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Abstract. The specification of policies is a crucial aspect in the devel-
opment of complex systems, since policies control the system’s behavior.
In order to predict a possibly incorrect behavior of the system, it is neces-
sary to have a precise specification of the policy, better if described in an
intuitive formalism. We propose policy specifications in three modeling
notations, viz. UML, Alloy and Graph Transformations, and compare
them from the viewpoint of readability, verifiability as well as tool sup-
port. We use a role-based access control policy as example policy.

1 Introduction

Policies are used to control the behavior of complex systems by a set of policy
rules. Policy specifications are developed by system designers and deployed by
administrators. To prevent an incorrect behavior of the system due to design or
administration errors, a policy specification should be readable and understand-
able by both the designer during system development and the administrator
who must deploy the policy. Visual modeling notations are designed to enhance
the understandability of system aspects. The UML [13] as the de-facto standard
modeling language in industry is a widely known member. Beside a readable
policy specification, a formal specification of the policy is necessary to reason
about the behavior of a policy and is a prerequisite for an effective analysis of
conflicts within and between policies and their resolution to achieve consistency.

The aim of our investigation is to provide support for the design of a policy
by proposing an intuitive visual representation along with a formal theory to
develop and modify a policy in a systematic way. We investigate in this article
to what extent the modeling notations UML, Graph Transformations [17] and
Alloy [20] are suited for the specification and verification of policies. UML, as
the standard modeling language in industry accompanied with several tools, is
considered by showing how a policy can be specified in UML in such a way
that we can make use of existing UML tools. We propose a formal graph-based
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semantics for the UML policy specification to make possible verification. Alloy,
a lightweight object modeling notation, can express a useful range of structural
properties in object models which can be automatically analyzed. Alloy provides
a visual notation for parts of an object model. Graph Transformations (GT)
are a graphical and formal specification technique, which incorporates both an
intuitive visual notation and a formal background. Several works have reported
on the use of GT for the specification of access control policies [8,9].

The paper is organized as follows. Section 2 investigates the necessary com-
ponents of a policy specification and introduces the role-based access control
policy example [18] used throughout the paper. Section 3 presents our proposal
for a policy specification in UML, Sect. 4 the GT specification and Sect. 5 the
Alloy specification. In Sect. 6, we investigate to what extent the specifications
can be used to reason about the consistency of a policy specification and in
Sect. 7 we compare the policy specifications from the point of view of readabil-
ity, verifiability and tool support. Section 8 contains concluding remarks and
future work.

2 Policies

Policies are employed to control the behavior of complex systems by using a set
of policy rules that define the choices in the individual and collective behavior of
the entities in the system. Beside the policy rules, declarative policy constraints
may provide additional useful information on the intended behavior so that a
policy specification contains also declarative information (”invariants”) on what
a system state must contain (positive) and what it cannot contain (negative).
The declarative constraints provide useful information during the development
of a policy through successive refinement steps, or when trying to predict the
behavior of a policy. Therefore, a policy specification consists of 1) the type
information of the system entities to which the policy applies, 2) a set of policy
rules which build the accepted system states, and 3) a set of positive and negative
declarative policy constraints for the wanted and unwanted substates.

2.1 Example: Role-Based Access Control

Role-based access control (RBAC) [18] reduces the complexity and cost of se-
curity administration in large systems because roles serve as a link between
permissions (e.g., read or write) for objects (e.g., a file, a printer) and users. A
user can access an object if (s)he plays a role which has the required permissions.
The work on RBAC systems has been subject to a NIST standard proposal [19]
which characterizes a family of RBAC models. The RBAC model in this article
includes a role hierarchy, defining a sub-role (resp. super-role) relation between
roles, whereby roles acquire the permissions of their sub-roles, and sub-roles ac-
quire the user membership of their super-roles. The role hierarchy can be an
arbitrary partial order and is assumed to be fixed. The RBAC policy rules are:
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Rule 1: A user can be assigned to a role to become a member of the role.
The user is authorized for a role, if this role is a sub-role of the role to which
the user is assigned.

