
A Program Logic for Handling JAVA CARD’s
Transaction Mechanism

Bernhard Beckert1 and Wojciech Mostowski2

1 Institute for Logic, Complexity, and Deduction Systems
University of Karlsruhe, Germany

beckert@ira.uka.de
2 Chalmers University of Technology, Göteborg, Sweden

Computing Science Department
woj@cs.chalmers.se

Abstract. In this paper we extend a program logic for verifying JAVA

CARD applications by introducing a “throughout” operator that allows
us to prove “strong” invariants. Strong invariants can be used to ensure
“rip out” properties of JAVACARD programs (properties that are to be
maintained in case of unexpected termination of the program). Along
with introducing the “throughout” operator, we show how to handle the
JAVACARD transaction mechanism (and, thus, conditional assignments)
in our logic. We present sequent calculus rules for the extended logic.

1 Introduction

Overview. The work presented in this paper is part of the KeY project [1,9].
One of the main goals of KeY is to provide deductive verification for a real world
programming language. Our choice is the JAVACARD language [6] (a subset of
JAVA) for programming smart cards. This choice is motivated by the following
reasons. First of all JAVACARD applications are subject to formal verification,
because they are usually security critical (e.g., authentication) and difficult to
update in case a fault is discovered. At the same time the JAVACARD language
is easier to handle than full JAVA (for example, there is no concurrency and
no GUI). Also, JAVACARD programs are smaller than normal JAVA programs
and thus easier to verify. However, there is one particular aspect of JAVACARD

that does not exist in JAVA and which requires the verification mechanism to
be extended with additional rules and concepts: the persistency of the objects
stored on a smart card in combination with JAVACARD’s transaction mechanism
(ensuring atomicity of bigger pieces of a program) and the possibility of a card
“rip out” (unexpected termination of a JAVACARD program by taking the smart
card out of the reader/terminal). Since we want to have support for the full JAVA
CARD language in the KeY system we have to handle this aspect.

To ensure that a JAVACARD program is “rip-out safe” we need to be able to
specify “strong” invariants—invariants that must hold throughout the whole ex-
ecution of a JAVACARD program (except when a transaction is in progress). The
KeY system’s deduction component uses a program logic, which is a version of

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 246–260, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Program Logic for Handling JAVACARD’s Transaction Mechanism 247

Dynamic Logic modified to handle JAVACARD programs (JAVACARD DL) [2,3].
An extension to pure Dynamic Logic to include trace modalities “throughout”
and “at least once” is presented in [4]. Here we extend that work and introduce
the “throughout” operator to JAVACARD DL (we do not introduce “at least
once” since it is not necessary for handling “rip out” properties). Then we add
techniques necessary to deal with the JAVACARD transaction mechanism (specif-
ically conditional assignments inside the transactions). We present the sequent
calculus rules for our extensions. So far we have not implemented the new rules
in the KeY system’s interactive prover (the implementation for the unextended
JAVACARD DL is fully functional). But considering the extensibility and open
architecture of the KeY prover it is not a difficult task.

Related Work. As said above, the work presented here is based on [4], which
extends pure Dynamic Logic with trace modalities “throughout” and “at least
once”. There exist a number of attempts to extend OCL with temporal con-
structs, see [5] for an overview. In [16] temporal constructs are introduced to
the JAVA Modelling Language (JML), but they refer to sequences of method
invocations and not to sequences of intermediate program states.

Structure of the Paper. The rest of this paper is organised as follows. Section 2
gives some more details on the background and motivation of our work and some
insights into the JAVACARD transaction mechanism. Section 3 contains a brief
introduction to JAVACARD Dynamic Logic. Section 4 introduces the “through-
out” operator in detail and presents sequent calculus rules to handle the new
operator and the transaction mechanism. Section 5 shows some of the rules in
action by giving simple proof examples and finally Sect. 6 summarises the paper.

2 Background

The KeY Project. The main goal of the KeY project [1,9] is to enhance a commer-
cial CASE tool with functionality for formal specification and deductive verifica-
tion and, thus, to integrate formal methods into real-world software development
processes. Accordingly, the design principles for the software verification compo-
nent of the KeY system are: (1) The specification language should be usable by
people who do not have years of training in formal methods. The Object Con-
straint Language (OCL), which is incorporated into the current version of the
Unified Modelling Language (UML), is the specification language of our choice.
(2) The programs that are verified should be written in a “real” object-oriented
programming language. We decided to use JAVACARD (we have already stated
our reasons for this decision in the introduction).

For verifying JAVACARD programs, the already mentioned JAVACARD Dy-
namic Logic has been developed within the KeY project (Sect. 3 contains a
detailed description of this logic). The KeY system translates OCL specifica-
tions into JAVACARD DL formulas, whose validity can then be proved with the
KeY system’s deduction component.

