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Abstract. Message Sequence Charts (MSCs) and related notations
have found wide acceptance for scenario-oriented behavior specifications.
However, MSCs lack adequate support for important aspects of interac-
tion modeling, including overlapping interactions, progress/liveness spec-
ifications, and preemption. Such support is needed particularly in the
context of service-oriented specifications both in the business informa-
tion and embedded systems domain. In this text, we introduce extensions
to the “standard” MSC notation addressing these deficits, and provide
a semantic foundation for these extensions.

1 Introduction

The complexity of software-enabled systems continues to rise. Driven by the
wired and wireless incarnations of the Internet, the networking of formerly mono-
lithic devices and their software components increases. More and more systems
emerge as a collaboration between peer networking nodes, each offering software
functions to its environment, and utilizing the functions offered by others.

As a consequence, the focus of concern in requirements capture, design, and
deployment of software solutions shifts from individual computation nodes to
their interaction. This shift of concern is exemplified by the current trend to-
wards “web services”. Here, software functions (called services) are published as
individual entities at well-known addresses on the Internet; these functions can
be consumed by others, yielding possibly complex, composite services.

To model and implement such interaction-based services systematically, ex-
pressive description techniques and methodological foundation for component
interaction are essential.

Typical software development approaches and modeling languages, however,
place their focus on the construction of individual software components, instead
of on component collaboration. The Unified Modeling Language (UML)[16] is
a typical example (at least before version 2.0, which is still under discussion).
Its syntactic means – and corresponding tool support – for specifying state-
based behavior of individual components (statechart diagrams) are far better
developed than the corresponding notations for interaction patterns (activity,
sequence and collaboration diagrams).
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Message Sequence Charts (MSCs)[7,8], on the other hand, have been widely
accepted as a valuable means of visualizing and specifying asynchronous compo-
nent interaction. Their potentials in this regard have earned them entrance into
the current suggestion for the UML’s 2.0 standard, where they are adapted to
support modeling of a wide range of communication concepts.

Both of these notations, however, provide only very basic support for inter-
action specifications. In this text, we show how to extend the expressiveness of
MSCs and sequence diagrams to include:

– Overlapping interaction patterns
– Liveness/progress properties
– Preemption specifications.

In the following paragraphs we describe each of these extensions in more de-
tail. Although there are many other areas for improvement we could address –
including proper handling of data in sequence diagrams, and hierarchical refine-
ment for messages and components, to mention just two examples – for reasons
of brevity we focus on the three extensions listed below.

1.1 Overlapping Interaction Patterns

We call sequences of interactions in which some communication partners and
some of the messages they exchange coincide overlapping; overlapping interac-
tion patterns are extremely important in service-oriented specifications. Each
individual service only represents a partial view on the collaborations within the
system under consideration. To get the overall picture for one implementation
component, say, all the different services in which a single component is involved
need to be joined. This requires an adequate composition operator for making
the relationship between different service specifications precise.

1.2 Trigger Composition

Similarly important is availability of an operator for specifying liveness/progress
in MSCs. Most sequence diagram dialects provide means for indicating alter-
native interaction patterns; they fail, however, to offer notation for indicating
which alternatives should be selected to make progress towards a desirable goal.
Consequently, liveness properties can only be described as a side remark or in an-
other modeling language, such as an state-automaton-based approach. Without
proper support for liveness, sequence diagrams cannot mature beyond scenario
specifications. Specifically, we are interested in working with abstract progress
properties, such as “if a certain interaction pattern has occurred in the system,
then another one is inevitable”, or “one interaction pattern triggers another”.

1.3 Preemption

Preemption is a fundamental concept especially in technical and embedded sys-
tems development. Although the very roots of MSCs are in telecommunication
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systems, where preemption scenarios abound – think of specifying a telephone
call, where at any time either party can hang up –, no support for preemption
exists in either MSCs or sequence diagrams.

1.4 Contributions and Outline

Our contributions in this text are twofold. First, in Sect. 2, we provide a moti-
vating “toy” example, illustrating the usability and applicability of the concepts
just outlined. This example serves also to introduce the extensions to the MSC
syntax we use, and how they integrate with the “standard” notation. Although
we have chosen to stay close to the MSC-96 syntax, the example illustrates that
our suggestions could also be transferred to other interaction-based specification
techniques, such as the UML’s sequence diagrams.

