequences of length l. In the present application, the subsequences are
weighted by an exponentially decaying factor � of their full length in the text,
hence emphasizing those occurrences which are close to contiguous. A method
of computing this kernel eÆciently using a dynamic programming technique is
described by Lodhi et al. (2002). For our problem we chose the parameters l = 3
and � = 1

4 .
We generated 50 such strings and used the string subsequence kernel with

� = 0:25.11 We split the data into 25 for training and 25 for testing in 20
separate trials. We measured the success of a method by calculating the mean
classi�cation loss on the test sets. Figure 1 shows four strings from the dataset
and the computed kernel matrix for these strings12. Note that the diagonal
entries are much larger than the o�-diagonals because a long string has a large
number of subsequences that are shared with no other strings in the dataset
apart from itself. However, information relevant to the classi�cation of the strings
is contained in the matrix. This can be seen by computing the mean kernel
value between two examples of the positive class which is equal to 0:0003 �
0:0011, whereas the mean kernel value between two examples of opposite classes
is 0:00002�0:00007. Although the numbers are very small, this captures that the
positive class have more in common with each other than with random strings
(they are more likely to have repeated letters).

string class

qqbqqnshrtktfhhaahhh +ve
abajahnaajjjjiiiittt +ve

sdolncqni
mmpcrioog -ve
reaqhcoigealgqjdsdgs -ve

K =

0
BB@
0:6183 0:0133 0:0000 0:0000
0:0133 1:0000 0:0000 0:0000
0:0000 0:0000 0:4692 0:0002
0:0000 0:0000 0:0002 0:4292

1
CCA

Fig. 1. Four strings and their kernel matrix using the string subsequence kernel with
� = 0:25. Note that the diagonal entries are much larger than the o�-diagonals because
a long string has a large number of subsequences that are shared with no other strings
in the dataset apart from itself.

If the original kernel is denoted as a dot product k(x; y) = h�(x); �(y)i,
then we employ the kernel k(x; y) = h�(x); �(y)ip where 0 < p < 1 to solve the
diagonal dominance problem. We will refer to this kernel as a subpolynomial one.
As this kernel may no longer be positive de�nite we use the method described in

11 We note that introducing nonlinearities using an RBF kernel with respect to the dis-
tances generated by the subsequence kernel can improve results on this problem, but
we limit our experiments to ones performed in the linear space of features generated
by the subsequence kernel.

12 Note, the matrix was rescaled by dividing by the largest entry.
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Table 1. Results of using the string subsequence kernel on a string classi�cation prob-
lem (top row). The remaining rows show the results of using the subpolynomial kernel
to deal with the large diagonal.

kernel method classi�cation loss

original k, k(x; y) = h�(x); �(y)i 0:36 � 0:13

kemp(x; y) = h�(x); �(y)ip p=1 0:30 � 0:08
p=0.9 0:25 � 0:09
p=0.8 0:20 � 0:10
p=0.7 0:15 � 0:09
p=0.6 0:13� 0:07

p=0.5 0:14 � 0:06
p=0.4 0:15 � 0:07
p=0.3 0:15 � 0:06
p=0.2 0:17 � 0:07
p=0.1 0:21 � 0:09

Section 1, employing the empirical kernel map to embed our distance measure
into a feature space. Results of using our method to solve the problem of large
diagonals is given in Table 1. The method provides, with the optimum choice of
the free parameter, a reduction from a loss of 0:36�0:13 with the original kernel
to 0:13�0:07 with p=0.6. Although we do not provide methods for choosing this
free parameter, it is straight-forward to apply conventional techniques of model
selection (such as cross validation) to achieve this goal.

We also performed some further experiments which we will brie
y discuss.
To check that the result is a feature of kernel algorithms, and not something
peculiar to SVMs, we also applied the same kernels to another algorithm, kernel
1-nearest neighbor. Using the original kernel matrix yields a loss of 0:43� 0:06
whereas the subpolynomial method again improves the results, using p = 0:6
yields 0:22� 0:08 and p = 0:3 (the optimum choice) yields 0:17� 0:07. Finally,
we tried some alternative proposals for reducing the large diagonal e�ect. We
tried using Kernel PCA to extract features as a pre-processing to training an
SVM. The intuition behind using this is that features contributing to the large
diagonal e�ect may have low variance and would thus be removed by KPCA.
KPCA did improve performance a little, but did not provide results as good as
the subpolynomial method. The best result was found by extracting 15 features
(from the kernel matrix of 50 examples) yielding a loss of 0:23� 0:07.