248 B. Beckert and W. Mostowski

Motivation. The main motivation for this work resulted from an analysis of a
JAVACARD case study [11]. In short, the case study involves a JAVACARD applet
that is used for user authentication in a Linux system (instead of a password
mechanism). After analysing the application and testing it, the following obser-
vation was made: the JAVACARD applet in question is not “rip-out safe”. That
is, it is possible to destroy the applet’s functionality by removing (ripping out)
the JAVACARD device from the card reader (terminal) during the authentication
process. The applet’s memory is corrupted and it is left in an undefined state,
causing all subsequent authentication attempts to be unsuccessful (fortunately
this error causes the applet to become useless but does not allow unauthorised
access, which would have been worse).

It became clear that, to avoid such errors, one has to be able to specify
(and if possible verify) the property that a certain invariant is maintained at all
times during the applet’s execution, such that it holds in particular in case of
an abrupt termination. Standard UML/OCL invariants do not suffice for this
purpose, because their semantics is that if they hold before a method is executed
then they hold after the execution of a method. Normally it is not required for
an invariant to hold in the intermediate states of a method’s execution. To solve
this problem, we introduce “strong” invariants, which allow to specify properties
about all intermediate states of a program.

For example, the following “strong” invariant (expressed in pseudo OCL) says
that we do not allow partially initialised PersonalData objects at any point in
our program. In case the program is abruptly terminated we should end up with
either a fully initialised object or an uninitialised (empty) one:

context PersonalData throughout:
not self.empty implies
self.firstName <> null and self.lastName <> null and self.age > 0

Since the case study was explored in the context of the KeY project, we extended
the existing JAVACARD DL with a new modality to handle strong invariants.

The JAVACARD Transaction Mechanism. Here we describe the aspects of trans-
action handling in JAVACARD relevant to this paper. A full description of the
transaction mechanism can be found in [6,13,14,15].

The memory model of JAVACARD differs slightly from JAVA’s model. In smart
cards there are two kinds of writable memory: persistent memory (EEPROM),
which holds its contents between card sessions, and transient memory (RAM),
whose contents disappear when power loss occurs, i.e., when the card is removed
from the card reader. Thus every memory element in JAVACARD (variable or
object field) is either persistent or transient. The JAVACARD language specifica-
tion gives the following rules (this is a slightly simplified view of what is really
happening): All objects (including the reference to the currently running ap-
plet, this, and arrays) are created in persistent memory. Thus, in JAVACARD

all assignments like “o.attr = 2;”, “this.a = 3;”, and “arr[i] = 4;” have
a permanent character; that is, the assigned values will be kept after the card

A Program Logic for Handling JAVACARD’s Transaction Mechanism 249

loses power. A programmer can create an array with transient elements, but cur-
rently there is no possibility to make objects (fields) other than array elements
transient. All local variables are transient.

The distinction between persistent and transient objects is very important
since these two types of objects are treated in a different way by JAVACARD’s
transaction mechanism. The following are the JAVACARD system calls for trans-
actions with their description:

JCSystem.beginTransaction() begins an atomic transaction. From this point
on, all assignments to fields of objects are executed conditionally, while as-
signments to transient variables or array elements are executed uncondition-
ally (immediately).

JCSystem.commitTransaction() commits the transaction. All conditional as-
signments are committed (in one atomic step).

JCSystem.abortTransaction() aborts the transaction. All the conditional as-
signments are rolled back to the state in which the transaction started. As-
signments to transient variables and array elements remain unchanged (as if
there had not been a transaction in progress).

As an example to illustrate how transac-
tions work in practice, consider the frag-
ment of a JAVACARD program shown on
the right. After the execution of this pro-
gram, the value of this.a is still 100
(value before the transaction), while the
value of i now is 100 (the value it was
updated to during the transaction).

this.a = 100;

int i = 0;

JCSystem.beginTransaction();

i = this.a;

this.a = 200;

JCSystem.abortTransaction();

Transactions do not have to be nested properly with other program con-
structs, e.g., a transaction can be started within one method and committed
within another method. However, transactions must be nested properly with
each other (which is not relevant for the current version of JAVACARD, where
the nesting depth of transactions is restricted to 1).

The whole program piece inside the transaction is seen by the outside world
as if it were executed in one atomic step (considering the persistent objects). By
introducing strong invariants we want to ensure the consistency of the persistent
memory of a JAVACARD applet, thus strong invariants will not (and should not)
be checked within a transaction—in case our program is terminated abruptly
during a transaction, the persistent variables will be rolled back to the state
before the transaction was started for which the strong invariant was established.

3 JAVA CARD Dynamic Logic

Dynamic Logic [7,8,10,12] can be seen as an extension of Hoare logic. It is a first-
order modal logic with modalities [p] and 〈p〉 for every program p (we allow p to
be any sequence of JAVACARD statements). In the semantics of these modalities a
world w (called state in the DL framework) is accessible from the current world,

250 B. Beckert and W. Mostowski

if the program p terminates in w when started in the current world. The formula
[p]φ expresses that φ holds in all final states of p, and 〈p〉φ expresses that φ holds
in some final state of p. In versions of DL with a non-deterministic programming
language there can be several such final states (worlds). Here, since JAVACARD

programs are deterministic, there is exactly one such world (if p terminates) or
there is no such world (if p does not terminate). The formula φ → 〈p〉ψ is valid
if, for every state s satisfying precondition φ , a run of the program p starting in s
terminates, and in the terminating state the post-condition ψ holds. The formula
φ → [p]ψ expresses the same, except that termination of p is not required, i.e.,
ψ must only hold if p terminates.