Second, in Sect. 3 we provide a formal semantics for MSCs including support
for the new composition operators that address overlapping scenarios, triggered
and preemptive collaborations. The basis for this semantics is a precise system
model for component interaction, based on streams. There have certainly been
other attempts at semantics definition for MSCs before; the combination of ex-
plicit concepts for overlapping, trigger composition, and preemption of MSCs
is, however, not treated consequently in these approaches. In addition, our ap-
proach has the advantage of supporting systematic MSC refinement as well as
component synthesis from MSCs – for reasons of brevity we have to refer the
reader to [9] for more details on these issues.

We discuss related work in Sect. 4, as well as our conclusions and future work
in Sect. 5.

2 Example: The Abracadabra-Protocol

To illustrate the applicability of the suggested operators, we model a simplified
version of the Abracadabra communication protocol[1,2] using MSCs[7,15,9].
To describe this protocol we assume given a system consisting of two distinct
components X and Y; we assume further that these two components communi-
cate via messages sent along channels xy (from X to Y), and yx (from Y to
X). Figure 1 shows this component structure in graphical form.

X

xy

yx Y

Fig. 1. System Structure Diagram (SSD) for the Abracadabra-protocol

The symmetric Abracadabra-protocol describes a scheme that allows any
of the two components to establish a connection to the other component, send
data messages once a connection exists, and tear down an existing connection it
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has initiated. If both components try to establish a connection simultaneously,
the system is in conflict. Then, both components tear down their “attempted”
connections to resolve the conflict.

Section 3 contains the formal definitions corresponding to the concepts and
operators introduced informally here.

2.1 Message Sequence Charts

MSCs provide a rich graphical notation for capturing interaction patterns. MSCs
have emerged in the context of SDL[6] as a means for specifying communication
protocols in telecommunication systems. They have also found their way into the
new UML 2.0 standard[14], which significantly improves the role of interaction
models within the UML.

MSCs come in two flavors: Basic and High-Level MSCs (HMSCs). A basic
MSC consists of a set of axes, each labeled with the name of a component. An
axis represents a certain segment of the behavior displayed by its corresponding
component. Arrows in basic MSCs denote communication. An arrow starts at
the axis of the sender; the axis at which the head of the arrow ends designates the
recipient. Intuitively, the order in which the arrows occur (from top to bottom)
within an MSC defines possible sequences of interactions among the depicted
components.

SXmsc
X Y

loop<*>

xy�sreq

yx �sack

xy�d

yx �dack

xy�ereq

yx �eack

msc SY

X Y

loop<*>

yx �sreq

xy�sack

yx �d

xy�dack

yx �ereq

xy�eack

(a) (b)

Fig. 2. MSCs for successful transmission

As an example, consider the MSC of Fig. 2a. It depicts how X and Y in-
teract to establish successful data transmission. X initiates the interaction by
sending message xy . sreq (“sending requested”) to Y. Upon receipt of Y’s reply
yx . sack (“sending acknowledged”), X sends an arbitrary, finite number of xy . d
messages. Each data message is acknowledged individually by Y; X waits for a
yx . dack message from Y before sending the next data message. Graphically,
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repetition is indicated by the loop box enclosing the recurring messages. To close
the transmission X sends message xy . ereq (“end requested”) to Y; Y acknowl-
edges transmission termination by means of a yx . eack (“end acknowledged”)
message. Figure 2b shows the symmetric case, where Y is the initiator.

Syntactically, we have adopted a slightly modified version of MSC-96[7]; our
message arrows carry an indicator for the channel on which a message is sent in
addition to the message itself; we will come back to this in Sect. 3.2. Moreover,
we use unbounded loops, which are not available in MSC-96.

