
Checking Properties of Heap-Manipulating
Procedures with a Constraint Solver

Mandana Vaziri and Daniel Jackson

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
{vaziri,dnj}@lcs.mit.edu

Abstract. A method for finding bugs in object-oriented code is pre-
sented. It is capable of checking complex user-defined structural proper-
ties – that is, of the configuration of objects on the heap – and generates
counterexample traces with no false alarms. It requires no annotation
beyond the specification to be checked, and is fully automatic.
The method relies on a three-step translation: from code to a formula in
a first-order relational logic, then to a propositional formula, and finally
to conjunctive normal form. An off-the-shelf SAT solver is then used to
find a solution that constitutes a counterexample.
This underlying scheme, presented previously, does not scale readily. In
this paper, we show how a suite of optimizations results in much im-
proved scalability. The optimizations are based on a special treatment of
relations that are known to be functional, and target all steps. The effect
of the optimizations is demonstrated by application to the analysis of a
red-black tree implementation.

1 Introduction

In previous work [13], we developed a scheme for finding bugs in Java code using
a SAT solver. The code, along with a declarative specification, is translated first
into a first-order relational formula, and from there into a propositional formula
whose satisfying assignments correspond to counterexamples – traces that violate
the specification.

This approach is inherently intractable, so it is essential to eliminate any
unnecessary causes of complexity. One such cause that we have been aware of
since the start is an uneconomical representation of fields. A field of a class is
mathematically a function, since it maps an object to at most one other object,
and its possible values can be encoded with a bit string of length log(n) for each
domain value, corresponding to the integer index of the field’s value, drawn from
n possible values. But our translation scheme, which was designed for a more
general modelling language [11], encodes a function as a relation, with n2 bits,
one for each combination of domain and range values.

Unfortunately, it is not obvious how to exploit the tighter encoding of func-
tions, since it is not well suited to applying the relational operators, especially

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 505–520, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

506 M. Vaziri and D. Jackson

the image operator, which appears frequently, due to the translation of set and
get operations on fields. Introducing an additional representation of each func-
tion in the standard form worsens performance, since the tighter encoding is now
an addition, rather than a replacement.

This paper shows how to make effective use of the tighter encoding of func-
tions. It exploits the fact that most of the relational formulas arising from an
object-oriented program take a stylized form. A transformation of this form into
another relational formula with additional relational variables is given, which can
be translated into CNF, using some specialized logical simplifications, without
any additional boolean variables.

Section 2 gives an overview of the basic approach, which we have described
previously [13]. Section 3 explains the generic scheme for translating relational
formulas into propositional formulas on which our previous work relied [11]. The
new content of the paper is presented in Section 4, and evaluated experimentally
in Section 5. The paper closes with related work (Section 6) and conclusions
(Section 7).

2 Encoding Object-Oriented Code in Alloy

2.1 Overview and Illustration

Our analysis [13] gives a bounded interpretation to a fragment of Java code,
by unwinding loops some number of times and by limiting the number of heap
cells of each type. Procedure calls are handled by inlining; there is currently no
treatment of recursion. The Java code is translated into Alloy [12], a modelling
language based on first-order logic. User-defined properties are also expressed
in Alloy, which allows succinct declarative expressions of complex structural
properties. For example, the fact that a list is acyclic can be expressed using
the transitive closure operator, and that red-black trees have the same number
of black nodes on each path is expressible with set cardinalities. Given an Alloy
model for the program, the Alloy Analyzer [11] is then used, together with a
user-provided bound on the number of heap cells, to check properties, and to
find counterexamples when they do not hold.

Our method differs from other verification approaches in that it targets prop-
erties of the heap. It considers all the possible initial configurations within finite
bounds. If there is a property violation, it will determine the initial configuration
responsible for it, as part of the counterexample trace. The analysis typically
accounts for billions of cases, which would not be feasible with testing alone.
The SAT solver – the Alloy Analyzer’s core engine – works in a goal-oriented
fashion. Since it tries to satisfy a boolean formula, it does not go through all
the executions in turn, and may effectively search multiple executions at once.
Our approach also does not perform approximations beyond considering a finite
instance of the code. This means that there are no false error reports.