3.1 Syntax of JAVA CARD DL

As said above, a dynamic logic is constructed by extending some non-dynamic
logic with modal operators of the form 〈·〉 and [·]. The non-dynamic base logic
of our DL is a typed first-order predicate logic. We do not describe in detail
what the types of our logic are (basically they are identical with the JAVA types)
nor how exactly terms and formulas are built. The definitions can be found
in [2]. Note that terms (which we often call “logical terms” in the following) are
different from JAVA expressions—they never have side effects.

The programs in DL formulas are basically executable JAVACARD code. How-
ever, we introduced an additional construct not available in plain JAVACARD,
whose purpose is the handling of method calls. Methods are invoked by syntac-
tically replacing the call by the method’s implementation. To treat the return

statement in the right way, it is necessary (a) to record the object field or vari-
able x that the result is to be assigned to, and (b) to mark the boundaries of
the implementation prog when it is substituted for the method call. For that
purpose, we allow statements of the form method call(x){prog} to occur. This
is a “harmless” extension because the additional construct is only used for proof
purposes and never occurs in the verified JAVACARD programs.

3.2 Semantics of JAVA CARD DL

The semantics of a program p is a state transition, i.e., it assigns to each state s
the set of all states that can be reached by running p starting in s. Since JAVA
CARD is deterministic, that set either contains exactly one state (if p terminates
normally) or is empty (if p does not terminate or terminates abruptly).

For formulas φ that do not contain programs, the notion of φ being satisfied
by a state is defined as usual in first-order logic. A formula 〈p〉φ is satisfied by a
state s if the program p, when started in s, terminates normally in a state s′ in
which φ is satisfied. A formula is satisfied by a model M , if it is satisfied by one
of the states of M . A formula is valid in a model M if it is satisfied by all states
of M ; and a formula is valid if it is valid in all models. Sequents are notated
following the scheme φ 1, . . . , φm � ψ 1, . . . , ψn which has the same semantics as
the formula (∀x1) · · · (∀xk)((φ 1 ∧ . . .∧ φ m) → (ψ 1 ∨ . . .∨ ψ n)), where x1, . . . , xk
are the free variables of the sequent.

A Program Logic for Handling JAVACARD’s Transaction Mechanism 251

3.3 State Updates

We allow updates of the form {x := t} resp. {o.a := t} to be attached to terms
and formulas, where x is a program variable, o is a term denoting an object
with attribute a, and t is a term. The intuitive meaning of an update is that the
term or formula that it is attached to is to be evaluated after changing the state
accordingly, i.e., {x := t}φ has the same semantics as 〈x = t;〉φ .

3.4 Rules of the Sequent Calculus

Here we only present a small number of rules necessary to get proper intuition
of how the JAVACARD DL sequent calculus works.

Notation. The rules of our calculus operate on the first active statement p of
a program πpω . The non-active prefix π consists of an arbitrary sequence of
opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks,
and beginnings “method call(. . .){” of method invocation blocks. The prefix
is needed to keep track of the blocks that the (first) active statement is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately. The postfix ω denotes the “rest” of
the program, i.e., everything except the non-active prefix and the part of the
program the rule operates on. For example, if a rule is applied to the JAVA
block “ l:{try{ i=0; j=0; }finally{ k=0; }} ”, operating on its first active
statement “ i=0; ”, then the non-active prefix π is “ l:{try{ ” and the “rest” ω
is “ j=0; }finally{ k=0; }} ”.

In the following rule schemata, U stands for an arbitrary update.

The Rule for if. As the first simple example, we present the rule for the if

statement:

Γ, U(b .= true) � U〈πpω 〉φ Γ, U(b .= false) � U〈πqω 〉φ
Γ � U〈π if(b){p} else {q} ω 〉φ

(R1)

The rule has two premisses, which correspond to the two cases of the if state-
ment. The semantics of this rule is that, if the two premisses hold in a state,
then the conclusion is true in that state. In particular, if the two premisses are
valid, then the conclusion is valid. In practice rules are applied from bottom to
top: from the old proof obligation new proof obligations are derived. As the if

rule demonstrates, applying a rule from bottom to top corresponds to a symbolic
execution of the program to be verified.

The Assignment Rule and Handling State Updates. The assignment rule

Γ � U{loc := expr}〈π ω 〉φ
Γ � U〈π loc = expr; ω 〉φ

(R2)

adds the assignment to the list of updates U . Of course, this does not solve
the problem of computing the effect of an assignment, which is particularly

252 B. Beckert and W. Mostowski

complicated in JAVA because of aliasing. This problem is postponed and solved
by rules for simplifying updates.

The assignment rule can only be used if the expression expr is a logical
term. Otherwise, other rules have to be applied first to evaluate expr (as that
evaluation may have side effects). For example, these rules replace the formula
〈x = ++i;〉φ with 〈i = i+1; x = i;〉φ .