Conflict in the Abracadabra protocol occurs if both X and Y try to
establish a connection simultaneously. The MSC in Fig. 3a captures this case by
means of causally unrelated messages, using the “parallel box” syntax of MSC-
96. Conflict resolution is handled by mutual exchange of messages ereq and eack

msc C

par

X Y

xy�sreq

yx �sreq

msc CR

par

X Y

xy�ereq

yx �eack

yx �ereq

xy�eack

(a) (b)

Fig. 3. MSCs for conflicts and their resolution

by X and Y. Again, there need not be a specific order between the ereq and
eack messages with different origins (cf. Fig. 3b).

An HMSC is a graph whose nodes are references to other (H)MSCs. The
semantics of an HMSC is obtained by following paths through the graph and
composing the interaction patterns referred to in the nodes along the way. The
HMSC of Fig. 4a, for instance, specifies that every system execution is an in-
finite sequence of steps, where each step’s behavior is described by one of the
following: MSC SX (successful communication initiated by X), MSC SY (suc-
cessful communication initiated by Y), or MSC C (conflict) followed by MSC
CR (conflict resolution). Multiple vertices emanating from a single node in the
HMSC graph indicate nondeterministic choice.

2.2 Introducing Progress/Liveness

So far, we have left open whether a send request by either component will, even-
tually, result in an established connection. The use of nondeterministic choice in
the definition of MSC A allows an infinite sequence of steps consisting only of
conflict and conflict resolution.
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msc A

SX SY C

CR

msc AT

join

A

X Y

triggers
xy�sreq

xy�d

(a) (b)

Fig. 4. HMSC for the Abracadabra-protocol, and Abracadabra with progress prop-
erty

We introduce a new composition operator, called “trigger composition”, to
cast the progress/liveness property (cf. [4,13]) that a message xy . sreq must lead
to subsequent data exchange, i.e. occurrence of at least one xy . d message.

Informally speaking, we write α �→ β to indicate that whenever the interac-
tion pattern specified by MSC α has occurred in the system under consideration,
it is eventually followed by an occurrence of the interaction pattern specified by
MSC β .

Having trigger composition available, we can describe the progress property
mentioned above as xy . sreq �→ xy . d ; see Fig. 4b for the graphical syntax we
use for trigger composition.

2.3 Joining Overlapping MSCs

By now, we have two separate MSCs describing system behaviors. On the one
hand we have MSC A, which describes the major interaction patterns of the
Abracadabra protocol. On the other hand we have the MSC xy . sreq �→ xy . d ,
which describes a progress property relating occurrences of messages xy . sreq and
xy . d .

Our next step is to compose these two MSCs such that the resulting MSC
contains only paths through the Abracadabra protocol that fulfill the progress
property. To that end, we introduce the “join” composition operator for MSCs.
The join α ⊗ β of two MSCs α and β describes behaviors complying to both
MSCs such that identical messages occurring in both MSCs are identified.

The join operator in Fig. 4b “binds” the messages occurring in the trigger
composition xy . sreq �→ xy . d to those in A. The semantics of the joint MSC is
the subset of A’s semantics where every xy . sreq message is followed by an xy . d
message eventually. Put another way, no element of the semantics of the joint
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MSC has only conflicts or successful transmissions initiated by Y, if X issues
message xy . sreq at least once.

2.4 Introducing Preemption

To demonstrate an application of preemption we extend the informal protocol
specification given above as follows: we modify the system structure from Fig. 1
by connecting component X to the “environment” (represented by component
ENV) through channel ex (cf. Fig. 5).

YXENV

xy

yx
ex

Fig. 5. SSD for the Abracadabra-protocol with preemption

By sending message reset along channel ex the environment can force X to
stop any communication it may currently be involved in, and to restart the whole
protocol afresh. Upon receipt of message reset, component X sends message
streq (“stop requested”) to Y; Y replies by sending message stack (“stop
acknowledged”) to X.

The HMSC AP from Fig. 6a models this behavior by means of a preemption
arrow labeled with the preemptive message ex . reset . MSC B (cf. Fig. 6b) shows
the handling of the preemption. Recall that MSC A (cf. Fig. 4a) captures the
overall behavior of the Abracadabra-protocol (without preemption).

msc AP

A B
ex �reset

msc B

X Y

xy�streq

yx �stack

(a) (b)

Fig. 6. Preemption and its handling

Without the preemption construct we would have to rewrite the MSCs A,
SX, SY, C, and CR completely to accommodate the external reset request. The
resulting MSCs would lose their intuitive appeal almost entirely, because the one
exceptional case would dominate the whole specification.
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3 A Formal Framework for Precise MSC Specifications

In this section we introduce the formal framework for the semantics definition
of MSCs. We use this framework, in particular, to describe the semantics of the
operators for the join, trigger, and preemptive composition of MSCs.