Consider the swapTail procedure (Figure 1), which purportedly takes two
linked lists and swaps their tails. We use our analysis to check whether the

Checking Properties of Heap-Manipulating Procedures 507

0

1

2

3

4

Code

class ListElem {
int val;
ListElem next;

}
class List {
ListElem first;
static void swapTail(List l, List m){
if (l.first != null

&& m.first != null) {
ListElem temp = l.first.next;
l.first.next = m.first.next;
m.first.next = temp;

}
}}

Property

fun Acyclic(x: List) {
all e: x.first.*next |

e !in e.ˆnext
}
assert A {
all l, m: List |
Acyclic(l) && Acyclic(m)
&& swapTail(l,m) => Acyclic’(m)

}
check A for 2 List, 2 ListElem, 1 iteration

Counterexample

post state

E0

L0

E1

L1

pre state

E1E0

L1L0
l m l m

Computation Graph

0

1

2

3

4

l0.first0 !=null &&
m0.first0 !=null

temp1 = l0.first0.next0

l0.first0.next1 = m0.first0.next0

m0.first0.next2 = temp1

l0.first0=null ||
 m0.first0=null

Free Variables

first0 : List →! ListElem
next0, next1, next2: ListElem →! ListElem
l0, m0 : List
temp0, temp1 : ListElem
E01, E12, E23, E34, E04: Bool

Control Flow
E01 || E04

E01 ⇒E12

E12 ⇒E23

E23 ⇒E34

Data Flow
E01 ⇒ l0.first0 �= null && m0.first0 �= null
E04 ⇒ l0.first0 = null || m0.first0 = null
E12 ⇒ temp1 = l0.first0.next0

E23 ⇒ l0.first0.next1 = m0.first0.next0 &&
all o:ListElem-l0.first0 | o.next1 = o.next0

E34 ⇒m0.first0.next2 = temp1 &&
all o:ListElem-m0.first0 | o.next2 = o.next1

Additional Frame Condition
E04 ⇒ next2 = next0 && temp1 = temp0

Fig. 1. An Example of a Procedure and its Analysis

swapTail procedure preserves the property that its inputs are acyclic. We write
the Alloy specification shown in Figure 1. The assertion A states that: for all
Lists l and m, if they are both acyclic in the initial state, and swapTail(l,m)
is called, then m is acyclic in the post state, which is indicated by the prime sign
on the last appearance of the function Acyclic.

508 M. Vaziri and D. Jackson

The auxiliary function Acyclic(x: List) defines the constraint that a list
is acyclic, by stating that for all ListElems e reachable from x.first, where
x.first is included, e is not reachable from itself.

The command that follows (check A) instructs the tool to use 2 heap cells per
type and 1 iteration. The analysis produces a counterexample shown partially
in Figure 1. Black circles represent heap cells of type List, and white ones are
of type ListElem. Arrows represent fields. In the pre-state, list m is a list of one
element, and l of two, and they share an element. In the post-state, m is a list
with an element whose next field points to itself, and is therefore cyclic, violating
the assertion.

2.2 Extracting a Computation Graph

We translate a Java procedure into an Alloy formula whose models correspond
to executions. It is composed of two subformulas, encoding the control and data
flow of the procedure.

We start with the procedure’s control flow graph (CFG), with nodes rep-
resenting its control points, and edges labeled with either Java statements or
control predicates. We unroll the loops in the CFG up to a number of iterations
(selected by the user), and inline procedure calls, to obtain a computation graph.
For example, one unrolling of a; while(p) s; b gives the graph one would
obtain as the standard CFG of a; if(p) s; assert !p; b.

We rename variable and field names, in such a way that no path has two
assignments to the same variable or sets the same field name, but parallel paths
may share names (just as in single static assignment [3], but without φ functions).
Renaming is done by providing an index for each variable at each node in the
computation graph. In what follows we use name(v,i) to denote the name of
variable v at node i.

Figure 1 shows the computation graph corresponding to the swapTail pro-
cedure. The edge between nodes (0) and (4) is traversed when the condition of
the if statement is false.

2.3 Encoding the State, Control, and Data Flow

Variables in the Alloy formula are used to encode the state at the various control
points of the procedure. We model a field of type t appearing in class c with a
total function from c to t. Each type has a special atom representing null. Local
variables and formal parameters are modelled as scalars, which are represented
by singleton sets in Alloy.

In addition, the variables of the Alloy formula include a boolean variable1

Eij for each edge from node i to j in the computation graph. These are used
to encode the control and data flow, and indicate whether an edge is traversed
during an execution. The free variables for swapTail are shown in Figure 1,
where a declaration of the form f : A →!B says that f is a relation from A to
1 Alloy does not have built-in booleans, but these can be easily encoded with sets.

Checking Properties of Heap-Manipulating Procedures 509

B, restrained to be a total function from A to B, and a : A declares a to be a
scalar of type A.