4 Extension for Handling “Throughout” and Transactions

In some regard JAVACARD DL (and other versions of DL) lacks expressivity—
the semantics of a program is a relation between states; formulas can only de-
scribe the input/output behaviour of programs. JAVACARD DL cannot be used
to reason about program behaviour not manifested in the input/output rela-
tion. Therefore, it is inadequate for verifying strong invariants that must be
valid throughout program execution.

Following [4], we overcome this deficiency and increase the expressivity of
JAVACARD DL by adding a new modality [[·]] (“throughout”). In the extended
logic, the semantics of a program is the sequence of all states its execution
passes through when started in the current state (its trace). Using [[·]], it is
possible to specify properties of the intermediate states of terminating and
non-terminating programs. And such properties (typically strong invariants and
safety constraints) can be verified using the JAVACARD DL calculus extended
with additional sequent rules for [[·]] presented in Sect. 4.1.

A “throughout” property (formula) has to be checked after every single field
or variable assignment, i.e., the sequent rules for the throughout modality will
have more premisses and branch more frequently. According to the JAVACARD

runtime environment specification [14], each single field or variable assignment
is atomic. This matches exactly JAVACARD DL’s notion of a single update.
Thus, a “throughout” property has to hold after every single JAVACARD DL
update. However, additional checks have to be suspended when a transaction is
in progress. This will require marking the modality (resp. the program in the
modality) with a tag saying that a transaction is in progress, so that different
rules apply. Since transactions do not have to be nested properly with other
program constructs, enclosing a transaction in a block with a separate set of
rules for that kind of block (like the method call blocks) is not possible.

In addition, we have to cover conditional assignments and assignment roll-
back (after abortTransaction) in the calculus. This not only affects the
“throughout” modality, but the 〈·〉 and [·] modalities as well, since rolling back
an assignment affects the final program state.

In practice only formulas of the form φ → [[p]]φ will be considered. If tran-
sient arrays are involved in φ (explicitly or implicitly), one also has to prove
φ → 〈initAllTransientArrays();〉φ , i.e., that after a card rip-out the reini-
tialisation of transient arrays preserves the invariant.

A Program Logic for Handling JAVACARD’s Transaction Mechanism 253

4.1 Additional Sequent Calculus Rules for the [[·]] Modality

Below, we present the assignment and the while rules for the [[·]] modality. Due
to space restrictions, we cannot list all additional rules. However, the other loop
rules are very similar to the while rule, and all other [[·]] rules are essentially the
same as for [·]—except for the transaction rules which we present in the next
subsection.

The Assignment Rule for [[·]]. An assignment loc = expr; is an atomic program,
if expr is a logical term (and, in particular, is free of side effects and can be
computed in a single step). By definition, its semantics is a trace consisting of
the initial state s and the final state s′ = {loc := vals(expr)}s. Therefore, the
meaning of [[loc = expr;]]φ is that φ is true in both s and s′, which is what the
two premisses of the following assignment rule express:

Γ � Uφ Γ � U{loc := expr}[[πω]]φ
Γ � U [[π loc = expr; ω]]φ

(R3)

The left premiss states that the formula φ has to hold in the state s before the
assignment takes place. The right premiss says that φ has to hold in the state s′

after the assignment—and in all states thereafter during the execution of the
rest ω of the program.

It is easy to see that using this rule causes some extra branching of the proofs
involving the [[·]] modality. This branching is unavoidable due to the fact that
the strong invariant has to be checked (evaluated) for each intermediate state of
the program execution. However, many of those branches, which do not involve
JAVACARD programs any more, can be closed automatically.

The while Rule for [[·]]. Another essential programming construct, where the
rule for the [[·]] modality differs from the corresponding rule for the [·] modality,
is the while loop. As in the case of the while rule for the [·] modality a user has
to supply a loop invariant Inv . Intuitively, the rule establishes three things: (1) In
the state before the loop is executed, some invariant Inv holds. (2) If the body
of the loop terminates normally (there is no break and no exception is thrown
but possibly continue is used) then at the end of a single execution of the loop
body the invariant Inv has to hold again. (3) Provided Inv holds, the formula
φ has to hold during and continuously after loop body execution in all of the
following cases: (i) when the loop body is executed once and terminates normally,
(ii) when the loop body is not executed (the loop condition is not satisfied), and
(iii) when the loop body terminates abruptly (by break, continue, or throwing
an exception) resulting in a termination of the whole loop.

Formally, the while rule for [[·]] is the following:

Γ � UInv Inv � 〈α 〉true, [β]Inv Inv � [[πβω]]φ
Γ � U [[π λ while(a) {p} ω]]φ

(R4)

where

α ≡ if(a) {lbreak : {try {lcont : {p′} abort;} catch(Exception e){}}}

β ≡ if(a) lcont : lbreak : {p′}

254 B. Beckert and W. Mostowski

In the above rule, λ is a (possibly empty) sequence “l1 : . . .ln : ” of labels,
and p′ is p with (a) every “continue;” and every “continue li;” changed
to “break lcont;” and (b) every “break;” and every “break li;” changed to
“break lbreak;”. The three premisses establish the three conditions listed above,
respectively. When the program p′ terminates normally, the abort in α is reached
and, thus, the formula 〈α 〉true evaluates to false and [β]Inv has to be proved.
Enclosing program p′ in “if(a) . . .” takes care of both cases, where the loop
body is executed (intermediate loop body execution) and where it is not exe-
cuted (loop exit). They are later in the proof considered separately by applying
the rule for if.