3.1 System Model

We prepare our precise semantics definition for MSCs by first introducing the
structural and behavioral model (the system model) on which we base our work.
Along the way we introduce the notation and concepts we need to describe the
model.

System Structure. Structurally, a system consists of a set P of components,
objects, or processes1, and a set C of named channels. Each channel ch ∈ C is
directed from its source to its destination component; we assume that channel
names are unique. Channels connect components that communicate with one
another; they also connect components with the environment. Communication
proceeds by message exchange over these channels.

With every p ∈ P we associate a unique set of states, i.e. a component state
space, Sp . We define the state space of the system as S

def= Π p∈P Sp . For
simplicity, we represent messages by the set M of message identifiers.

System Behavior. Now we turn to the dynamic aspects of the system model.
We assume that the system components communicate among each other and
with the environment by exchanging messages over channels. We assume further
that a discrete global clock drives the system. We model this clock by the set
N of natural numbers. Intuitively, at time t ∈ N every component determines
its output based on the messages it has received until time t − 1, and on its
current state. It then writes the output to the corresponding output channels
and changes state. The delay of at least one time unit models the processing time
between an input and the output it triggers; more precisely, the delay establishes
a strict causality between an output and its triggering input (cf. [3,2]).

Formally, with every channel c ∈ C we associate the histories obtained from
collecting all messages sent along c in the order of their occurrence. Our ba-
sic assumption here is that communication happens asynchronously: the sender
of a message does not have to wait for the latter’s receipt by the destination
component.

This allows us to model channel histories by means of streams. Streams and
relations on streams are an extremely powerful specification mechanism for dis-
tributed, interactive systems (cf. [3,17]). Here, we only use and introduce a small
1 In the remainder of this document, we use the terms components, objects, and

processes interchangeably.
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fraction of this rich semantic model; for a thorough introduction to the topic,
we refer the reader to [17,3].

A stream is a finite or infinite sequence of messages. By X∗ and X∞ we
denote the set of finite and infinite sequences over set X, respectively. Xω def=
X∗ ∪ X∞ denotes the set of streams over set X. We identify X∗ and X∞ with⋃

i∈N([0, i] → X) and N → X, respectively, and use function application to write
x.n for the n-th element of stream x (for x ∈ Xω and n ∈ N).

We define C̃
def= C → M ∗ as a channel valuation that assigns a sequence of

messages to each channel; we obtain the timed stream tuple C̃∞ as an infinite
valuation of all channels. This models that at each point in time a component
can send multiple messages on a single channel.

With timed streams over message sequences we have a model for the com-
munication among components over time. Similarly we can define a succession
of system states over time as an element of set S∞.

With these preliminaries in place, we can now define the semantics of a
system with channel set C , state space S, and message set M as an element
of P((C̃ × S)∞). For notational convenience we denote for ϕ ∈ (C̃ × S)∞ by
π 1(ϕ ) and π 2(ϕ ) the projection of ϕ onto the corresponding infinite channel
and state valuations, respectively; thus, we have π 1(ϕ ) ∈ C̃∞ and π 2(ϕ ) ∈ S∞.
The existence of more than one element in the semantics of a system indicates
nondeterminism.

3.2 MSC Semantics

In the following we establish a semantic mapping from MSCs to the formal
framework introduced above. In the interest of space we constrain ourselves to
a significant subset of the notational elements contained in MSC-96 and UML
2.0, yet provide the extensions for overlapping scenarios (join operator), progress
(trigger composition), and preemption. For a comprehensive treatment of MSC
syntax and semantics we refer the reader to [9]; further approaches to defining
MSC semantics are discussed in Sect. 4.