The control flow is encoded with a formula that captures when an edge is
traversed. For each node i, let in(i) be the set of nodes having an outgoing
edge to i, and out(i) the set of nodes having an incoming edge from i. For each
node i, we produce ∨{Eji|j ∈ in(i)} ⇒ ∨{Eik|k ∈ out(i)}, and the formula
encoding the control flow is the conjunction of these formulas. These mean that
if some node’s incoming edge is traversed then some of its outgoing edges are also
traversed. Infeasible paths are ruled out because some of the edges are labeled
with control predicates, and these appear in the formula that encodes the data
flow presented below. Note that if more than one outgoing edge is traversed,
the constraint solver may generate an instance corresponding to more than one
execution. But all these executions are feasible. It is a question of tool design
which one is presented to the user. In the case of swapTail, the formula encoding
control flow is shown in Figure 1.

We encode the data flow for each edge with a formula that indicates how vari-
ables are related before and after the execution of the statement corresponding
to that edge. For each edge e from node i to j, we produce a formula: Eij ⇒ t,
where t is the translation of the Java statement corresponding to e into first-
order logic. The formula that encodes the data flow is then the conjunction of
these formulas. This means that whenever e is traversed, the effect of the Java
statement encoded by t is observed. The translation rules for Java statements
are given in our earlier paper [13]. In the case of swapTail, the formula encoding
data flow is shown in Figure 1.

In Alloy, the expression a.r, where a is a set and r is a relation, denotes
the relational image of a under r. So l0.first0 denotes the image of l0 under
function first0. The formula

all o: ListElem - l0.first0 | o.next1 = o.next0

is a frame condition. It means that for all ListElems other than l0.first0,
the next relation remains the same. Alloy is a declarative language in which
variables that are left unconstrained can take on any value. Frame conditions
are then needed to say that certain variables remain the same when an update
happens.

Finally, we conjoin a set of additional frame conditions. When an edge con-
nects nodes i and j that assign a different index to a field or variable v, but v is
not modified by the statement associated with the edge, we produce the frame
condition: Eij ⇒ name(v,j) = name(v,i). In the case of swapTail, the addi-
tional frame condition (shown in Figure 1) says that whenever E04 is traversed,
the next relation and the temp variable remain the same.

3 Translation to Propositional Logic

In Alloy, every type consists of a set of atoms. The values of variables are re-
lations, which are sets of tuples of atoms; and sets are treated as degenerate

510 M. Vaziri and D. Jackson

relations, consisting of a set of unary tuples. The user provides to our analysis a
bound n on the number of heap cells for each class, and this is used to set scopes
for the Alloy Analyzer, i.e. the number of atoms of each type. The analyzer
uses the scope to translate an Alloy formula to propositional logic. It allocates
a matrix of n2 boolean variables to each binary relation r:

r11 · · · r1n
· · · · · · · · ·
rn1 · · · rnn

where rij is true if and only if r maps atom i of its domain to atom j of its
range. After having allocated boolean variables to all relations in the formula,
the analyzer then proceeds to combine these matrices into matrices of boolean
formulas. For example, given a set a, represented as a degenerate relation, the
relational image a.f of a under relation f , gets the matrix:

(a1 ∧ f11) ∨ · · · ∨ (an ∧ fn1)
· · ·

(a1 ∧ f1n) ∨ · · · ∨ (an ∧ fnn)

which is the result of matrix multiplication, and states that atom i is an element
of a.f if and only if there is some atom j in a such that f maps j to i. Other
Alloy expressions are translated into matrices of boolean formulas in a similar
way [11].

To translate formulas, the analyzer combines these matrices into a single
propositional formula. For example, the formula f = g, where f and g are
binary relations, becomes:

(f11 ⇔ g11) ∧ · · · ∧ (f1n ⇔ g1n) ∧ · · · ∧ (fn1 ⇔ gn1) ∧ · · · ∧ (fnn ⇔ gnn).

which states that variables f and g denote the same set of tuples: tuple (i, j) is
in f if and only if it is in g.

Given a propositional formula, the analyzer then proceeds to transform it into
conjunctive normal form (CNF) by renaming all subformulas with fresh proposi-
tional variables, and conjoining appropriate definitions for these variables to the
whole formula [15]. This avoids the exponential blow-up in the size of the for-
mula when it is translated into CNF using distributivity laws, but does increase
the number of variables. An off-the-shelf SAT solver takes the CNF produced
and attempts to find a model. In our case, a satisfying assignment corresponds
to a counterexample, which is then output to the user in an appropriate fashion.

4 Exploiting Properties of Functions

A field declared in a class is modelled as a relation, but it always maps its object
to exactly one other object (or to null). Mathematically, this is a function. By
exploiting this fact, we can optimize different steps of the analysis presented
in the previous section, with the goal of reducing the number of variables and

Checking Properties of Heap-Manipulating Procedures 511

clauses produced in the final CNF, since this will improve the SAT solver’s
performance.

