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Abstract. We propose a new algorithm for pattern recognition that
outputs some measures of “reliability” for every prediction made, in con-
trast to the current algorithms that output “bare” predictions only. Our
method uses a rule similar to that of nearest neighbours to infer predic-
tions; thus its predictive performance is close to that of nearest neigh-
bours, while the measures of confidence it outputs provide practically
useful information for individual predictions.

1 Introduction

Current machine learning algorithms usually lack measures that can give an
indication of how “good” the predictions are. Even when such measures are
present they have certain disadvantages, such as:

– They cannot be applied to individual test examples.
– They often are not very useful in practice (PAC theory).
– They often rely on strong underlying assumptions (Bayesian methods).

In our case none of these disadvantages are present. Our only assumption is that
data items are produced independently by the same stochastic mechanism (iid
assumption), our measures of confidence are applicable to individual examples,
while experimental results show that they produce good results for benchmark
data sets (and so potentially are useful in practice). The iid assumption that we
make is a very natural one for most applications of pattern recognition, as it
only implies that

– all our examples are produced by the same underlying probability distribu-
tion and

– they are produced independently of each other; so the order in which they
appear is not relevant.

Many algorithms have been proposed in the past, both in the Bayesian and
in the PAC settings, that provide additional information of the “quality” of the
predictions.

Bayesian algorithms usually provide useful confidence values but when the
underlying distribution is not known these values are “misleading”. Experiments
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in (Melluish et al., 2001) have shown that in Bayesian algorithms, when the un-
derlying probability distribution of the examples is not known, the deviation
from the expected percentage of misclassified examples is too large to give any
practical meaning to the confidence values. For example, we expect that from all
examples with a confidence value of 90% the percentage of those wrongly classi-
fied will be close to 10%. Bayesian algorithms instead, can produce a much higher
percentage of error at the above confidence level; in experiments in (Melluish et
al., 2001) this error is between 20% and 40%.

PAC theory doesn’t make any assumptions about the underlying probabil-
ity distribution, but its results are often not useful in practice. To demonstrate
crudeness of the usual PAC bounds, we reproduce an example from (Nouretdi-
nov, Vovk et al., 2001). Littlestone andWarmuth’s theorem stated in (Cristianini
et al., 2000) is one of the tightest results of PAC theory, but still usually does
not give practically meaningful results. The theorem states that for a two-class
Support Vector classifier f the probability of mistakes is

err(f) ≤ 1
l − d
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d
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with probability 1−δ, where l is the training size and d is the number of Support
Vectors. For the US Postal Service (USPS) database (described below and in
Vapnik, 1998, Section 12.2), the error bound given by that theorem for one out
of ten classifiers is close to

1
7291− 274
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7291e
274

≈ 0.17,

even if we ignore the term ln l
δ (274 is the average number of support vectors

for polynomials of degree 3, which give the best predictive performance; see
Table 12.2 in Vapnik, 1998). Since there are ten classifiers, the upper bound on
the total probability of mistakes becomes 1.7, which is not helpful at all.

Our prediction method is based on the so called algorithmic theory of ran-
domness. A description of this theory is the subject of Section 2. Then, in Sec-
tion 3, we describe our algorithm, and in the next section we give some exper-
imental and comparison results for our algorithm as applied to the USPS and
other data sets.

Our algorithm follows the transductive approach, as for the classification
of every new example it uses the whole training set to infer a rule for that
particular example only. In contrast, in the inductive approach a general rule is
derived from the training set and then applied to each training example. For this
reason we shall call our algorithm transductive confidence machine for nearest
neighbours (TCM-NN). It is also possible to use the inductive approach to obtain
confidence measures for our predictions (see e.g. (Papadopoulos et al., 2002) for
an example of how to obtain confident predictions in the case of regression using
the inductive approach).
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2 Algorithmic Theory of Randomness

According to classical probability theory if we toss a fair coin n times, all se-
quences {0, 1}n will have the same probability 1

2n of occuring. We would be much
more surprised, however, to see a sequence like 111111111 . . .1 than a sequence
like 011010100 . . .1. The classical approach to probabilty theory can only give
probabilites of different outcomes, but cannot say anything about the typicalness
of sequences.

Intuitively, sequences that don’t seem to have any specific pattern in their
elements would be more typical than sequences in which one can easily find
regularities. An important result of the theory of algorithic randomness is that
there exists a universal method of finding regularities in data sequences.