Rule 2: A user u can be revoked from a role r. We consider here only
weak revocation, which revokes u only from this role r. Weak revocation has
the property that a user u after revocation from r does not have to loose the
permissions of r if u is assigned to a super-role of r, since super-roles inherit
the permissions of their sub-roles. In strong revocation, the user u would be
additionally revoked from all the super-roles of r.

Rule 3: A user can establish a session.
Rule 4: A user can close a session.
Rule 5: During a session of a user, the user can activate a subset of roles for

which (s)he is authorized.
Rule 6: The user of a session can deactivate roles from the session.
The role-permission assignment [3] is assumed to be fixed. The following

constraints are examples of additional restrictions of the RBAC model.
Separation of Duty (sod): This relation on roles places constraints on the

assignments of users to roles. Membership in one role prevents the user from
being a member of one or more other roles, depending on the sod-rules.

Cardinalities: This kind of constraint restricts the number of user-role as-
signments, user-session assignments etc. For example, a session must belong to
a unique user.

The next sections present how the system entity types, the policy rules and
the policy constraints are specified in UML, in Alloy and in Graph Transforma-
tions, exemplified with the RBAC model.

3 UML Specification

The type information of the system entities is specified in a UML class diagram.
The class diagram for the RBAC example consists of the class Role for RBAC
roles, User for users and Session for sessions (see Fig. 1a). An association shows,
which class instances can be related. The label represents the intended meaning
assigned to the association, its direction the direction to read the label (e.g., a
session belongs to a user). The association sod on class Role specifies the sepa-
ration of duty relation on roles, the association is represents the role hierarchy.
A role r can be a super- or sub-role with respect to a role r′. Each role has
a unique super-role, but a role can have zero or more sub-roles. If there is no
multiplicity attached to an association, we assume the multiplicity 0...∗. The
association is in models the user-role assignment, the association has activated
models the roles that are activated in a session. The association belongs specifies
the assignment of a session to a user.

The policy rules are specified in object diagrams using the constraints new,
all, destroy and destroy all based on the constraints new and destroyed used in
collaboration diagrams [13]. The intended meaning of the constraint all at an
object in a policy rule is that all objects of this type must be considered which
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Fig. 1. Visual modeling of the type information in UML a), in GT b) and in Alloy c)

match to the object structure specified in the object diagram. An object or link
with new is created by the policy rule, an object or link with destroy is removed
from the system. The constraint destroy all at an object/link specifies that the
policy rule deletes all objects/links that match the object structure specified in
the object diagram. The match must be complete in the sense, that all mapped
objects can be completed by links to achieve the object diagram in the rule.

Figure 2 shows the UML object diagrams for the policy rules of the RBAC
model. Object diagram 1) consists of one object of type User carrying a con-
straint new. This specifies the creation of a user. Diagram 2) shows a user object
connected to a session object. The constraint destroy at the user object specifies
that the policy rule deletes the user, the constraints destroy all at the session
object and the link specify that all sessions of the user are deleted, as well. Note,
that sessions which are not connected to the deleted user object remain un-
changed. Diagram 3) specifies the creation of a new session object connected to
a user object. The user object already exists, only the session object and the link
to the user are added by the policy rule. Diagram 4) specifies the deletion of a
session and the connection to the user, diagram 5) the assignment of an existing
user to an existing role by adding a new link. The revocation of a user from a role
is specified in diagram 6). If a user is revoked from role (specified by destroying
the link between the objects user and role), user may loose the authorization
for all sub-roles of role. Therefore, all sub-roles of role must be deactivated from
the sessions of the user, as well. The ∗ attached to the link between the roles
role and role’ models a path through the role hierarchy from role to role’. Since
UML has no primitive operation for a transitive closure, transitivity must be
specified in OCL. Therefore, we introduce the operation closure() on roles:

class Role

closure(): Set(Role) =

subrole.closure()->asCollection->including(self)
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Fig. 2. UML object diagrams for policy rules

The *-link between objects role and role’ in diagram 6) is a graphical notation for
role’ in role.closure(). Since we assume a non-cyclic role hierarchy, the operation
closure() always terminates. Diagram 7) specifies the activation of a role in
a user session by creating a new link between the session object and a role for
which the user is authorized. A user is authorized for a role role′ if there is path
starting from a role to which the user is assigned ending in role′ (specified by
the *-link). Diagram 8) specifies the deactivation of a role from a session by
destroying the link between the session object and the role object.