Preliminaries. To facilitate the semantics definition we use a simplified textual
syntax for MSCs. The base constructors for MSCs are empty, c . m and any,
denoting the absence of interaction (empty MSC), the sending of message m
on channel c, and arbitrary interactions, respectively. Given two MSCs α and β
we denote by α ; β and α ∼ β the sequencing and interleaving of α ’s and β ’s
interaction patterns, respectively. If g represents a predicate on the state space of
the system under consideration, then we call g : α a guarded MSC; intuitively it
equals empty if g evaluates to false, and α otherwise. By α ⊗β we denote the join
of MSCs α and β . The join of two MSCs corresponds to the interleaving of the
interaction sequences they represent with the exception that common messages
on common channels synchronize. The trigger composition, written α �→ β of
two MSCs expresses the property that whenever the interactions specified by α

have occurred the interactions specified by β are inevitable. We write α
ch�m→ β
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to denote preemption. If message ch . m occurs during the behavior represented
by α , then this behavior is preempted and continued by the behavior that β
represents. Intuitively, we can think of β as the preemption/exception handler,
and of ch . m as the exception being thrown. To express the restarting of α upon
occurrence of preemptive message ch . m, we write α ⇑ch�m . α ↑g denotes a “while”
loop, repeating the interactions of α while g evaluates to true; a special case is
α ↑∞, which denotes an infinite repetition of α . We define α 0 def= empty, and
α i+1 def= (α ; α i) for i ∈ N. α ↑∗ denotes unbounded finite repetition of α .

An MSC definition associates a name with an interaction specification, writ-
ten msc X = α . By 〈MSC〉 and 〈MSCNAME〉 we denote the set of all syntacti-
cally correct MSCs, and MSC names, respectively. An MSC document consists of
a set of MSC definitions (assuming unique names for MSCs within a document).
To reference one MSC from within another we use the syntax → Y , where Y is
the name of the MSC to be referenced.

Example: As an example for the representation of MSCs in the syntax introduced
above we consider again the service depicted in Fig. 2a. In our textual syntax
the scenario is expressed as follows:

msc SX =
xy . sreq ; yx . sack ; (xy . d ; yx . d)↑∗ ; xy . ereq ; yx . eack

The textual MSC definition corresponding to the graphical representation in
Fig. 6a is

msc AP = ((→ A) ex�reset→ (→ B))↑<∞>

Denotational Semantics. In this section we introduce the semantic mapping
from the textual representation of MSCs into the semantic domain (C̃ × S)∞ ×
N∞. Intuitively, we associate with a given MSC a set of channel and state val-
uations, i.e. a set of system behaviors according to the system model we have
introduced in Sect. 3.1. Put another way, we interpret an MSC as a constraint on
the possible behaviors of the system under consideration. More precisely, with
every α ∈ 〈MSC〉 and every u ∈ N∞ we associate a set [[α ]]u ∈ P((C̃×S)∞×N∞);
any element of [[α ]]u is a pair of the form (ϕ, t ) ∈ (C̃ × S)∞ × N∞. The first con-
stituent, ϕ , of such a pair describes an infinite system behavior. u and the pair’s
second constituent, t, describe the time interval within which α constrains the
system’s behavior. Intuitively, u corresponds to the “starting time” of the behav-
ior represented by the MSC; t indicates the time point when this behavior has
finished. Hence, outside the time interval specified by u and t the MSC α makes
no statement whatsoever about the interactions and state changes happening
in the system. To model that we cannot observe (or constrain) system behavior
“beyond infinity” we define that for all ϕ ∈ (C̃ × S)∞, α ∈ 〈MSC〉, and t ∈ N∞
the following predicate holds: (ϕ, t ) ∈ [[α ]]∞.

We assume given a relation MSCR ⊆ 〈MSCNAME〉 × 〈MSC〉, which asso-
ciates MSC names with their interaction descriptions. We expect MSCR to be
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the result of parsing all of a given MSC document’s MSC definitions. For every
MSC definition msc X = α in the MSC document we assume the existence of
an entry (X, α ) in MSCR. For simplicity we require the MSC term associated
with an MSC name via MSCR to be unique.