4.2 Additional Sequent Calculus Rules for Transactions

Additional Syntax. Before presenting the sequent rules for transactions, we first
have to introduce some new programming constructs (statements) and transac-
tion markers to JAVACARD DL.

The three new statements are bT (JAVACARD beginning of a transaction),
cT (JAVACARD end of a transaction, i.e., commit), and aT (JAVACARD end of a
transaction, i.e., abort). These statements are used in the proof when the trans-
action is started resp. finished in the JAVACARD program. The statements are
only part of the rules and not the JAVACARD programming language. Thus for
example, when a transaction is started in a JAVACARD program by a call to
JCSystem.beginTransaction() the calculus assumes the following implemen-
tation of beginTransaction():

public class JCSystem {
private static int _transDepth = 0;
public static void beginTransaction() throws TransactionException {
if(_transDepth > 0)
TransactionException.throwIt(TransactionException.IN_PROGRESS);

_transDepth++;
bT;

}
...

Thus, when we encounter any of bT, cT or aT in our proof we can assume they
are properly used (nested).

The second thing we need is the possibility to mark modalities (resp. the
programs they contain) with a tag saying that a transaction is in progress. We
will use two kinds of tags and make them part of the inactive program prefix π in
the sequent. The two markers are: “TRcommit: ”—a transaction is in progress and
is expected to be committed (cT), and “TRabort: ”—a transaction is in progress
and is expected to be aborted (aT). This distinction is very helpful in taking
care of conditional assignments—since we know how the transaction is going to
terminate “beforehand” we can treat conditional assignments correspondingly,
commit them immediately in the first case or “forget” them in the second case.

A Program Logic for Handling JAVACARD’s Transaction Mechanism 255

Rules for Beginning a Transaction. For each of the three operators (〈·〉, [·], [[·]])
there is one “begin transaction” rule (the rules for 〈·〉 and [·] are identical, so we
only show one of them):

Γ � Uφ Γ � U [[TRcommit: πω]]φ Γ � U [[TRabort: πω]]φ
Γ � U [[π bT; ω]]φ

(R5)

Γ � U〈TRabort: πω 〉φ Γ � U〈TRcommit: πω 〉φ
Γ � U〈π bT; ω 〉φ

(R6)

In case of the [[·]] operator the following things have to be established. First of all,
φ has to hold before the transaction is started. Then we split the sequent into
two cases: the transaction will be terminated by a commit, or the transaction
will be terminated by an abort. In both cases the sequent is marked with the
proper tag, so that corresponding rules can be applied later, depending on the
case. The 〈·〉 and [·] rules for “begin transaction” are very similar to [[·]] except
that φ does not have to hold before the transaction is started.

Rules for Committing and Aborting Transactions. These rules are the same for
all three operators, so we only show the [[·]] rules.

The first two rules apply when the expected type of termination is encoun-
tered (“TRcommit: ” for commit resp. “TRabort: ” for abort). In that case, the cor-
responding transaction marker is simply removed, which means that the trans-
action is no longer in progress. These are the rules:

Γ � U [[πω]]φ
Γ � U [[TRcommit: π cT; ω]]φ

(R7)
Γ � U [[πω]]φ

Γ � U [[TRabort: π aT; ω]]φ
(R8)

We also have to deal with the case where the transaction is terminated in an un-
expected way, i.e., a commit is encountered when the transaction was expected
to abort and vice versa. In this case we simply use an axiom rule, which im-
mediately closes the proof branch (one of the proof branches produced by the
“begin transaction” rule will always become obsolete since each transaction can
only terminate by either commit or abort). The rules are the following:

Γ � U [[TRabort: π cT; ω]]φ
(R9)

Γ � U [[TRcommit: π aT; ω]]φ
(R10)

Rules for Conditional Assignment Handling within a Transaction. Finally, we
come to the essence of conditional assignment handling in our rules. In case
the transaction is expected to commit, no special handling is required—all the
assignments are executed immediately. Thus, the rule for an assignment in the
scope of [[TRcommit: . . .]] is the same as the rule for an assignment within [·]
(the same holds for all other programming constructs). Note that, even using
the [[TRcommit: . . .]] modality, φ only has to hold at the end of the transaction,
which is considered to be atomic.

Γ � U{loc := expr}[[TRcommit: πω]]φ
Γ � U [[TRcommit: π loc = expr; ω]]φ

(R11)

256 B. Beckert and W. Mostowski

In case a transaction is terminated by an abort, all the conditional assignments
are rolled back as if they were not performed. If we know that the transaction is
going to abort because of a TRabort: marker, we can deliberately choose not to
perform the updates to persistent objects as we encounter them. However, we
cannot simply skip them since the new values assigned to (fields of) persistent
objects during a transaction may be referred to later in the same transaction
(before the abort). The idea to handle this, is to assign the new value to a copy
of the object field or array element while leaving the original unchanged, and
to replace—until the transaction is aborted—references to persistent fields and
array elements by references to their copies holding the new value. Note that if
an object field to which no new value has been assigned is referenced (and for
which therefore no copy has been initialised), the original reference is used.