To specify policy constraints, we have chosen OCL [21]. The OCL constraint
below specifies the separation of duty (sod) constraint.

context User inv

self.is_in->forAll( r1,r2 | r1.sod->excludes(r2) )

The RBAC cardinality constraint, which requires a unique user for each session,
is already specified by the multiplicity 1 at the association belongs in the class
diagram in Fig. 1 a).

4 Graph Transformations Specification

Graph Transformations (GT) [17] provide an intuitive presentation of graph-
based structures and their rule-based modification. The types of the system
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entities are specified in a type graph. A type graph is a graph consisting of a set
of nodes and a set of directed edges which specify the types of nodes and edges
which may be used in the instance graphs modeling system states. A graph G is
an instance graph of a type graph if one can find for each node and edge in G the
corresponding node and edge type in the type graph. We take a GT approach
in which edges are relations, i.e., there is at most one edge of the same type
between two nodes, but there can be several edges of different type between the
same nodes. Fig. 1b shows the type graph for the RBAC policy model. It has
the types u for user, r for roles and s for sessions. The meaning of the edges
corresponds to the meaning in the UML class diagram in Fig. 1a. In contrast
to class diagrams, however, it is not possible to specify multiplicities in a type
graph. An edge in a type graph always has the multiplicity ∗. Furthermore, edges
in the type graph do not carry role names as associations in UML class diagrams.

The policy rules are specified by graph rules. Formally, a graph rule is given
by a graph morphism r : L → R which consists of two partial injective mappings:
one between the set of nodes and one between the set of edges of L and R, so
that 1) whenever the mapping for edges is defined for an edge e pointing from
node s to node t, the mapping for s and t is defined and the edge r(e) in R
points from r(s) to r(t) and 2) node/edges are mapped only to nodes/edges of
the same type. We call the graph morphism total if the mappings between the
node and edge sets are total. The graph L of a graph rule r : L → R, left-hand
side (LHS), describes the elements a graph must contain for r to be applicable.
The morphism r is undefined on nodes/edges that are intended to be deleted,
defined on nodes/edges that are intended to be preserved. Nodes and edges of
R, right-hand side (RHS), without a pre-image are newly created. Note that
the actual deletions/additions are performed on the graphs to which the rule
is applied. The application of a rule to a graph G requires an occurrence of
the LHS L in G (formally defined by the existence of a total graph morphism
m : L → G, called match). The application itself consists of two steps. First,
delete all objects in G that have a pre-image in L\dom(r). Second, add all graph
objects of R \ r(L) to G connected to the nodes m(dom(r)).

The graph rules for the RBAC model are given in Fig. 3. The LHS of the
graph rule add user is empty, its RHS contains one user node. This rule specifies
the creation of a new user. The rule remove user deletes a user and all its
connected sessions. The double circle around the session node specifies that all
sessions connected to the user are deleted. The rule new session creates a new
session for a user by inserting a new session node connected to the user node. The
LHS of the graph rule remove session consists of the session node connected to
the user node, the RHS consists only of the user node. This graph rule specifies
the deletion of the session. The rule add to role assigns a user to a role. The
rule remove from role specifies the revocation of a user from a role. The edge
between the user and the role is deleted as well as all edges between sessions and
roles for which the user is authorized by the revoked role. The * specifies a path
between the roles. The rule activate role inserts an edge between a session of a
user and a role for which the user is authorized. The graph rule deactivate role
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deactivates a role from a session of a user by deleting the edge between session
and role node.