The main optimization is a representation for functions that requires fewer
boolean variables than the representation for general relations. However, this
does not reduce the number of variables in the CNF, because the step that trans-
lates propositional formulas to CNF adds intermediate variables, and counteracts
the benefit of the compact function representation. To obtain a real benefit we
need two other kinds of optimizations: first a systematic introduction of vari-
ables in the first-order formula, and second a series of logical simplifications
in the propositional formula. In the next sections, we describe how these opti-
mizations work together to reduce the number of clauses and variables in the
CNF.

4.1 Function Representation

A relation f that is a total function maps each atom in its domain to exactly
one atom in its range. By representing this atom as an integer in binary form,
the encoding of f requires only �log(n)�+ 1 rather than n boolean variables in
each row. From this tighter encoding:

f11 · · · f1l
· · · · · · · · ·
fn1 · · · fnl

we can extract the standard, n× n representation:

¬f11 ∧ · · · ∧ ¬f1l ¬f11 ∧ · · · ∧ ¬f1(l−1) ∧ f1l · · ·
· · · · · · · · ·

¬fn1 ∧ · · · ∧ ¬fnl ¬fn1 ∧ · · · ∧ ¬fn(l−1) ∧ fnl · · ·
where the formula at row i and column j is true if and only if row i in the compact
representation of f represents integer j. Note that since �log(n)� + 1 bits can
represent more than n values, we must add a side condition that constrains each
row of the compact representation in such way that it represents an integer less
than n.

If we incorporate this optimization in the Alloy Analyzer, this actually results
in an increase in the number of variables in the final CNF. This is because the
step that transforms propositional logic to CNF counteracts the gain of the
compact representation, by renaming all the formulas in the converted matrix
with propositional variables. So the resulting CNF has all the variables that it
would have had without the compact representation, in addition to all the ones
the representation introduces.

4.2 Introducing Alloy Variables

To avoid this problem, we first rename all subexpressions that are scalars, i.e.
singleton sets, in the first-order formula. Most subformulas that appear in the
translation of a fragment of Java code have the form:

512 M. Vaziri and D. Jackson

v.f1. · · · .fk1 = u.g1. · · · .gk2 ,

where v and u are scalars, and f1, · · · , fk1 , and g1, · · · , gk2 are functions, encoding
fields. We rename subexpressions of the form a.f by introducing an Alloy variable
b, and conjoin definitions of the form b = a.f with the whole formula. Variable
b is a scalar since a is a scalar and f is a function. We obtain:

v1 = v.f1 ∧ · · · ∧ vk1−1 = vk1−2.fk1−1 ∧ u1 = u.g1 ∧ · · · ∧ uk2 = uk2−1.gk2

∧ vk1−1.fk1 = uk2 .

The next section describes logical simplifications that allow a formula of the
form a.f = b to be translated compactly to CNF without adding any additional
propositional variables. The CNF’s for these formulas are then conjoined by tak-
ing the union of their clauses. Introducing an Alloy variable for the subexpression
a.f results in �log(n)�+1 additional boolean variables. If this subexpression were
translated to CNF without the introduction of Alloy variables and logical sim-
plifications, it would result in at least n2 additional boolean variables, since all
the elements of the product (an n× n matrix) would be renamed.

4.3 Logical Simplifications

We now describe the logical simplifications that allow us to translate a.f = b
compactly to CNF, without introducing any additional propositional variables.
They take advantage of the fact that a scalar is represented by a collection of
propositional formulas having the property that exactly one of them is true. In-
formally, the first two simplifications help because they push disjunctions down
in the formula’s syntax tree. Disjunctions are a source of blow-up when trans-
forming to CNF, and their effect is lessened if they are further away from the
root.

Logical Simplification 1 Consider the formula:

(A1 ∧B1) ∨ · · · ∨ (An ∧Bn) (1)

where Ai and Bi (1 ≤ i ≤ n) are boolean formulas. If exactly one of the A
formulas is true, then it can be easily seen that (1) is logically equivalent to:

(¬A1 ∨B1) ∧ · · · ∧ (¬An ∨Bn) (2)

Logical Simplification 2 Consider the formula:

((A1 ∧B1) ∨ · · · ∨ (An ∧Bn))⇔ C (3)

where Ai and Bi (1 ≤ i ≤ n) are boolean formulas. If exactly one of the A
formulas is true, then it can be easily seen that (3) is logically equivalent to:

(A1 ∧ (B1 ⇔ C)) ∨ · · · ∨ (An ∧ (Bn ⇔ C)) (4)

Our final simplification is specific to the representation of integers, and relies
on the fact that integers can be compared bit by bit.

Checking Properties of Heap-Manipulating Procedures 513

Definitions. A literal is either a propositional variable, or the negation of one.
Given a literal a, let var(a) denote the propositional variable corresponding to
a, and phase(a) be + (−) if a is var(a) (¬var(a)).