Microarray Data With Added Noise We next considered the microarray
classi�cation problem of Alon et al. (1999) (see also Guyon et al. (2001) for a
treatment of this problem with SVMs). In this problem one must distinguish
between cancerous and normal tissue in a colon cancer problem given the ex-
pression of genes measured by microarray technology. In this problem one does
not encounter large diagonals, however we augmented the original dataset with
extra noisy features to simulate such a problem. The original data has 62 ex-
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amples (22 positive, 40 negative) and 2000 features (gene expression levels of
the tissues samples). We added a further 10,000 features to the dataset, such
that for each example a randomly chosen 100 of these features are chosen to be
nonzero (taking a random value between 0 and 1) and the rest are equal to zero.
This creates a kernel matrix with large diagonals. In Figure 2 we show the �rst
4� 4 entries of the kernel matrix of a linear kernel before and after adding the
noisy features.

The problem is again an arti�cial one demonstrating the problem of large
diagonals, however this time the feature space is rather more explicit rather than
the implicit one induced by string kernels. In this problem we can clearly see
the large diagonal problem is really a special kind of feature selection problem.
As such, feature selection algorithms should be able to help improve generalize
ability, unfortunately most feature selection algorithms work on explicit features
rather than implicit ones induced by kernels.

Performance of methods was measured using 10 fold cross validation, which
was repeated 10 times. Due to the unbalanced nature of the number of positive
and negative examples in this data set we measured the error rates using a bal-
anced loss function with the property that chance level is a loss of 0.5, regardless
of the ratio of positive to negative examples. On this problem (with the added
noise) an SVM using the original kernel does not perform better than chance.
The results of using the original kernel and the subpolynomial method are given
in Table 2. The subpolynomial kernel leads to a large improvement over using
the original kernel. Its performance is close to that of an SVM on the original
data without the added noise, which in this case is 0:18� 0:15.

Hidden Variable Problem We then constructed an arti�cial problem where
the labels can be predicted by a linear rule based upon some hidden variables.
However, the visible variables are a nonlinear combination of the hidden variables
combined with noise. The purpose is to show that the subpolynomial kernel is
not only useful in the case of matrices with large diagonals: it can also improve
results in the case where a linear rule already over�ts. The data are generated
as follows. There are 10 hidden variables: each class y 2 f�1g is generated by
a 10 dimensional normal distribution N(�; �) with variance �2 = 1, and mean
� = y(0:5; 0:5; : : : ; 0:5). We then add 10 more (noisy) features for each example,
each generated with N(0; 1). Let us denote the 20-dimensional vector obtained

K =

0
BB@
1:00 0:41 0:33 0:42
0:41 1:00 0:17 0:39
0:33 0:17 1:00 0:61
0:42 0:39 0:61 1:00

1
CCA ; K

0 =

0
BB@
39:20 0:41 0:33 0:73
0:41 37:43 0:26 0:88
0:33 0:26 31:94 0:61
0:73 0:88 0:61 35:32

1
CCA

Fig. 2. The �rst 4�4 entries of the kernel matrix of a linear kernel on the colon cancer
problem before (K) and after (K0) adding 10,000 sparse, noisy features. The added
features are designed to create a kernel matrix with a large diagonal.
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Table 2. Results of using a linear kernel on a colon cancer classi�cation problem with
added noise (top row). The remaining rows show the results of using the subpolynomial
kernel to deal with the large diagonal.

kernel method balanced loss

original k, k(x; y) = hx; yi 0:49 � 0:05

kemp(x; y) = sgn hx; yi � j hx; yi jp p=0.95 0:35 � 0:17
p=0.9 0:30 � 0:17
p=0.8 0:25 � 0:18
p=0.7 0:22� 0:17

p=0.6 0:23 � 0:17
p=0.5 0:25 � 0:19
p=0.4 0:28 � 0:19
p=0.3 0:29 � 0:18
p=0.2 0:30 � 0:19
p=0.1 0:31 � 0:18

this wasy for example i as hi. The visible variables xi are then constructed by
taking all monomials of degree 1 to 4 of hi. It is known that dot products between
such vectors can be computed using polynomial kernels (Boser et al., 1992), thus
the dot product between two visible variables is

k(xi; xj) = (hhi; hji+ 1)
4
:

We compared the subpolynomial method to a linear kernel using balanced 10-
fold cross validation, repeated 10 times. The results are shown in Table 3. Again,
the subpolynomial kernel gives improved results.