Policy constraints are specified by positive and negative graphical constraints
[10]. A positive graphical constraint (PGC) is a total graph morphism c : X → Y
and a graph G satisfies c if for all total morphisms p : X → G there is a total
morphism q : Y → G so that q ◦ c = p. A negative graphical constraint (NGC)
is a graph C and a graph G satisfies C if there does not exist a total morphism
p : C → G. The NGC in Fig. 4 a) specifies the separation of duty constraint. The
NGC shows the forbidden substate in which a user is assigned to two roles in sod-
relation. The two graphical constraints in b) specify that each session belongs
to a unique user. The PGC requires for each session at least one connected user,
the NGC forbids two (or more) users connected to one session.

5 Alloy Specification

Alloy[6] is a language for describing structural properties of object models
and provides constraints and operations to describe how object structures may
change. It is a state-based language with a textual syntax together with a graphi-
cal sublanguage. Alloy allows the designer to automatically analyze specifications
[7]. The RBAC model of this paper is a submodel of the model used in [20].
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The types for the system entities are specified in the Alloy diagram in Fig. 1c.
Each box in the diagram represents a set of objects. We have the sets Role, User
and Session. A vertical stripe down the right-hand side of the box specifies a
fixed set, i.e., the number of elements in this set is fixed throughout the lifetime
of the system. In the RBAC example, the roles are fixed, but the sets of users and
sessions are not fixed. An edge represents a relation: for example, the relation
sub-role maps a role to all its sub-roles, the relation super-role is defined to be
its inverse (specified by the tilde). The relation super-role maps each role to its
unique super-role. The exclamation mark attached to the end of a relation means
exactly one. Another example is the relation belongs which maps each session to
a unique user and its inverse has maps each user to his/her activated sessions.

Policy rules are specified textually by Alloy operations (keyword op). The
primed values in operations indicate the post state of the variables. For sets,
there are the usual set-theoretic operations for union (+) and difference (-),
the operator s in t checks if the set s is a subset of t. For a relation r, the
operation ∼r is the inverse of r and ∗r is the reflexive transitive closure of r.
The ’.’ operator is used to specify a navigation expression, i.e., s.r denotes the
set of objects that the set s maps to in the relation r. For example, user.is in

specifies the set of roles the user plays in a state.

op NewUser(user:User’) { User’ = User + user }

op RemoveUser(user:User’) {

Session’ = Session - user.˜has

User’ = User - user

}

op NewSession(user:User, session:Session’) {

Session’ = Session + session

session.belongs’ = session.belongs + user

}

op RemoveSession(user:User, session:Session’) {

user.˜has’ = user.˜has - session

Session’ = Session - session

}

op AddToRole( user:User, role:Role ) {

user.is_in’ = user.is_in + role

}

op RemoveFromRole(user:User, role:Role) {

user.is_in’ = user.is_in - role

user.˜has.is_activated’=user.˜has.is_activated-role.*subrole

}

op ActivateRole(user:User,session:Session,role:Role,role2:Role){

role in user.is_in

role2 in role.*subrole

session.is_activated’ = session.is_activated + role2

}



286 M. Koch and F. Parisi-Presicce

op DeactivateRole(user:User, session:Session, role:Role) {

session.is_activated’ = session.is_activated - role

}

Policy constraints are described by Alloy assertions (keyword assert), which
are questions of the kind “Is it true that ...?”. The Alloy analyzer tries to answer
this question by finding a counterexample (more in Sect. 6). The assertion for
the sod-constraint states that when a user u is assigned to roles r1 and r2 then
r1 and r2 are not in sod-relation (-> specifies implication, ! negation).

assert SeperationOfDuty{ all r1,r2: Role, u:User |

(r1 + r2) in u.is_in -> r1 != r2.sod }

The cardinality constraint of a unique user for each session is visually specified
by the exclamation mark attached to the relation belongs in the Alloy diagram.