Empty MSC. For any time u ∈ N∞ empty describes arbitrary system behavior
that starts and ends at time u. Formally, we define the semantics of empty as
follows:

[[empty]]u
def= {(ϕ, u ) : ϕ ∈ (C̃ × S)∞}

Arbitrary Interactions. MSC any describes completely arbitrary system behav-
ior; there is neither a constraint on the allowed interactions and state changes,
nor a bound on the time until the system displays arbitrary behavior:

[[any]]u
def= {(ϕ, t ) ∈ (C̃ × S)∞ × N∞ : t ≥ u}

any has no direct graphical representation; we use it to resolve unbound
MSC references (see below).

Single Message. An MSC that represents the occurrence of message m on chan-
nel ch constrains the system behavior until the minimum time such that this
occurrence has happened:

[[ch . m]]u
def= {(ϕ, t ) ∈ (C̃ × S)∞ × N :

t = min{v : v > u ∧ m ∈ π 1(ϕ ).v.ch}}

Because we disallow pairs (ϕ, ∞) in [[ch . m]]u we require the message to occur
eventually (within finite time). This corresponds with the typical intuition we
associate with MSCs: the depicted messages do occur within finite time.

We add the channel identifier explicitly to the label of a message arrow in
the graphical representation; this is useful in situations where a component has
more than one communication path to another component.

Sequential Composition. The semantics of the semicolon operator is sequential
composition (strong sequencing in the terms of [7]): given two MSCs α and β
the MSC α ; β denotes that we can separate each system behavior in a prefix
and a suffix such that α describes the prefix and β describes the suffix:

[[α ; β ]]u
def= {(ϕ, t ) ∈ (C̃ × S)∞ × N∞ :

〈∃t′ ∈ N∞ ::
(ϕ, t ′) ∈ [[α ]]u ∧ (ϕ, t ) ∈ [[β ]]t′〉}
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Guarded MSC. Let K ⊆ P be a set of instance identifiers. By pK we denote a
predicate over the state spaces of the instances in K. Let [[pK ]] ∈ P(S) denote
the set of states in which pK holds. Then we define the semantics of the guarded
MSC pK : α as the set of behaviors whose state projection fulfills pK at time u,
and whose interactions proceed as described by MSC α :

[[pK : α ]]u
def= {(ϕ, t ) ∈ [[α ]]u : π 2(ϕ ).u ∈ [[pK ]]}

We require pK to hold only at instant u. This allows arbitrary state changes
from time u on. In particular, at no other point within the time interval covered
by α can we assume that pK still holds.

Alternative. An alternative denotes the union of the semantics of its two operand
MSCs. The operands must be guarded MSCs; the disjunction of their guards
must yield true. Thus, for α = p : α ′, β = q : β ′ with α ′, β ′ ∈ 〈MSC〉, and guards
p, q with p ∨ q ≡ true we define:

[[α | β ]]u
def= [[α ]]u ∪ [[β ]]u

For guards p and q with p∧q ≡ true the alternative expresses a nondeterministic
choice.

References. If an MSC named X exists in the given MSC document, i.e. there
exists a pair (X, α ) ∈ MSCR for some α ∈ 〈MSC〉, then the semantics of a
reference to X equals the semantics of α . Otherwise, i.e. if no adequate MSC
definition exists, we associate the meaning of any with the reference:

[[→ X]]u
def=

{
[[α ]]u if (X, α ) ∈ MSCR
[[any]]u else

To identify any with an unbound reference has the advantage that we can un-
derstand the binding of references as a form of property refinement (cf. [9]).

Interleaving. Intuitively, the semantics of interleaving MSCs α and β “merges”
elements (ϕ, t ) ∈ [[α ]]u with elements (ψ, t ′) ∈ [[β ]]u. Formal modeling of this
merge is straightforward, albeit more technically involved; we refer the reader to
[9] for the details.

Join. The join α ⊗ β of two operand MSCs α and β is similar to their interleaving
with the exception that the join identifies common messages, i.e. messages on
the same channels with identical labels in both operands. MSC-96 does not offer
an operator with a similar semantics.