One interpretation of these results is that if we know that the visible vari-
ables are polynomials of some hidden variables, then it makes sense to use a
subpolynomial transformation to obtain a Gram matrix closer to the one we
could compute if we were given the hidden variables. In e�ect, the subpolyno-
mial kernel can (approximately) extract the hidden variables.

4.2 Real Data

Thrombin Binding Problem In the thrombin dataset the problem is to pre-
dict whether a given drug binds to a target site on thrombin, a key receptor in
blood clotting. This dataset was used in the KDD (Knowledge Discovery and
Data Mining) Cup 2001 competition and was provided by DuPont Pharmaceu-
ticals.

In the training set there are 1909 examples representing di�erent possible
molecules (drugs), 42 of which bind. Hence the data is rather unbalanced in
this respect. Each example has a �xed length vector of 139,351 binary features
(variables) in f0; 1g which describe three-dimensional properties of the molecule.
An important characteristic of the data is that very few of the feature entries are
nonzero (0.68% of the 1909�139351 training matrix, see (Weston et al., 2002) for
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Table 3. Results of using a linear kernel on the hidden variable problem (top row).
The remaining rows show the results of using the subpolynomial kernel to deal with
the large diagonal.

kernel method classi�cation loss

original k, k(x; y) = hx; yi 0:26 � 0:12

kemp(x; y) = sgn hx; yi � j hx; yi jp p=1 0:25 � 0:12
p=0.9 0:23 � 0:13
p=0.8 0:19 � 0:12
p=0.7 0:18 � 0:12
p=0.6 0:16� 0:11

p=0.5 0:16� 0:11

p=0.4 0:16� 0:11

p=0.3 0:18 � 0:11
p=0.2 0:20 � 0:12
p=0.1 0:19 � 0:13

further statistical analysis of the dataset). Thus, many of the features somewhat
resemble the noisy features that we added on to the colon cancer dataset to
create a large diagonal in Section 4.1. Indeed, constructing a kernel matrix of
the training data using a linear kernel yields a matrix with a mean diagonal
element of 1377:9 � 2825 and a mean o�-diagonal element of 78:7 � 209. We
compared the subpolynomial method to the original kernel using 8-fold balanced
cross validation (ensuring an equal number of positive examples were in each
fold). The results are given in Table 4. Once again the subpolynomial method
provides improved generalization. It should be noted that feature selection and
transduction methods have also been shown to improve results, above that of a
linear kernel on this problem (Weston et al., 2002).

Table 4. Results of using a linear kernel on the thrombin binding problem (top row).
The remaining rows show the results of using the subpolynomial kernel to deal with
the large diagonal.

kernel method balanced loss

original k, k(x; y) = hx; yi 0:30� 0:12

kemp(x; y) = hx; yip p=0.9 0:24� 0:10
p=0.8 0:24� 0:10
p=0.7 0:18� 0:09
p=0.6 0:18� 0:09
p=0.5 0:15� 0:09

p=0.4 0:17� 0:10
p=0.3 0:17� 0:10
p=0.2 0:18� 0:10
p=0.1 0:22� 0:15
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Table 5. Results of using a linear kernel on the Lymphoma classi�cation problem (top
row). The remaining rows show the results of using the subpolynomial kernel to deal
with the large diagonal.

kernel method balanced loss

original k, k(x; y) = hx; yi 0:043 � 0:08

kemp(x; y) = sgn hx; yi � j hx; yip p=1 0:037 � 0:07
p=0.9 0:021 � 0:05
p=0.8 0:016 � 0:05
p=0.7 0:015 � 0:05

p=0.6 0:022 � 0:06
p=0.5 0:022 � 0:06
p=0.4 0:042 � 0:07
p=0.3 0:046 � 0:08
p=0.2 0:083 � 0:09
p=0.1 0:106 � 0:09