6 Verification

A crucial property of a policy specification is that it specifies a coherent policy in
the sense that the policy rules and the policy constraints are not contradictory.
Therefore, we define a policy specification to be coherent if all system states built
by the policy rules satisfy the constraints. In the context of UML, a system state
is an object model and a policy constraint an OCL constraint. Satisfaction deals
with the satisfaction of the OCL constraint in the object model. In the context
of Alloy, a system state is an instance of the Alloy model with concrete instance
sets and relations. A policy constraint is an Alloy assertion and satisfaction deals
with the satisfaction of the assertion in the instance model. In the context of
GT, a system state is a graph and a policy constraint is a graphical constraint.
Satisfaction deals with satisfaction of the graphical constraint by the state graph.

The RBAC policy specifications in the previous sections are not coherent,
since the sod-constraint is not satisfied by all system states built by the policy
rules. The policy rule for the assignment of a user to a role (diagram 5 in Fig. 2
in the case of UML, graph rule add to role in Fig. 3 in the case of GT, operation
AddToRole in the case of Alloy) does not consider the sod-relation. The rule
can assign a user to any role and may construct a system state which does
not satisfy the sod-constraint. This section investigates the problem of detecting
incoherence in a policy specification and, if so, of resolving it.

6.1 Alloy

Alloy is supported by an analyzer [7] to detect constraint violations. The ana-
lyzer checks Alloy assertions by trying to find a counterexample, i.e., to find an
instance model of the Alloy specification in which the assertion is not satisfied.
Using the Alloy analyzer to check the sod assertion of the policy specification in
Sect. 5, the analyzer gives the counterexample in Fig. 5. The User1 is assigned
to the roles Role2 and Role3 which are in sod-relation.
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Fig. 5. Counterexample found by the Alloy analyzer

Based on the counterexample, the designer tries to modify the Alloy specifi-
cation to resolve the conflict. In our example, the invariant assign is added to
the Alloy specification. It specifies that roles r1 and r2 both assigned to a user u
must not be in sod-relation. Applying the Alloy analyzer to the extended Alloy
specification results in no solution, i.e., no counterexample could be found and
the Alloy policy specification is coherent.

inv assign { all u: User, r1: Role, r2: Role |

(r1 + r2) in u.is_in -> r1 !in r2.sod }

6.2 Graph Transformations

Graph Transformations provide a constructive approach to the detection of con-
straint violation [4,8]. The algorithm receives as input a graph rule and a graph-
ical constraint and decides whether the graph rule may construct a graph which
does not satisfy the graphical constraint. When a conflict is detected, the algo-
rithm modifies the graph rule by adding a negative application condition (NAC)
so that the modified graph rule is applicable only when it is guaranteed to pro-
duce a new graph that satisfies the graphical constraint. A NAC for a graph
rule r : L → R is a total graph morphism n : L → N and r with NAC n can
be applied to a graph G if there is a match m : L → G, but there is no total
morphism q : N → G so that q ◦ n = m.

Applying the algorithm to the graph rule add to role in Fig. 3 and the graph-
ical constraint for sod in Fig. 4, the algorithm detects that the rule may violate
the constraint. Therefore, the algorithm adds a NAC to the rule (Fig 6 a)). In
the representation of a graph rule with NAC, the nodes and edges of L are drawn
by solid lines, the part N \ n(L) by dotted lines. The NAC for rule add to role
is given by the dotted role node r′, the dotted edge between the user u and role
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r′ as well as the dotted sod-edge. The NAC forbids the assignment of a user to
a role r if the user is assigned to a role r′ which is in sod-relation with r.

6.3 UML – A Graph-Based Formal Semantics

There is some tool support for OCL constraints ranging from syntactical anal-
ysis, type checking, dynamic invariant validation, dynamic pre-/post-condition
validation or test automatization [16,5]. Since our aim is to check the coherence
of a policy specification in UML, we focus on the validation of invariants sup-
ported, for example, by the USE tool [15,14]. The USE tool allows the designer
to validate OCL constraints against snapshots of the system. To check the co-
herence of a policy specification, however, we have to consider all system states
that can be built by the policy rules. Since it is not possible to generate all these
states by the tool, it is not suitable to check the coherence of a policy.