Logical Simplification 3. Let Ai (1 ≤ i ≤ n) be a collection of formulas of
the form ai1 ∧ · · · ∧ ail, such that for all i, j, and for all k (1 ≤ k ≤ l),
var(aik) = var(ajk), and let Bi be a similar collection. Consider the formula:

A1 ⇔ B1 ∧ · · · ∧An ⇔ Bn (5)

If exactly one of the Ai is true, and similarly for the Bi, and for all i and k,
phase(aik) = phase(bik), then it can be seen that (5) is logically equivalent to:

var(a1
1)⇔ var(b11) ∧ · · · ∧ var(a1

l)⇔ var(b1l) (6)

4.4 Using the Optimizations

Let us now compute the number of clauses and variables obtained in the CNF
for v.f1. · · · .fk1 = u.g1. · · · .gk2 using our optimizations, to compare them to the
case with no optimizations.

We have seen that v.f1. · · · .fk1 = u.g1. · · · .gk2 can be transformed into a
conjunction of k1 + k2 formulas of the form a.f = b. Let k denote k1 + k2. Since
conjunction of CNF can be obtained simply by taking union of clause sets, we
can avoid variable introduction and obtain a formula of size kα, if a.f = b can
be represented with α clauses.

In what follows, we compute α, but first we introduce some notation. Consider
translating the formula a.f = b to CNF. The variable a is a scalar and its
compact representation requires l boolean variables: a1 · · · al, where l denotes
�log(n)�+1, and n is the scope. Function f has a compact representation having
nl boolean variables: f11 · · · f1l · · · fn1 · · · fnl.

Converting the compact representation of a to the standard one results in a
vector of n elements. We use Ai to denote the formula on row i of this vector,
and similarly Bi for b. Function f ’s compact representation results in an n× n
matrix, and we use Fij to denote the formula at row i, column j.
The formula a.f = b is the conjunction of the following n formulas:

(A1 ∧ F11 ∨ · · · ∨An ∧ Fn1)⇔ B1
∧ · · · ∧

(A1 ∧ F1n ∨ · · · ∨An ∧ Fnn)⇔ Bn

Exactly one of the Ai is true, so we can apply Logical Simplification 2:

A1 ∧ (F11 ⇔ B1) ∨ · · · ∨An ∧ (Fn1 ⇔ B1)
∧ · · · ∧

A1 ∧ (F1n ⇔ Bn) ∨ · · · ∨An ∧ (Fnn ⇔ Bn)

We can then apply Logical Simplification 1:

514 M. Vaziri and D. Jackson

(¬A1 ∨ (F11 ⇔ B1)) ∧ · · · ∧ ¬(An ∨ (Fn1 ⇔ B1))
∧ · · · ∧

(¬A1 ∨ (F1n ⇔ Bn)) ∧ · · · ∧ (¬An ∨ (Fnn ⇔ Bn))

After moving terms around and factoring, we obtain:

¬A1 ∨ ((F11 ⇔ B1) ∧ · · · ∧ (F1n ⇔ Bn))
· · ·

¬An ∨ ((Fn1 ⇔ B1) ∧ · · · ∧ (Fnn ⇔ Bn))

Note that for all i, the formulas Fi1, · · · , Fin and B1, · · · , Bn satisfy the conditions
of Logical Simplification 3. So we apply it to obtain:

(¬A1 ∨ (f11 ⇔ b1) ∧ · · · ∧ (f1l ⇔ bl))
· · ·

(¬An ∨ (fn1 ⇔ b1) ∧ · · · ∧ (fnl ⇔ bl))

Therefore, formula a.f = b results in 2nl clauses, and no additional intermediate
variables. The formula v.f1. · · · .fk1 = u.g1. · · · .gm results in 2nlk clauses, and
since we added k variables to break it down, it has lk intermediate boolean
variables.

Consider translating v.f1. · · · .fk1 = u.g1. · · · .gk2 to CNF, without using opti-
mizations. Each subexpression of the form a.f results in a vector of n formulas,
that are disjunctions of n conjunctions. For each of these formulas, we introduce
n propositional variables to rename the conjunctions, requiring 3 clauses each for
their definitions. We also introduce 1 variable to rename the whole formula, and
its definition requires n+ 1 clauses. So the subexpression a.f requires n(n+ 1)
additional variables, and n(4n+1) clauses. Therefore there are n(4n+1)k clauses
and n(n + 1)k variables after the translation of each side of the equality. The
equality itself adds 2n2 clauses. We obtain the numbers summarized in the fol-
lowing table.