This result is due to Martin-Löf, who was the first to introduce the notion
of a randomness test. A slightly modified definition of Martin-Löf’s test1 states
that a function t : Z∗ → [0, 1] is a test for randomness with respect to a class of
probability distributions Q in Z if

– for all n ∈ N, for all s ∈ [0, 1] and for all probability distributions P in Q,

Pn{z ∈ Zn : t(z) ≤ s} ≤ s, (1)

– t is semi-computable from above.

Here Z is a space that possesses some computability properties; in our applica-
tion, Z is the set of all possible examples.

Every randomness test creates a series of nested subsets. Each subset is as-
sociated with a number s that bounds the value t(z) that the test takes. We can
expect that every randomness test will detect only some of the non-random pat-
terns occuring in each sequence. Martin-Löf proved, however, that we can merge
all such tests to obtain a universal test for randomness2. Such a test would be
able to find all non-random patterns in a sequence of elements. Unfortunately,
universal tests for randomness are not computable. Thus we have to approximate
them using valid (in the sense of satisfying (1)) non-universal tests.

In the next section, we will give a valid randomness test for finite sequences
of real numbers produced under the iid assumption and we shall use what we call
a strangeness measure to map each example into a single real value in order to
utilize that test for obtaining confident predictions using the nearest neighbours
algorithm.
1 The definition stated here is equivalent with Martin-Löf’s original definition; the
only difference being the use of the ‘direct scale’ (randomness values from 0 to 1),
instead of the ‘logarithmic scale’ (randomness values from 0 to +∞).

2 A proof of the existence of universal randomness tests can be found in (Li & Vitányi,
1997), Chapter 2.4.
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3 Nearest Neighbours and Randomness

3.1 Formal Setting of the Problem

We have a training set {(x1, y1), . . . , (xm, ym)}, of m elements, where xi =
(x1

i , . . . , x
n
i ) is the set of feature values for example i and yi is the classification

for example i, taking values from a finite set of possible classifications, which we
identify as {1, 2, . . . , c}. We also have a test set of r examples similar to the ones
in the training set, only this time the actual classifications are withheld from us.
Our goal is to assign to every test example one of the possible classifications.
For every classification we also want to give some confidence measures, valid in
the sense of (1), that will enable us to gain more insight in the predictions that
we make.

3.2 Nearest Neighbours Transductive Confidence Machine

Let us denote the sorted sequence (in ascending order) of the distances of ex-
ample i from the other examples with the same classification y as Dy

i . Also, Dy
ij

will stand for the jth shortest distance in this sequence and D−y
i for the sorted

sequence of distances containing examples with classification different from y.
We assign to every example a measure called the individual strangeness measure.
This measure defines the strangeness of the example in relation to the rest of
the examples. In our case the strangeness measure for an example i with label y
is defined as

αi =

∑k
j=1 Dy

ij∑k
j=1 D−y

ij

, (2)

where k is the number of neighbours used. Thus, our measure for strangeness is
the ratio of the sum of the k nearest distances from the same class to the sum of
the k nearest distances from all other classes. This is a natural measure to use,
as the strangeness of an example increases when the distance from the examples
of the same class becomes bigger or when the distance from the other classes
becomes smaller.

Now let us return to algorithmic randomness theory. In (Melluish et al., 2001)
it is proved that the function

p(αnew) =
#{i : αi ≥ αnew}

m + 1
, (3)

where αnew is the strangeness value for the test example (assuming there is only
one test example, or that the test examples are processed one at a time), is
a valid randomness test in the iid case. The proof takes advantage of the fact
that since our distribution is iid all permutations of a sequence have the same
probability of occuring. If we have a sequence α1, . . . , αm and a new element αnew

is introduced then αnew can take any place in the new (sorted) sequence with
the same probability, as all permutations of the new sequence are equiprobable.
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Thus, the probability that αnew is among the j largest occurs with probability
of at most j

m+1 .
The values taken by the above randomness test will be called p-values.

The p-value for the sequence {α1, . . . , αm, αnew}, where {α1, . . . , αm} are the
strangeness measures for the training examples and αnew is the strangeness
measure of a new test example with a possible classification assigned to it, is the
value p(αnew). We can now give our algorithm.