Therefore, we propose a translation from the UML policy specification into a
GT specification, based on the results in [11]. The translation of a class diagram
into a type graph is essentially straightforward: each class x becomes a node
x, each directed association a becomes an edge a (for undirected associations
a we get two edges pointing in opposite direction). The multiplicities in a class
diagram are converted into graphical constraints. A multiplicity range n...m(n <
m) for an association is translated into a positive graphical constraint (PGC)
for the lower bound n and a negative graphical constraint (NGC) for the upper
bound m. The graph X of the PGC c : X → Y for the lower bound n contains
one object node of the association’s source class. The graph Y contains the same
node and n object nodes for the association’s target class. The morphism c maps
the object node in X to its counterpart in Y . The graph C of the NGC for the
upper bound m contains one object node of the association’s source class and
m + 1 objects of the association’s target class. For example, the multiplicity 1
at association belongs is translated into the graphical constraints in Fig. 4 b).

The UML object diagrams for policy rules are translated into graph rules
r : L → R, where L is the graph given by all objects/links without constraint
new and R is the graph given by all objects without destroy or destroy all. Objects
with constraint all or destroy all become a node with a double circle. Associations
with attached ∗ are translated to edges carrying a ∗. The rule morphism r is
defined for all objects/links without new and maps the objects/links to their
counterparts in R. The graph rules in Fig. 3 are the result of the translation of
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the UML policy rules in Fig. 2. The Fujaba system [12] implements the idea to
use UML collaboration diagrams as a front-end notation for GT rules.

Whereas the translation of the class diagram and the policy rules can be
done automatically due to a similar visual presentation, the translation of OCL
constraints in graphical constraints must be done by the designer. In [1] an
automatic translation of OCL constraints into graphical constraints is shown.
But only simple OCL constraints can be translated. Another possibility is a
direct visual specification of UML policy constraints as proposed in [11]. When
the OCL constraints are translated into graphical constraints, the coherence of
the policy specification can be checked by the algorithm in 6.2. To translate a
graph rule with NAC into an object diagram for the UML policy rule, we attach
a note with constraint not to all objects/links coming from the NAC. Fig. 6b
shows the translated UML object diagram from the graph rule in a).

7 Comparison

Our aim is a policy specification framework that provides an intuitive visual
notation usable by policy designers, deployers and administrators along with a
formal theory to reason about the coherence of a policy specification. The frame-
work would benefit from a tool support for both specification and verification.
We compare to what extent the presented approaches bring forth this aim. Ta-
ble 1 shows a summary of the comparison. Column visual states which parts of a
policy can be specified visually, column verification states if there are concepts to
check constraints or to resolve incoherence, column tool states the tool support
for the specification and verification of policies.

Table 1.

visual verification tool
UML types, policy rules no, but translation

into GT possible
specification

Alloy types constraint checker specification, verifi-
cation

Graph Transforma-
tions

types, policy rules,
policy constraints

constraint checker,
conflict resolving

specification

7.1 Visual Specification

The visual specification of the type information of a policy is quite similar in all
three approaches. The diagrams in Fig. 1 describe almost the same graph and
differ only in small parts. For example, both the UML class diagram and the Al-
loy diagram provide the specification of multiplicities for associations/relations,
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whereas the GT type graph specifies only the existence or non-existence of con-
nections. Multiplicities in GT must be specified separately in graphical con-
straints, which is less intuitive than the direct presentation in the diagram.

The difference between the approaches becomes more significant when policy
rules and policy constraints are specified. Graph Transformations rules provide
an intuitive graphical notation to specify both the triggers of a policy rule, i.e.,
when to apply a policy rule, and the policy rules’ effects in one compact rep-
resentation. UML provides several possibilities which could be used to describe
the policy rules. As an alternative to our proposal of object diagrams, sequence
diagrams could be used, in which messages specify both the triggers of a policy
rule and its effects. Messages may cause a change of the object structure. Since
the order of the messages for policy rules is less interesting (the trigger is the
first message, the message order for the policy rule effects is generally not im-
portant) than the change of the object structure, collaboration diagrams appear
to be more suitable. In fact, the object diagrams chosen in our approach are the
context of collaboration diagrams without any interaction. Our approach can
therefore be easily extended, if interaction must be considered in policy rules, as
well. The expressiveness of Alloy operations allows the designer to specify policy
rules, but there is no graphical representation for Alloy operations (yet). It is
possible, however, to provide also a visual notation to Alloy similar to the one
proposed for UML.