Clauses Intermediate Variables

Non-Optimized (4k + 2)n2 + kn kn2 + kn

Optimized 2kn�log(n)�+ k k�log(n)�+ k

5 Example

We illustrate our optimizations on an implementation of insertion in red-black
trees [5] (Figure 2). The code contains two classes RBNode and RBTree, and
procedure RBInsert, which performs insertion into a red-black tree. This code
is a close transcription of pseudocode presented in a popular algorithms book
[5].

We are interested in checking that the red-black invariants are preserved: i.e.
that all red nodes must have black children (Inv1), and that all paths leading

Checking Properties of Heap-Manipulating Procedures 515

Fig. 2. Insertion into a Red-Black Tree and its Analysis

516 M. Vaziri and D. Jackson

assertion scope # iter counter? time opt clauses opt vars opt time clauses vars

A 2 2 no 0 6827 2218 0 15343 7638
3 3 no 0 14443 4201 0 40042 18727
4 4 no 3 35642 7887 20 82678 36316
4 10 no 4 79496 15033 82 188452 81148
4 20 no 13 152586 26943 – – –
5 5 no 22 58056 13384 232 153259 64575
5 10 no 43 102281 19854 506 283780 117344
5 20 no 25 190731 32794 – – –
6 6 no 159 85160 19659 – – –
6 10 no 198 126700 25247 – – –
6 20 no 514 230550 39217 – – –

B 2 2 no 0 7066 2310 0 15545 7694
3 3 no 0 16300 4816 0 41827 19281
4 4 yes 7 40950 9559 15 87654 37766
4 10 yes 25 84804 16705 87 193404 82574
4 20 yes 109 157894 28615 – – –
5 5 yes 12 87369 22109 52 182058 72853
5 10 yes 44 131594 28579 – – –
5 20 yes 144 220044 41519 – – –
6 6 yes 22 148548 38027 103 318908 121400
6 10 yes 49 190088 43615 – – –
6 20 yes 132 293938 57585 – – –
7 7 yes 141 240865 62127 – – –
7 10 yes 189 276652 66627 – – –

C 2 2 no 0 6867 2242 0 15537 7726
bug seeded 3 3 no 0 15165 4471 0 41172 19162

4 4 no 2 37886 8679 18 85840 37450
4 10 no 12 81302 15753 82 192286 82630
4 20 no 62 153662 27543 – – –
5 5 yes 18 75141 18608 65 172059 70344
5 10 yes 43 118921 25013 140 303460 123573
5 20 yes 100 206481 37823 – – –
6 6 yes 77 124936 31383 202 298686 116224
6 10 yes 82 166056 36915 – – –
7 7 yes 93 199567 50690 – – –
7 10 yes 239 234991 55145 – – –
8 8 yes 272 349823 82336 – – –
8 10 yes 641 386261 86216 – – –

Fig. 3. Results

to a node with at most one child have the same number of black nodes (Inv2).
These invariants maintain a roughly balanced tree.

Figure 2 shows these invariants in Alloy. The function Inv1 says that for all
RBNodes r that are reachable from the root of t by following zero or more left
or right fields (t.root.*(left+right)), have the property that if r is red, then
both its children are black. The second property says that for all RBNodes r1 and
r2 reachable from the root, if they both have at most one child2 (indicated by the
calls to function HasAtMostOneChild), then the cardinality of the set consisting
of all black nodes on the path from r1 to the root is equal to the cardinality
of the corresponding set for r2. The expression #e denotes the cardinality of e,
that is the number of tuples in it.

2 In the original algorithm [5], trees have null leafs that are considered to be black.
We do not have these; this is why we need the HasAtMostOneChild function.

Checking Properties of Heap-Manipulating Procedures 517

The properties are followed by a series of assertions to be checked. For ex-
ample, assertion A says that for all RBTrees t and all integers i, if the procedure
RBInsert(t,i) is called and t is a well-formed tree (indicated by Tree(t)), then
the Inv1 property is preserved. A primed version of a function indicates the ap-
plication of the corresponding property in the post-state, in this case the final
state of RBInsert(t,i), whereas an unprimed version indicates its application
the initial state.

We checked these assertions using a prototype implementation for our anal-
ysis, which translates Java code directly to CNF using the optimizations, uses
Alloy to translate the specifications to CNF, and conjoins the two. The results
are shown in Figure 3. Times are in seconds. All experiments were run on a
1.1GHz PentiumIII with 640MB of memory, using the BerkMin SAT solver [8].
Some experiments were done after injecting a bug by removing one line in the
code (indicated in Figure 2 by the comment bug seeded). In Figure 3, dashes
indicate either that the experiment took more than 10 minutes or that there was
a shortage of memory. The non-optimized experiments are done by translating a
subset of Java code to Alloy and uses the Alloy Analyzer equipped with BerkMin
as well.

