
A New Knowledge Representation Strategy for
Cryptographic Protocol Analysis

Ivan Cibrario B.1, Luca Durante1, Riccardo Sisto2, and Adriano Valenzano1

1 Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni
c/o Politecnico di Torino, C.so Duca degli Abruzzi 24

I-10129 Torino, Italy
durante,valenzano,ivan.cibrario@polito.it

2 Dipartimento di automatica e Informatica
Politecnico di Torino, C.so Duca degli Abruzzi 24

I-10129 Torino, Italy
sisto@polito.it

Abstract. The formal verification of security properties of a crypto-
graphic protocol is a difficult, albeit very important task as more and
more sensible resources are added to public networks. This paper is fo-
cused on model checking; when adopting this approach to the problem,
one challenge is to represent the intruder’s knowledge in an effective
way. We present an intruder’s knowledge representation strategy that
supports the full term language of spi calculus and does not pose artifi-
cial restrictions, such as atomicity or limited maximum size, to language
elements. In addition, our approach leads to practical implementation
because the knowledge representation is incrementally computable and
is easily amenable to work with various term representation languages.

1 Introduction

The formal verification of security properties of cryptographic protocols is a dif-
ficult task; one possible approach is to use model checking, which has already
been explored in previous papers such as [5,8,10,11]. When using this approach,
one of the challenges is to find a compact and efficient representation of the in-
truder’s knowledge, which plays a central role in modeling the protocol behavior
in an hostile environment, without sacrificing the expressive power of the spec-
ification language. Previous papers only give partial solutions to this problem,
the most common approach being to restrict the way in which intruder messages
can be built. For example, a common restriction is to force encryption keys to
be atomic [5,16].

This paper presents a novel intruder’s knowledge representation strategy that
achieves both the goals of compactness and implementation efficiency; in partic-
ular, the proposed representation is largely independent from the term represen-
tation language chosen, i.e. supports all main cryptographic message contruction
operators, including the full term language of spi calculus [1]. Moreover, it keeps

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 284–298, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A New Knowledge Representation Strategy 285

the intruder’s knowledge in a minimized, canonical form, and is shown to be
incrementally computable.

Having a canonical intruder’s knowledge representation is especially impor-
tant when state exploration techniques are used to check security properties. In
fact, simpler non-canonical representations, such as for example the plain set of
messages the intruder has access to when eavesdropping honest agents, may lead
to state proliferation, because different sets of known messages may correspond
to the same intruder knowledge. For example, knowing a symmetric key k and
the encryption of a data item m under k is equivalent to knowing the cleartext
m and k.

This representation has been used in a broader framework, presented in [9]
and sketched in [8], where automatic testing equivalence verification of spi cal-
culus specifications is described. There, the intruder’s knowledge representation
is further empowered by symbolic techniques; one of their functions is to prevent
state space explosion associated with the intruder’s ability to synthesize complex
keys.

This paper presents the proposed intruder’s knowledge representation by
means of the spi calculus specification language. Since the expressive power of
the message specification section of this language is better than or equivalent to
the one of most other formalisms for cryptographic protocols, the adoption of
spi calculus as our reference specification language is not restrictive.

The paper assumes that the reader is familiar with basic cryptography, and is
structured as follows: section 2 presents the syntax of spi calculus, and informally
describes its semantics. In section 3, we discuss our knowledge representation
strategy, while in sections 4 and 5 we outline its computational complexity and
work out some examples, respectively. Last, section 6 discusses related works
and draws some conclusions.

2 Spi Calculus

The spi calculus is defined in [1] as an extension of the π calculus [15] with cryp-
tographic primitives. It is a process algebraic language designed for describing
and analyzing cryptographic protocols. These protocols heavily rely on cryptog-
raphy and on message exchange through communication channels; accordingly,
the spi calculus provides powerful primitives to express cryptography and com-
munication.

This section summarizes the syntax and describes the language’s semantics
informally; the language used in this paper fully conforms to the spi calculus
definition found in [1], with the naming conventions outlined in Tab. 1.