Making this work in practice requires changing the assignment rule for the
cases where a transaction is in progress and is expected to abort (i.e., where
the “TRabort: ” marker is present). Also the rules for update evaluation change
a bit, which changes the semantics of an update as well, see description of the
rule below. The following is the assignment rule for the [[·]] modality with the
“TRabort: ” tag present. The corresponding rules for 〈·〉 and [·] are the same:

Γ � U{loc′ := expr ′}[[TRabort: πω]]φ
Γ � U [[TRabort: π loc = expr; ω]]φ

(R12)

As usual expr has to be a logical term. To handle objects fields persistent arrays
elements, all sub-expressions such as obj .a1.arr [e].a2 . . . in expr are replaced by
obj .a ′

1.arr
′[e ′]′.a ′

2 . . . in expr ′ (for object fields the prime denotes a copy of that
field and for array access function [] the prime denotes a “shadow” access func-
tion that operates on copies of elements of a given array). The first reference obj
or arr (as in arr [i].a) in expr is not primed, since it is either a local variable,
which is not persistent, or the this reference, which is not assignable, or a static
class reference, like SomeClass, which also can be viewed as not assignable. All
subexpressions that are local variables are left unchanged in expr ′. The expres-
sion loc on the left side of the assignment and the subexpression e are changed
into loc′ resp. e ′ in the same way as all the subexpressions in expr .

As mentioned, the semantics of an update has to be changed to take care of
the cases when a copy of an object’s field has not been initialised. In the new
semantics, if the value of obj .a ′ or arr [i]′ is referred to in an update but is not
known (i.e., there was no such value assigned in the preceding updates) then it
is considered to be equal to obj .a or arr [i], respectively.

The assignments to the copies are not visible outside the transaction, where
the original values are used again—the effect of a roll-back is accomplished. Each
separate transaction has to have its own copies of fields or array elements, so the
second encountered transaction can, for example, use ′′, the third one ′′′, etc.

One more thing that we have to handle here is the case when the programmer
explicitly defines an array to be transient (the above rule assumes that it was
not the case). It is not possible to know beforehand which arrays are transient
and which are not, since they are defined to be transient by reference and not

A Program Logic for Handling JAVACARD’s Transaction Mechanism 257

by name. This problem can be treated by adding an extra field to each array
(only in the rules) indicating whether the given array is transient or persistent
(rules for initialising arrays can set this field). Then for each occurrence of array
reference arr in loc and expr in rule (R12) we can split the proof into two cases,
following the schema:

Γ, U(o.arr ′.trans .= true) � U{o.arr ′[e ′] := expr ′}[[TRabort: πω]]φ
Γ, U(o.arr ′.trans .= false) � U{o.arr ′[e ′]′ := expr ′}[[TRabort: πω]]φ

Γ � U [[TRabort: π o.arr[e] = expr; ω]]φ
(R13)

The remaining rules for [[TRabort: ·]] (i.e., for other programming constructs)
are the same as for [·], and the remaining rules for [TRabort: ·] and 〈TRabort: ·〉
are the same as if there were no transaction marker.

5 Examples

In the following, we show two examples of proofs using the above rules. The
first example shows how the [[·]] assignment and while rules are used, the second
example shows the transaction rules in action. The formula we are trying to prove
in the second example is deliberately not provable and shows the importance of
the transaction mechanism when it comes to “throughout” properties.

The proofs presented here may look like tedious work, but most of the steps
can be done automatically, in fact the only place where user interaction is re-
quired, is providing the loop invariant. The KeY system provides necessary mech-
anisms to perform proof steps automatically whenever possible.

Example 1. Consider the program p shown on the
right. We show that throughout the execution of this
program, the strong invariant φ ≡ x ≥ 2 holds, i.e.,
we prove the formula x ≥ 2 → [[p]]x ≥ 2. Figure 1
shows the whole proof labelled with applied rules.
Here we only point out the most interesting things.

x = 3;

while (x < 10) {

if(x == 2) x = 1;

else x++;

}

When applying the while rule (R4) to (3) formula x ≥ 3 has to be used as
the loop invariant Inv . Using Inv′ = φ = x ≥ 2 would not be enough, because
the statement x = 1 inside the if statement could not be discarded and x would
be assigned 1, which would break the x ≥ 2 property.

For x < 10, the abort statement in α is reached after some execution steps
(due to space restrictions, we do show the corresponding proof steps). Since
abort is non-terminating, the formula 〈abort;〉true is false and thus (5) can
be reduced to (7). All sequents with an empty modality ([[·]] or [·]) are reduced
by removing the modality; the resulting sequents are then first-order provable.
Sequents (9), (10) and (16) are valid by contradiction in the antecedent.