[[α ⊗ β ]]u
def= {(ϕ, t ) ∈ (C̃ × S)∞ × N∞ :

〈∃t1, t2 :: (ϕ, t 1) ∈ [[α ]]u ∧ (ϕ, t 2) ∈ [[β ]]u ∧ t = max(t1, t2)〉
∧〈∀X ∈ (msgs.α ∩ msgs.β )∗, ψ ∈ (C̃ × S)∞,ch ∈ C , t′ ∈ [u, t] ∩ N ::

((X �= 〈〉) ∧ (π 1(ψ ).t′.ch = π 1(ϕ ).t′.ch \ X))
⇒ 〈∀t′′ ∈ N :: (ψ, t ′′) �∈ [[α ]]u ∧ (ψ, t ′′) �∈ [[β ]]u〉〉}
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In this definition we use the notation m\n as a shorthand for the stream obtained
from m by dropping all elements that do also appear in n. By msgs.γ we denote
the set of message labels occurring in MSC γ .

The second outer conjunct of this definition ensures that we cannot recon-
struct the behaviors of α and β independently from the behaviors of their join,
if the two MSCs have messages in common. This distinguishes the join clearly
from the interleaving of α and β , if msgs.α ∩ msgs.β �= ∅ holds. In this state of
affairs, we call α and β non-orthogonal (or overlapping); if msgs.α ∩ msgs.β = ∅
holds, then we call α and β orthogonal (or non-overlapping).

The definition of the join operator is quite restrictive; for example, consider
the two MSCs α = c . m ; c . n and β = c . n ; c . m, which define two different
orderings of the messages c . m and c . n. It is easy to see that we have [[α ⊗ β ]]u =
∅.

Preemption. The semantics of MSC α
ch�m→ β is equivalent to the one of α as

long as message ch . m has not occurred. From the moment in time at which
ch . m occurs, the MSC immediately switches its semantics to the one given by
β :

[[α ch�m→ β ]]u
def= {(ϕ, t ) ∈ [[α ]]u : 〈∀v ∈ N : u ≤ v ≤ t : m �∈ π 1(ϕ ).v.ch〉}

∪ {(ϕ, t ) ∈ (C̃ × S)∞ × N∞ :
〈∃v : v ∈ N :

v = min{t′ : t′ > u ∧ m ∈ π 1(ϕ ).t′.ch}
∧ (ϕ, v − 1) ∈ [[α ]]v−1

u

∧ (ϕ, t ) ∈ [[β ]]v〉}

Here we use the set [[α ]]vu ⊆ (C̃ × S)∞ × N∞ for any α ∈ 〈MSC〉, which is
similar to [[α ]]u except that each element of [[α ]]vu constrains the system behavior
until time v ∈ N∞:

[[α ]]vu
def= {(ϕ, v ) ∈ (C̃ × S)∞ × N∞ :

〈∃(ψ, t ) : (ψ, t ) ∈ [[α ]]u : ϕ |[u,v] = ψ |[u,v] ∧ v ≤ t〉}

Preemptive Loop. The definition of MSC preemption above does not capture the
restarting of an interaction in case of the occurrence of a certain message. To
handle this case we define the notion of preemptive loop. The intuitive semantics
of the preemptive loop of α for a given message ch . m is that whenever ch . m
occurs α gets interrupted and then the interaction sequence proceeds as specified
by α , again with the possibility for preemption. More precisely, we define [[α ⇑ch�m

]]u to equal the greatest fixpoint (with respect to set inclusion) of the following
equation:

[[α ⇑ch�m ]]u = [[α ch�m→ (α ⇑ch�m)]]u

The fixpoint exists due to the monotonicity of its defining equation (with respect
to set inclusion).
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Trigger Composition. By means of the trigger composition operator we can
express a temporal relationship between two MSCs α and β ; whenever an inter-
action sequence corresponding to α has occurred in the system we specify, then
the occurrence of an interaction sequence corresponding to β is inevitable:

[[α �→ β ]]u
def= {(ϕ, t ) ∈ (C̃ × S)∞ × N∞ :

〈∀t′, t′′ : ∞ > t′′ ≥ t′ ≥ u :
(ϕ, t ′′) ∈ [[α ]]t′ ⇒ 〈∃t′′′ : ∞ > t′′′ > t′′ : (ϕ, t ) ∈ [[β ]]t′′′〉〉}