Some of these experiments result in a counterexample. For instance, the
counterexample corresponding to assertion C with a bug seeded, for scope of 5
and 5 iterations, is shown in Figure 2. The numbers on each node indicate the
keys, and red nodes are shown in white. The counterexamples goes through 5
iterations to violate assertion 3.

The results show that the translation without optimization can obtain all the
counterexamples very rapidly. This was expected; a fundamental assumption of
our work, which we refer to as the small scope hypothesis, is that most bugs
can be demonstrated with small counterexamples. The results also show that
the analysis scales better with the optimizations. An empirical study [1] demon-
strates that a scope of 6 is enough to obtain full statement and branch coverage
for a variety of benchmarks. Our optimizations allow checking all assertions with
a scope of 6, and as high as scope of 8 in some cases.

We can also increase the number of iterations to 20 and get an outcome
within a minute or two in most cases. For RBInsert, 20 iterations for each
loop correspond to 1540 lines of code. A state-of-the-art SAT solver can handle
formulas with up to about 300,000 clauses. These results suggest that a code
fragment of 1500 lines might be encodable within these limits. Of course, the
tractability of the subsequent analysis is another matter. And in this case, since
it is clear that fewer iterations suffice, the solver timings should be taken with a
grain of salt.

6 Related Work

For a bounded instance of a program, our analysis explores all the possible
inputs and executions, typically accounting for billions of cases. Unlike testing,
it can also produce an initial configuration of the heap which leads to a property

518 M. Vaziri and D. Jackson

violation. It differs from finite state verification tools, such as model checking, in
that it is modular: procedures may be checked in isolation without requiring a
driver. It differs from shape analysis in that it produces sound counterexamples
and no false alarms. It also requires no intermediate code annotations, or user-
provided abstractions.

Finite State Verification. FeaVer [10] is a verification tool for C source code,
based on the model checker Spin [9]. It extracts a model of a program automat-
ically using a look-up table of abstractions provided by the user. The model is
then verified with Spin, which outputs a counterexample when a property is vio-
lated. FeaVer has been used successfully to uncover hundreds of bugs in Lucent’s
PathStar call processing system.

Bandera [4] is a tool that allows analyzing Java source code with different
verification tools. It extracts a finite state model of code using slicing and user-
provided data abstraction. The result of the extraction is a model that may be
mapped into several model checkers (SMV, Spin) and theorem provers (PVS).
Unlike Feaver and Bandera, our analysis does not support user-provided abstrac-
tion.

The Java PathFinder [17] is an environment for checking Java bytecode,
that integrates model checking, program analysis, and testing. It allows user-
provided abstractions of the program, and uses the Bandera tool for slicing.
Java PathFinder requires an initialization of the heap that fixes it to a particular
configuration. Thus it is impossible to have the tool automatically find an initial
configuration that breaks an assertion, as it can be done in our analysis.

The SLAM [2] tool is designed to check if a program obeys API usage rules.
It does not require user annotations, and is fully automatic. It abstracts a pro-
gram into a boolean program that is a conservative approximation. The boolean
program is then subjected to reachability analysis to see if an error state is
attainable. If this is not the case, then there is a guarantee that the original
program cannot reach the error state. If an error state is reachable, then it is
analyzed automatically to see if it is part of a feasible execution, in which case a
counterexample is output to the user. If no feasible execution leads to the error
state, then appropriate predicates are added to the abstraction, again automat-
ically. The process then starts over with this refined abstract program. SLAM
targets temporal safety properties, and not structural properties.

Shape Analysis. Shape analysis algorithms [16] can identify invariants for pro-
grams that manipulate heap-allocated storage. They represent the heap as shape
graphs, conservative abstractions that capture properties at different points in
the program. The parametric shape analysis (PSA) [16] method uses a 3-valued
logic to represent shape graphs, and is a framework that can be instantiated
with different instrumentation predicates that retain more refined information
about concrete heaps, and can help to identify different classes of properties.
Unlike our method, PSA can prove properties without bounds, but it may issue
false alarms. In contrast to our property-independent translation, PSA requires

Checking Properties of Heap-Manipulating Procedures 519

instrumentation predicates that tailor the analysis for the discovery of partic-
ular properties. Recent work [14] presents space-efficient encodings of boolean
formulas that represent shape graphs. Its goals not its methods are similar to
ours.

Theorem Proving. The Extended Static Checker [6] uses a specialized theorem
prover to check code against user-specified specifications. Structural properties
such as those handled in our analysis are not expressible. Experience has shown
that ESC requires many intermediate code annotations, making it less practical.
An extension of ESC, the VeriFun tool [7], uses predicate abstraction, decision
procedures, and automated successive refinement. It requires no user annotation
beyond the property to be checked. It differs with our analysis in that it cannot
readily handle the kinds of structural properties we consider here.