Example 2. Now consider the following program p (fields of o are persistent):
bT;
o.x = 60;
o.y = 40;

cT;

258 B. Beckert and W. Mostowski

(2)
(4)

(10)

(13)
(12)
(11)

(R2)

(8)
(R1)

(9)
(7)
(5)

(16)
(18)

(20)
(19)

(17)
(R3)

(14)
(R1)

(15)
(6)

(R1)

(3)
(R4)

(1)
(R3)

x ≥ 2 � [[x = 3; . . .]]x ≥ 2 (1)

x ≥ 2 � x ≥ 2 (2)

x ≥ 2 � {x := 3}[[while . . .]]x ≥ 2 (3)

x ≥ 2 � {x := 3}x ≥ 3 (4)

x ≥ 3 �
〈α〉true, [if(x<10)λ{β}]x ≥ 3 (5)

x ≥ 3 � [[if(x<10)λ{β}]]x ≥ 2 (6)

x ≥ 3, x < 10 �
[if(x<10)λ{β}]x ≥ 3 (7)

x ≥ 3, x < 10, x < 10 �
[λ{β}]x ≥ 3 (8)

x ≥ 3, x ≥ 10, x < 10 � []x ≥ 3 (9)

x ≥ 3, x < 10, x
.= 2 �

[x = 1;]x ≥ 3 (10)

x ≥ 3, x < 10, ¬x
.= 2 �

[x = x + 1;]x ≥ 3 (11)

x ≥ 3, x < 10, ¬x
.= 2 �

{x := x + 1}[]x ≥ 3 (12)

x ≥ 3, x < 10, ¬x
.= 2 �

x + 1 ≥ 3 (13)

x ≥ 3, x < 10 � [[λ{β}]]x ≥ 2 (14)

x ≥ 3, x ≥ 10 � [[]]x ≥ 2 (15)

x ≥ 3, x < 10, x
.= 2 �

[[x = 1;]]x ≥ 2 (16)

x ≥ 3, x < 10, ¬x
.= 2 �

[[x = x + 1;]]x ≥ 2 (17)

x ≥ 3, x < 10, ¬x
.= 2 � x ≥ 2 (18)

x ≥ 3, x < 10, ¬x
.= 2 �

{x := x + 1}[[]]x ≥ 2 (19)

x ≥ 3, x < 10, ¬x
.= 2 �

x + 1 ≥ 2 (20)

Abbreviations: α ≡ if(x < 10) { . . . β; abort; . . . } λ ≡ lcont:lbreak:
β ≡ if(x == 2) x = 1; else x++;

Fig. 1. The proof from Example 1

t = o.x;
o.x = o.y;
o.y = t;

We will try to prove that the strong invariant o.x + o.y .= 100 holds throughout
the execution of this program. Note that this is not provable. The proof attempt
is shown in Fig. 2. Again, some of the sequents are first-order provable after
appropriate reductions. Notice that applying the assignment rule (R11) (resp.
(R12)) inside a transaction does not branch. Sequent (6) is proved valid by
the axiom rule (R9) (transaction commits unexpectedly). Sequent (18) is not
provable. Inspecting our program closely shows that indeed both o.x and o.y
are equal to 40 at some point (after o.x = o.y; is executed) and their sum is 80,
which violates the property we wanted to prove. Thus there is one open proof
goal in the proof tree.

A Program Logic for Handling JAVACARD’s Transaction Mechanism 259

(2)

(6)
(R9)

(5)
(R11)

(4)
(R11)

(12)
(10)

(15)
(13)

(18)

(16)
(19)
(17)

(14)
(R3)

(11)
(R3)

(9)
(R3)

(8)
(R7)

(7)
(R12)

(3)
(R12)

(1)
(R5)

o.x + o.y
.= 100 � [[bT; . . .]]o.x + o.y

.= 100 (1)

o.x + o.y
.= 100 � o.x + o.y

.= 100 (2)

o.x + o.y
.= 100 � [[TRcommit: o.x = 60; . . .]]o.x + o.y

.= 100 (3)

o.x + o.y
.= 100 � [[TRabort: o.x = 60; . . .]]o.x + o.y

.= 100 (4)

o.x + o.y
.= 100 � {o.x ′ := 60}[[TRabort: o.y = 40; . . .]]o.x + o.y

.= 100 (5)

o.x + o.y
.= 100 � {o.x ′ := 60}{o.y ′ := 40}[[TRabort: cT; . . .]]o.x + o.y

.= 100 (6)

o.x + o.y
.= 100 � {o.x := 60}[[TRcommit: o.y = 40; . . .]]o.x + o.y

.= 100 (7)

o.x + o.y
.= 100 � {o.x := 60}{o.y := 40}[[TRcommit: cT; . . .]]o.x + o.y

.= 100 (8)

o.x + o.y
.= 100 � {o.x := 60}{o.y := 40}[[t = o.x; . . .]]o.x + o.y

.= 100 (9)

o.x + o.y
.= 100 � {o.x := 60}{o.y := 40}o.x + o.y

.= 100 (10)

o.x + o.y
.= 100 �

{o.x := 60}{o.y := 40}{t := o.x}[[o.x = o.y; . . .]]o.x + o.y
.= 100 (11)