TCM-NN Algorithm

Choose k, the number of nearest neighbours to be used
for i = 1 to m do
Find and store Dy

i and D−y
i

end for
Calculate alpha values for all training examples
for i = 1 to r do
Calculate the dist vector as the distances of the new example
from all training examples
for j = 1 to c do
for every training example t classified as j do
if Dj

tk > dist(t) recalculate the alpha value of example t
end for
for every training example t classified as non-j do
if D−j

tk > dist(t) recalculate the alpha value of example t
end for
Calculate alpha value for the new example classified as j
Calculate p-value for the new example classified as j

end for
Predict the class with the largest p-value
Output as confidence one minus the 2nd largest p-value
Output as credibility the largest p-value

end for

For each possible classification of a test example we construct the sequence
of strangeness values of the training set augmented by the strangeness value of
the new test example3. The prediction for each example is the classification that
gives the most typical completion of the sequence of strangeness measures of the
training set under the iid assumption.

Each prediction is accompanied by two other measures. The most important
of them is the confidence measure. Since, by equation (1), the second largest

3 Note that some of the strangeness values of the training set may be different for
different test examples or different possible classifications assigned to a test example.
In this sense our algorithm is transductive, as the training set is being reused for
each test example.



386 Kostas Proedrou et al.

p-value is an upper bound on the probability that the excluded classifications
will be correct, the confidence measure indicates how likely the predicted clas-
sification is the correct one. The credibility measure gives the typicalness of the
predicted classification. This value indicates how well suited the training set is
for the classification of a particular test example. Low credibility would mean
that the test example is strange with respect to the training examples, e.g. trying
to classify a letter using a training set that consists of digits.

In principle, we would want for each prediction all p-values to be close to 0,
apart from the one that gives the correct classification, that we would want to
be close to 1.

4 Experimental Results

The standard comparison criterion in classification problems is the percentage
of incorrectly classified examples. Here we shall also use a second one. We fix a
specific significance level δ, say 1%, and we accept as possible classifications the
ones whose p-value is above that level. In this way we can determine how many
test examples can be classified with a confidence of at least 1− δ.

We have tested our algorithm on the following datasets:

– USPS. It consists of handwritten digits from 0− 9. The training set consists
of 7291 examples and the test set of 2007 examples. Each example has 256
attributes (pixels) that describe the given digit. All data were pre-processed
as follows. As any image from the USPS data set was represented as 256
numbers (x1, ..., x256), we replaced it by (y1, ..., y256), where

yi =
xi − S

D
, S =

∑256
i=1 xi

256
,

D =

√∑256
i=1(xi − S)2

256

The aim of this preprocessing is to normalise the level of brightness. After
the preprocessing, the mean value of each image becomes 0 and the standard
deviation becomes 1.

– Satellite. These are 6435 satellite images(4435 for train and 2000 for test).
The classification task is to identify between 6 different soil conditions that
are represented in the images.

– Shuttle. The classes of this dataset are the appropriate actions that should be
taken under certain conditions(described by 9 attributes) in a space shuttle.
There are 43500 train examples, 14500 test examples and 7 different classes.

– Segment. 2310 outdoor images described by 9 attributes each. The classifi-
cations are : brick-face, sky, foliage, cement, window, path, grass.

The last three datasets are used in the Statlog project (King et al., 1995). For
comparison purposes we followed the same testing procedure. For the satellite



Transductive Confidence Machines for Pattern Recognition 387

Table 1. Comparison of the error rate of TCM-NN with other learning algo-
rithms

Dataset
Algorithm

C4.5 CART NB k-nn CASTLE Discrim Neural TCM

Satellite 15.1 13.8 30.7 9.4 19.4 17.1 13.9 10.6

Shuttle 0.04 - 4.55 0.44 3.77 4.83 4.9 0.11

Segment 4 4 26 7.7 11.2 11.6 - 3.68

Table 2. Comparison of the error percentage of TCM-NN with other algorithms
on the USPS dataset

Learning Nearest TCM-NN Support Vector Five layer
Algorithms Neighbours Machine Neural Network

% of error 4.29% 4.29% 4.04% 5.1%

and shuttle datasets we used the same training and test set, while for the segment
one we used 10 fold cross-validation.

In Table 1 we compare the performance of our algorithm4 with 7 others, all
taken from the Statlog project, on the satellite, shuttle and segment datasets.
The algorithms are two decision tree algorithms, C4.5 and CART, the Naive
Bayes classifier (NB), the k-nearest neighbours algorithm, a Bayesian network
algorithm (CASTLE), a linear discriminant algorithm (Discrim) and a back-
propagation neural network. Two of the values from Table 1 are missing as these
results are not mentioned in (King et al., 1995).