Lymphoma Classi�cation We next looked at the problem of identifying large
B-Cell Lymphoma by gene expression pro�ling (Alizadeh et al., 2000). In this
problem the gene expression of 96 samples is measured with microarrays to give
4026 features. Sixty-one of the samples are in classes "DLCL", "FL" or "CLL"
(malignant) and 35 are labelled \otherwise" (usually normal). Although the data
does not induce a kernel matrix with a very large diagonal it is possible that the
large number of features induce over�tting even in a linear kernel. To examine if
our method would still help in this situation we applied the same techniques as
before, this time using balanced 10-fold cross validation, repeated 10 times, and
measuring error rates using the balanced loss. The results are given in Table 5.
The improvement given by the subpolynomial kernel suggests that over�tting in
linear kernels when the number of features is large may be overcome by applying
special feature maps. It should be noted that (explicit) feature selection methods
have also been shown to improve results on this problem, see e.g Weston et al.
(2001).

Protein Family Classi�cation We then focussed on the problem of classifying
protein domains into superfamilies in the Structural Classi�cation of Proteins
(SCOP) database version 1.53 (Murzin et al., 1995). We followed the same prob-
lem setting as Liao and Noble (2002): sequences were selected using the Astral
database (astral.stanford.edu cite), removing similar sequences using an E-value
threshold of 10�25. This procedure resulted in 4352 distinct sequences, grouped
into families and superfamilies. For each family, the protein domains within
the family are considered positive test examples, and the protein domains out-
side the family but within the same superfamily are taken as positive training
examples. The data set yields 54 families containing at least 10 family mem-
bers (positive training examples). Negative examples are taken from outside of
the positive sequence's fold, and are randomly split into train and test sets in
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the same ratio as the positive examples. Details about the various families are
listed in (Liao and Noble, 2002), and the complete data set is available at www.
cs.columbia.edu/compbio/svm-pairwise. The experiments are characterized by
small positive (training and test) sets and large negative sets. Note that this
experimental setup is similar to that used by Jaakkola et al. (2000), except the
positive training sets do not include additional protein sequences extracted from
a large, unlabeled database, which amounts to a kind of \transduction" (Vapnik,
1998) algorithm.13

An SVM requires �xed length vectors. Proteins, of course, are variable-length
sequences of amino acids and hence cannot be directly used in an SVM. To solve
this task we used a sequence kernel, called the spectrum kernel, which maps
strings into a space of features which correspond to every possible k-mer (se-
quence of k letters) with at most m mismatches, weighted by prior probabilities
(Leslie et al., 2002). In this experiment we chose k = 3 and m = 0. This kernel
is then normalized so that each vector has length 1 in the feature space; i.e.,

k(x; x0) =
hx; x0ip

hx; xi hx0; x0i : (20)

An asymmetric soft margin is implemented by adding to the diagonal of the
kernel matrix a value 0:02 � �, where � is the fraction of training set sequences
that have the same label as the current sequence (see Cortes and Vapnik (1995);
Brown et al. (2000) for details). For comparison, the same SVM parameters are
used to train an SVM using the Fisher kernel (Jaakkola and Haussler (1999);
Jaakkola et al. (2000), see also Tsuda et al. (2002)), another possible kernel
choice. The Fisher kernel is currently considered one of the most powerful ho-
mology detection methods. This method combines a generative, pro�le hidden
Markov model (HMM) and uses it to generate a kernel for training an SVM.
A protein's vector representation induced by the kernel is its gradient with re-
spect to the pro�le hidden Markov model, the parameters of which are found by
expectation-maximization.