o.x + o.y
.= 100 � 60 + 40 .= 100 (12)

o.x + o.y
.= 100 � {o.x := 60}{o.y := 40}{t := o.x}o.x + o.y

.= 100 (13)

o.x + o.y
.= 100 �

{o.x := 60}{o.y := 40}{t := o.x}{o.x := o.y}[[o.y = t; . . .]]o.x + o.y
.= 100 (14)

o.x + o.y
.= 100 � 60 + 40 .= 100 (15)

o.x + o.y
.= 100 �

{o.x := 60}{o.y := 40}{t := o.x}{o.x := o.y}o.x + o.y
.= 100 (16)

o.x + o.y
.= 100 �

{o.x := 60}{o.y := 40}{t := o.x}{o.x := o.y}{o.y := t}[[]]o.x + o.y
.= 100 (17)

o.x + o.y
.= 100 � 40 + 40 .= 100 (18)

o.x + o.y
.= 100 � 40 + 60 .= 100 (19)

Fig. 2. The proof from Example 2

6 Conclusions and Future Work

We introduced the “throughout” modality (and, thus, strong invariants) to JAVA
CARD Dynamic Logic and presented the necessary sequent calculus rules to han-
dle this modality and conditional assignments in JAVACARD transactions. Intro-

260 B. Beckert and W. Mostowski

duction of this modality was a manageable task and the set of presented rules
is quite easy to use in theorem proving as shown in the examples. Our future
plan is to implement our rules in the KeY prover and then try our calculus with
“real” examples.

References

1. W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hähnle, W. Menzel, W. Mostowski,
and P. H. Schmitt. The KeY system: Integrating object-oriented design and for-
mal methods. In R.-D. Kutsche and H. Weber, editors, Proceedings, Fundamental
Approaches to Software Engineering (FASE), Grenoble, France, LNCS 2306, pages
327–330. Springer, 2002.

2. B. Beckert. A dynamic logic for the formal verification of JAVACARD programs. In
I. Attali and T. Jensen, editors, Revised Papers, JAVA on Smart Cards: Program-
ming and Security, Cannes, France, LNCS 2041, pages 6–24. Springer, 2001.

3. B. Beckert and B. Sasse. Handling JAVA’s abrupt termination in a sequent cal-
culus for Dynamic Logic. In B. Beckert, R. France, R. Hähnle, and B. Jacobs,
editors, Proceedings, IJCAR Workshop on Precise Modelling and Deduction for
Object-oriented Software Development, Siena, Italy, pages 5–14. TR DII 07/01,
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, 2001.

4. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with
trace modalities. In R. Gorè, A. Leitsch, and T. Nipkow, editors, Proceedings,
International Joint Conference on Automated Reasoning, Siena, Italy, LNCS 2083,
pages 626–641. Springer, 2001.

5. J. C. Bradfield, J. K. Filipe, and P. Stevens. Enriching OCL using observational
mu-calculus. In R.-D. Kutsche and H. Weber, editors, Proceedings, Fundamental
Approaches to Software Engineering (FASE), Grenoble, France, LNCS 2306, pages
203–217. Springer, 2002.

6. Z. Chen. JAVACARD Technology for Smart Cards. Addison Wesley, 2000.
7. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of

Philosophical Logic, Volume II: Extensions of Classical Logic. Reidel, 1984.
8. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
9. KeY project homepage. http://i12www.ira.uka.de/˜projekt/.

10. D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 14, pages 89–133. Elsevier, 1990.

11. W. Mostowski. Rigorous development of JAVACARD applications. In T. Clarke,
A. Evans, and K. Lano, editors, Proc. Fourth Workshop on Rigorous Object-
Oriented Methods, London, 2002.
http://www.cs.chalmers.se/˜woj/papers/room2002.ps.gz.

12. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings, 18th
Annual IEEE Symposium on Foundation of Computer Science, 1977.

13. Sun Microsystems, Inc. JAVACARD 2.2 Application Programming Interface, 2002.
14. Sun Microsystems, Inc. JAVACARD 2.2 Runtime Environment Specification, 2002.
15. Sun Microsystems, Inc. JAVACARD 2.2 Virtual Machine Specification, 2002.
16. K. Trentelman and M. Huisman. Extending JML specifications with temporal

logic. In Algebraic Methodology And Software Technology (AMAST ’02), LNCS
2422, pages 334–348. Springer-Verlag, 2002.

http://i12www.ira.uka.de/~projekt/
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz

	A Program Logic for Handling JAVACARD’s Transaction Mechanism
	Introduction
	Background
	JavaCard {} Dynamic Logic
	Syntax of JavaCard {} DL
	Semantics of JavaCard {} DL
	State Updates
	Rules of the Sequent Calculus

	Extension for Handling ``Throughout'' and Transactions
	Additional Sequent Calculus Rules for the ensuremath {[tmspace -thinmuskip {.1667em}[cdot]tmspace -thinmuskip {.1667em}]} Modality
	Additional Sequent Calculus Rules for Transactions

	Examples
	Conclusions and Future Work