Table 2 contains experimental and comparison results on the USPS dataset.
The error percentage for the Five Layer Neural Network was obtained from
(Vapnik, 1998), while for the other three algorithms the results were produced
by the authors on the same training and test set. It is clear from both tables
that TCM-NN’s performance is almost as good as the performance of the best
algorithms for all datasets used.

Next, in Figure 1 we compare the error rate of TCM with that of the original
nearest neighbours algorithm on the USPS dataset using a different number of
neighbours each time. Though the perfromace of both algorithms is decreasing
as the number of neighbours is increasing it seems that TCM is more robust as
its error rate is increasing much slower.

When the second comparison criterion is used, our algorithm makes ‘region’
predictions (outputs a set of classifications) instead of point predictions. For a
specified significance level δ the correct classification will be in the predicted set
of classifications with a probability of at least 1 − δ, since the set of rejected
classifications can occur with probability of at most δ. In Figure 2 we demon-
strate this relationship between error classification and confidence level using 50
random instances of the USPS dataset.
4 We normally use one nearest neighbour for testing TCM-NN. When this is not the
case, the number of neighbours used will be stated explicitly.
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Fig. 1. Error percentage of TCN-NN and NN on the USPS dataset using 1-20
nearest neighbours

In Table 3 we detail the results of ‘region’ predictions for significance levels
of 1% and 5%, giving the percentage of examples for which the predicted set
contains one label, more than one label and no labels. For the shuttle and USPS
datasets we predict a set containing one classification for 99.17% and 94.77%
of the examples respectively with great certainty (confidence of 99% or more).
We can also note that as the overall error rate is increasing the number of
examples that can be given a single classification is decreasing. Since greater
error percentages mean more difficult classification problems it is natural that
more examples will be assigned more than one possible classifications.

Finally, the last column in Table 3 gives the percentage of examples of the
‘one class’ column that were correctly classified. These percentages are very
close and in most cases higher than the corresponding confidence levels; thus
indicating the practical usefulness of TCM’s confidence measure5.

5 Conclusion

The TCM-NN algorithm presented here has the advantage of giving probabilistic
measures for each individual prediction that we make. In this way we gain more
insight into how likely a correct classification is for an example when given a
specific training set. Furthermore, the percentage of errors of TCM-NN seems
to be as good as that of other learning algorithms.
5 Note that choosing a smaller significance level doesn’t necessarily guarantee a greater
rate of success, as we only consider the examples that are assigned one classification.
The former holds only when we consider all test examples (see Figure 2).
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Fig. 2. Percentage of correct 'region1 predictions for different confidence levels 
using 50 random instances of the TJSPS dataset 

The scheme we have proposed can be used on top of every classification 
algorithm and not only nearest neighbours, by defining the individual strangeness 
measure (2) in a different way. For example, the method can be applied to the 
Support Vector Machine algorithm using as a strangeness measure the distance 
of each example from the hyper-plane that separates the different classes. Finally, 
as an approximation to the universal test defined in Section 2 we have used the 

Table 3. TCM-NN Performance. The column ''One class" gives the number of 
examples for which a confident prediction is made, the column ''2 2 classes" 
gives the number of examples for which two or more possible classifications were 
not excluded at the given significance level, and the column ''No class" gives 
the number of examples for which all possible classifications were excluded at 
the given significance level. The last column shows the percentage of correct 
predictions for the examples we could confidently predict at each significance 
level 
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statistical p-test (3). It remains an open problem though whether one can find
valid tests for randomness (under the general iid assumption) that are better
approximations to the universal tests for randomness than the one used here.

Acknowledgements

This work was partially supported by EPSRC through grants GR/L35812 (“Sup-
port Vector and Bayesian learning algorithms”), GR/M14937 (“Predictive com-
plexity: recursion-theoretic variants”), and GR/M16856 (“Comparison of Sup-
port Vector Machine and Minimum Message Length methods for induction and
prediction”). We are grateful to the Program Committee for useful comments.

References

1. Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Ma-
chines and Other Kernel-based Methods. Cambridge: Cambridge University Press.

2. Fraser, D. A. (1976). Non-parametric methods in statistics. New York: Wiley.
3. King, R. D., Feng, C., & Sutherland, A. (1995). Statlog: Comparison of classifica-

tion algorithms on large real-world problems. Applied Artificial Intelligence, 9(3),
pp 259–287.
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