Loops. The semantics of a guarded loop, i.e. a loop of the form α ↑ p, where
p represents a guarding predicate, is the greatest fixpoint (with respect to set
inclusion) of the following equation:

[[α ↑p]]u = [[(p : (α ; α ↑p)) | ((¬p) : empty)]]u

The fixpoint exists because of the monotonicity of its defining equation (with
respect to set inclusion); see [9] for the rationale, as well as for other forms of
loops (such as bounded finite repetition). On the basis of guarded repetition we
can easily define the semantics of α ’s infinite repetition (written α ↑∞) as follows:

[[α ↑∞]]u
def= [[α ↑true]]u

For unbounded repetition we define [[α ↑∗]]u
def=

⋃
i∈N[[α i]]u.

4 Related Work

Suggestions in the literature for MSC dialects abound; [9] contains an extensive
list of references. [7,8] defines the standard syntax and semantics for MSC-96.
The 2.0 version of the UML[14] has a new interaction model based on MSCs;
previous versions adopted a much less powerful notation. LSCs [5] distinguish
several interpretations for MSCs (similar to our discussion in [9,10,11]), which
allow, in particular, the definition of liveness properties and “anti-scenarios”.

None of the above, however, provides operators for treating overlapping sce-
narios explicitly. By providing the semantic foundation for overlapping using
the join operator, we have taken a step towards the independent description of
collaborations defining services. Furthermore, although LSCs support complex
liveness specifications, we believe that the notion of trigger composition we have
borrowed from UNITY’s “leadsto” operator (cf. [4]), provides a more accessible
way of capturing abstract progress properties. In particular, the combination of
trigger composition and join enables separation of concerns in MSC specifica-
tions – in the sense of aspect-oriented specification and programming. We refer
the reader to [9] for a detailed treatment of further advantages of our model, such
as support for MSC refinement and synthesis of component implementations.
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5 Conclusions and Outlook

The advent of web services and service-oriented system design in general [12]
puts an increasing emphasis on component interaction as the central develop-
ment aspect. MSCs and similar notations provide a widely adopted means for
capturing such interaction patterns in the form of scenarios. MSCs, however, fall
short regarding support for important modeling aspects, including overlapping
interaction patterns, progress/liveness specifications, and preemption specifica-
tions.

In this text, using the Abracadabra protocol as an example, we have illus-
trated the need for corresponding extensions to the MSC notation. In the context
of service-oriented system modeling, for instance, specification tools for overlap-
ping interaction patterns are indispensable; the overall system emerges typically
as the composition of multiple services such that some components participate in
multiple services simultaneously – the corresponding interaction patterns over-
lap. Similarly, we have shown how to integrate dedicated support for preemption
into MSCs as a collaboration-oriented specification notation. Last, but not least,
we have also integrated progress specifications into the MSC notation, allowing
the developer to express abstract properties such as “whenever one interaction
pattern has occurred in the system under consideration, then another interaction
pattern is inevitable”.

We have also introduced a comprehensive, yet concise mathematical frame-
work for defining the semantics of the extensions we have described. Because
our formal model is based on the work in [9], we have at our disposal power-
ful refinement and synthesis techniques for MSCs even including the extensions
described in this text.

Areas for further work include the extension of the treatment of overlapping
interaction patterns in the direction of aspect-oriented specifications. Further-
more, the composition operators introduced here need to be substantiated by
corresponding tool support; implementation of a corresponding tool prototype
is underway.
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3. Manfred Broy and Ketil Stølen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces and Refinement. Springer New York, 2001.
ISBN 0-387-95073-7.

4. K. Mani Chandy and Jayadev Misra. Parallel Program Design. A Foundation.
Addison Wesley, 1988.

5. Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. In FMOODS’99 IFIP TC6/WG6.1 Third International Conference on
Formal Methods for Open Object-Based Distributed Systems, 1999.

6. Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL. Formal Object-oriented
Language for Communicating Systems. Prentice Hall, 1998.

7. ITU-TS. Recommendation Z.120 : Message Sequence Chart (MSC). Geneva, 1996.
8. ITU-TS. Recommendation Z.120 : Annex B. Geneva, 1998.
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