7 Conclusions

We presented a suite of optimizations that results in much improved scalability
for our analysis of object-oriented code, which targets structural properties of the
heap, requires no user-annotation, and outputs no false alarms. Our optimiza-
tions are a suite of simple but judiciously chosen logical simplifications, that are
not incremental, i.e. their composition results in an improvement in scalability.

A conventional way to scale an analysis such as this is to require user-provided
specifications for all procedures. The ability to handle longer code sequences
allows a longer procedure to be considered, and for smaller procedures, it allows
specifications to be omitted. The scalability of this analysis is therefore crucial
to allow checking code fragments in which specifications are written at a coarser,
more economical, granularity.

Our experimental results use a prototype tool that translates a subset of
Java directly to CNF using the optimizations, while the non-optimized tool
translated to Alloy, and therefore benefitted from the Alloy Analyzer’s internal
simplifications. As part of future work, we plan to incorporate our optimizations
in the Alloy Analyzer, so that we can benefit from its simplifications as well. We
also plan to run more experiments on different code bases, to further investigate
the effect of our optimizations.

Acknowledgements. This work has greatly benefited from discussions with
Manu Sridharan and Ilya Shlyakhter, and comments from anonymous reviewers.
It was funded in part by ITR grant #0086154 from the National Science Foun-
dation, by a grant from NASA, and by an endowment from Doug and Pat Ross.
The first author thanks Joan Wheelis for her unbounded support, and dedicates
this paper to the memory of her grandfather, Reza Safavi Golpayegani.

520 M. Vaziri and D. Jackson

References

1. A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. “Evaluating the Small Scope
Hypothesis”, MIT Laboratory for Computer Science, September 2002. Unpublished
manuscript.

2. T. Ball, S. K. Rajamani. “The SLAM Project: Debugging System Software via
Static Analysis”, Proc. POPL 2002, January 2002.

3. D. R. Chase, M. Wegman and F. Zadeck. “Analysis of Pointers and Structures”,
Proc. Conf. on Programming Language Design and Implementation, 1990.

4. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, H.
Zheng. “Bandera: Extracting Finite-State Models from Java Source Code”, Proc.
International Conference on Software Engineering, June 2000.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest. “Introduction to Algorithms”, MIT
Press, 1990.

6. D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. “Extended Static Checking”.
Technical Report 159, Compaq Systems Research Center, 1998.

7. Cormac Flanagan. Personal communication.
8. E. Goldberg and Y. Novikov. “BerkMin: A fast and robust SAT-solver”, In Design,

Automation, and Test in Europe, March 2002.
9. G.J. Holzmann. “The Model Checker Spin”, IEEE Trans. on Software Engineering,

Vol. 23, 5, May 1997.
10. G. J. Holzmann and M. H. Smith. “Automating Software Feature Verification”,

Bell Labs Technical Journal, Vol. 5, 2, April-June 2000.
11. Daniel Jackson. “Automating First-Order Relational Logic”, Proc. ACM SIGSOFT

Conf. Foundations of Software Engineering, San Diego, November 2000.
12. D. Jackson, I. Shlyakhter and M. Sridharan. “A Micromodularity Mechanism”,

Proc. ACM SIGSOFT Conf. Foundations of Software Engineering, 2001.
13. D. Jackson and M. Vaziri. “Finding Bugs with a Constraint Solver”, Proc. Inter-

national Conference on Software Testing and Analysis, August 2000.
14. R. Manevich, G. Ramalingam, J. Field, D. Goyal, M. Sagiv. “Compactly Repre-

senting First-Order Structures for Static Analysis”, In Proc. SAS 2002, 2002.
15. D. A. Plaisted and S. Greenbaum. “A Structure-Preserving Clause Form Transla-

tion”, Journal of Symbolic Computation, 2:293–304, 1986.
16. M. Sagiv, T. Reps, and R. Wilhelm. “Parametric shape analysis via 3-valued logic”,

In ACM Transactions on Programming Languages and Systems, 24(3), 217–298,
2002.

17. W. Visser, K. Havelund, G. Brat and S. Park. “Model Checking Programs”, In-
ternational Conference on Automated Software Engineering, September 2000.

	Introduction
	Encoding Object-Oriented Code in Alloy
	Overview and Illustration
	Extracting a Computation Graph
	Encoding the State, Control, and Data Flow

	Translation to Propositional Logic
	Exploiting Properties of Functions
	Function Representation
	Introducing Alloy Variables
	Logical Simplifications
	Using the Optimizations

	Example
	Related Work
	Conclusions