Visual constraint specification is only possible in GT. Neither the OCL con-
straints nor the Alloy assertions/invariants can be presented visually. As men-
tioned above, simple OCL constraints, however, could be represented also graph-
ically [1].

7.2 Verification

Given a policy specification, we want to determine if the policy rules may violate
the policy constraints. The Alloy analyzer checks the constraints by looking for
a counterexample, i.e., an instance model produced by the policy rules which
does not satisfy the constraint. If a counterexample is found, however, the Alloy
analyzer does not say which operation (i.e., policy rule) causes the inconsis-
tency. The designer has to interpret the counterexample and change the Alloy
specification for a resolution.

In GT, constraints and rules are checked pairwise to detect inconsistencies.
When a conflict is detected, the algorithm gives the designer the graph rule
and the graphical constraint which cause the conflict. Unlike with Alloy, the
conflict is automatically solved by modifying the graph rule and maintaining the
constraint.

OCL constraints can be checked only w.r.t. snapshots of the system, but
there are no concepts in UML to check the coherence of a policy, i.e., whether
the policy rules may build a system state in which an OCL constraint is not
satisfied. As shown in 6.3, the UML specification can be translated into a GT
policy specification to use GT verification concepts.
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7.3 Tool Support

Tool support for the specification of a policy is partly available for all three
notations. UML is accompanied by several CASE tools and our approach to
the UML policy specification can be written in existing UML tools, since only
standard UML extension mechanisms are used. The Alloy policy specification
can be written in the Alloy analyzer tool [7]. The specification for the analyzer,
however, is completely textual and does not support the graphical notation pre-
sented in Sect. 5. For the specification of the GT policy specification, general
GT tools can be used [2].

Tool support for the verification of the coherence of a policy is only available
in the Alloy analyzer. There is no tool support for checking the coherence of a
policy specification either in UML or in GT, since the algorithm for detecting
and resolving constraint violations in GT is not yet implemented.

8 Concluding Remarks

To reduce errors in the behavior of complex systems due to faulty policy specifi-
cations or due to administration errors of correct, but incomprehensible, policy
specifications, we have presented policy specifications in UML, Alloy and GT,
providing a concise notation as visual as possible and a formal semantics to
reason about policy coherence. We have proposed a way to express the policy
components in UML so that, on the one hand, UML tools can be used and, on
the other hand, a formal semantics based on GT can help to reason about the
coherence of a policy. Future work could investigate the translation of a UML
policy into an Alloy policy to use the Alloy analyzer in the UML context.

None of the notations, however, reaches our aim completely. In Alloy and
UML, not all policy components, especially constraints, can be expressed visu-
ally. This is possible in GT, but the tool support to check the policy is missing,
even if the theoretical results do exist. The tool support for the verification is an
advantage of Alloy. Future work will deal with a tool which implements the GT
checking algorithm and the automatic translation of an XMI representation of a
UML policy specification into a GT representation. This allows the designer to
import UML policies and to check their coherence by means of the GT checking
algorithm.

To get practical results about the actual understandability, the proposed
notations must be further evaluated (preferably) by user tests. Moreover, these
tests would help to refine the proposed notations to missing concepts needed
in policy specifications or to adapt the notations to special user requirements.
For example, the UML notation of this paper is one possibility to specify a
policy in UML to which a GT semantics can be given. But there may be other
UML representations (e.g., using statecharts/sequence diagrams) that are more
convenient for software engineers and clients.



292 M. Koch and F. Parisi-Presicce

References

1. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Consistency Checking
and Visualization of OCL Constraints. In Proc. UML2000, number 1939 in LNCS,
2000.

2. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformations. Vol. II: Applications,
Languages, and Tools. World Scientific, 1999.

3. P.A. Epstein. Engineering of Role/Permission Assignments. PhD Thesis, George
Mason University, 2002.

4. R. Heckel and A. Wagner. Ensuring consistency of conditional graph grammars –
a constructive approach. In Proc. SEGRAGRA’95 Graph Rewriting and Compu-
tation, number 2. Electronic Notes of TCS, 1995.
http://www.elsevier.nl/locate/entcs/volume2.html.

5. H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a toolset
supporting OCL. In Proc. of UML2000, volume 1939 of LNCS, pages 278–293.
Springer, 2000.

6. D. Jackson. Alloy: A Lightwight Object Modelling Notation. Technical Report
797, MIT Laboratory for Computer Science, 2001.

7. D. Jackson, I. Schlechter, and I. Shlyakhter. Alcoa: the Alloy constraint analyzer. In
Proc. International Conference on Software Engineering, Limerick, Ireland, 2000.

8. M. Koch, L.V. Mancini, and F. Parisi-Presicce. A Graph Based Formalism
for RBAC. ACM Transactions on Information and System Security (TISSEC),
5(3):332–365, August 2002.

9. M. Koch, L.V. Mancini, and F. Parisi-Presicce. Foundations for a graph-based ap-
proach to the Specification of Access Control Policies. In F.Honsell and M.Miculan,
editors, Proc. of Foundations of Software Science and Computation Structures
(FoSSaCS 2001), Lect. Notes in Comp. Sci. Springer, March 2001.

10. M. Koch, L.V. Mancini, and F. Parisi-Presicce. Conflict Detection and Resolution
in Access Control Specifications. In M.Nielsen and U.Engberg, editors, Proc. of
Foundations of Software Science and Computation Structures (FoSSaCS 2002),
Lect. Notes in Comp. Sci., pages 223–237. Springer, 2002.

11. M. Koch and F. Parisi-Presicce. Access Control Policy Specification in UML. In
Proc. of UML2002 Workshop on Critical Systems Development with UML, number
TUM-I0208, pages 63–78. Technical University of Munich, September 2002.

12. U. Nickel, J. Niere, and A. Zündorf. Tool demonstration: The FUJABA environ-
ment. Proc. of the 22nd Int. Conf. on Software Engineering, 2000.

13. OMG. OMG Unified Modeling Language Specification, V.1.4, 2001.
14. M. Richters. The USE tool: A UML-based specification environment, 2001.

http://www.db.informatik.uni-bremen.de/projects/USE.
15. M. Richters and M. Gogolla. Validating UML Models and OCL Constraints. In

Proc. UML2000, 2000.
16. M. Richters and M. Gogolla. OCL – Syntax, Semantics and Tools. In Proc.

Advances in Object Modelling with OCL, LNCS, pages 38–63. Springer, 2001.
17. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformations. Vol. I: Foundations. World Scientific, 1997.
18. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control

models. In 1st ACM Workshop on Role-based access control, 1996.
19. R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST Model for Role-Based Access

Control: Towards A Unified Standard. In Proc. of the 5th ACM Workshop on
Role-Based Access Control. ACM, July 2000.

http://www.elsevier.nl/locate/entcs/volume2.html
http://www.db.informatik.uni-bremen.de/projects/USE


Visual Specifications of Policies and Their Verification 293

20. A. Schaad and J.D. Moffett. A Lightweight Approach to Specification and Analysis
of Role-based Access Control Extensions. In Proc. 7th ACM Symposium on Access
Control Models and Technologies. ACM Press, 2002.

21. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison Wesley, 1999.


	Visual Specifications of Policies and Their Verification*
	Introduction
	Policies
	Example: Role-Based Access Control

	UML Specification
	Graph Transformations Specification
	Alloy Specification
	Verification
	Alloy
	Graph Transformations
	UML -- A Graph-Based Formal Semantics

	Comparison
	Visual Specification
	Verification
	Tool Support

	Concluding Remarks