For each method, the output of the SVM is a discriminant score that is used
to rank the members of the test set. Each of the above methods produces as
output a ranking of the test set sequences. To measure the quality of this ranking,
we use two di�erent scores: receiver operating characteristic (ROC) scores and
the median rate of false positives (RFP). The ROC score is the normalized
area under a curve that plots true positives as a function of false positives for
varying classi�cation thresholds. A perfect classi�er that puts all the positives
at the top of the ranked list will receive an ROC score of 1, and for these
data, a random classi�er will receive an ROC score very close to 0. The median
RFP score is the fraction of negative test sequences that score as high or better

13 We believe that it is this transduction step which may be responsible for much of
the success of using the methods described by Jaakkola et al. (2000)). However,
to make a fair comparison of kernel methods we do not include this step which
could potentially be included in any of the methods. Studying the importance of
transduction remains a subject of further research.
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Table 6. Results of using the spectrum kernel with k = 3;m = 0 on the SCOP dataset
(top row). The remaining rows (apart from the last one) show the results of using the
subpolynomial kernel to deal with the large diagonal. The last row, for comparison,
shows the performance of an SVM using the Fisher kernel.

kernel method RFP ROC

original k, k(�(x); �(y)) = hx; yi 0.1978 0.7516

kemp(x; y) = h�(x); �(y)ip p=0.5 0.1697 0.7967
p=0.4 0.1569 0.8072
p=0.3 0.1474 0.8183
p=0.2 0.1357 0.8251

p=0.1 0.1431 0.8213
p=0.05 0.1489 0.8156

SVM-FISHER 0.2946 0.6762

than the median-scoring positive sequence. RFP scores were used by Jaakkola
et al. in evaluating the Fisher-SVM method. The results of using the spectrum
kernel, the subpolynomial kernel applied to the spectrum kernel and the �sher
kernel are given in Table 6. The mean ROC and RFP scores are superior for
the subpolynomial kernel. We also show a family-by-family comparison of the
subpolynomial spectrum kernel with the normal spectrum kernel and the Fisher
kernel in Figure 3. The coordinates of each point in the plot are the ROC scores
for one SCOP family. The subpolynomial kernel uses the parameter p = 0:2.
Although the subpolynomial method does not improve performance on every
single family over the other two methods, there are only a small number of cases
where there is a loss in performance.

Note that explicit feature selection cannot readily be used in this problem,
unless it is possible to integrate the feature selection method into the construc-
tion of the spectrum kernel, as the features are never explicitely represented.
Thus we do not know of another method that can provide the improvements
described here. Note though that the improvements are not as large as reported
in the other experiments (for example, the toy string kernel experiment of Sec-
tion 4.1). We believe this is because this application does not su�er from the
large diagonal problem as much as the other problems. Even without using the
subpolynomial method, the spectrum kernel is already superior to the Fisher
kernel method. Finally, note that while these results are rather good, they do
not represent the record results on this dataset: in (Liao and Noble, 2002), a
di�erent kernel (Smith-Waterman pairwise scores)14 is shown to provide further
improvements (mean RFP: 0.09, mean ROC: 0.89). It is also possible to choose
other parameters of the spectrum kernel to improve its results. Future work will
continue to investigate these kernels.

14 The Smith-Waterman score technique is closely related to the empirical kernel map,
where the (non-positive de�nite) e�ective \kernel" is the Smith-Waterman algorithm
plus p-value computation.
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Fig. 3. Family-by-family comparison of the subpolynomial spectrum kernel with: the
normal spectrum kernel (left), and the Fisher kernel (right). The coordinates of each
point in the plot are the ROC scores for one SCOP family. The spectrum kernel uses
k = 3 and m = 0, and the subpolynomial kernel uses p=0.2. Points above the diago-
nal indicate problems where the subpolynomial kernel performs better than the other
methods.

5 Conclusion

It is a diÆcult problem to construct useful similarity measures for non-vectorial
data types. Not only do the similarity measures have to be positive de�nite
to be useable in an SVM (or, more generally, conditionally positive de�nite,
see e.g. Sch�olkopf and Smola (2002)), but, as we have explained in the present
paper, they should also lead to Gram matrices whose diagonal values are not
overly large. It can be diÆcult to satisfy both needs simultaneously, a prominent
example being the much celebrated (but so far not too much used) string kernel.
However, the problem is not limited to sophisticated kernels. It is common to all
situations where the data are represented as sparse vectors and then processed
using an algorithm which is based on dot products.

We have provided a method to deal with this problem. The method's upside
is that it turns kernels such as string kernels into kernels that work very well
on real-world problems. Its main downside so far is that the precise role and
the choice of the function we apply to reduce the dynamic range has yet to be
understood.
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