A spi calculus specification is a system of independent processes, executing
in parallel; they synchronize via message-passing through named communication
channels. The spi calculus has two basic language elements: terms, to represent
data, and processes, to represent behaviors.

Terms can be either atomic elements, i.e. names, including the special name
0 representing the integer constant zero, and variables, or compound terms built

286 I. Cibrario et al.

Table 1. Naming Conventions

m ranges over names
x and y range over variables
P , Q and R range over processes
σ and ρ range over terms
Σ ranges over sets of terms

using the term composition operators listed in Tab. 2. Names may represent
communication channels, atomic keys and key pairs, nonces (also called fresh
names) and any other unstructured data.

If a term σ occurs as a sub-expression of another term ρ, then σ is called a
subterm of ρ; moreover, any term σ is a subterm of itself.

Table 2. Term syntax of spi calculus

σ, ρ terms
m name
(σ, ρ) pair
0 zero
suc(σ) successor
x variable
H(σ) hashing
{σ}ρ shared-key encryption
σ+, σ− public/private part
{[σ]}ρ public-key encryption
[{σ}]ρ private-key signature

The informal meaning of the composition operators is as follows:

– (σ, ρ) is the pairing of σ and ρ. It is a compound term whose components
are σ and ρ. Pairs can always be freely split into their components.

– suc(σ) is the successor of σ. This operator has been introduced mainly to
represent successors over integers, but it can be used, more generally, as the
abstract representation of an invertible function on terms.

– H(σ) is the hashing of σ. H(σ) represents a function of σ that cannot be
inverted.

– Term {σ}ρ is the ciphertext obtained by encrypting σ under key ρ using a
shared-key cryptosystem.

– σ+ and σ− represent respectively the public and private half of a key pair
σ. σ+ cannot be deduced from σ− and vice versa.

– {[σ]}ρ is the result of the public-key encryption of σ with ρ.
– [{σ}]ρ is the result of the signature (private key encryption) of σ with the

private key ρ.

A New Knowledge Representation Strategy 287

Besides term specification, spi calculus also offers a set of operators to build
behavior expressions that, in turn, represent processes. For example, Fig. 1 shows
the spi calculus specification of a very simple protocol inspired by [10]. The left
hand side of the figure shows the message exchanges involved in the protocol,
using the informal, intuitive representation often encountered in the literature,
whereas the right hand side of the figure shows the corresponding spi calculus
specification. In this protocol, two agents A and B sharing a secret key k and
represented by spi calculus processes PA and PB , exchange two messages:

– First, A sends to B message M encrypted under key k over public channel
c. This is represented, in spi calculus, by the output statement c〈{M}k〉 in
process PA and by the corresponding input statement c(y1) in PB ; the latter
statement assigns the datum just received to variable y1 of PB .

– Then, B tries to decrypt the message with key k, as specified by the state-
ment case y1 of {y2}k in PB and, when successful, sends back to A the
hashed cleartext of M on the same channel c, with the output statement
c〈H(y2)〉. Process A receives this message with the input statement c(x).

– Finally, A checks that the hash just received is correct with the statement
[x is H(M)] and proceeds with further operations on messageM , represented
by the unspecified process F (M).

The role of the spi calculus process Psample in the example is twofold:

– With the restriction operator (νk), it generates a restricted, private name k,
only known to PA, PB and itself, to be used as the encryption key.

– It instantiates both PA and PB to run in parallel, by means of the parallel
composition operator |, so that an instance of Psample represents all agents
involved in a session of the protocol.

A→ B : {M}k PA(M)
�
= c〈{M}k〉. c(x). [x is H(M)] F (M)

B → A : H(M) PB
�
= c(y1). case y1 of {y2}k in c〈H(y2)〉. 0

Psample
�
= (νk)(PA(M) | PB)

Fig. 1. A simple spi calculus specification

3 Intruder’s Knowledge Representation

Our approach to the representation of the knowledge that an intruder can ac-
quire borrows some of the notation and concepts introduced in [5], and has
some similarities with [10] and [11] as section 6 points out; however, it is more
sophisticated in some respects:

288 I. Cibrario et al.

– encryption and decryption keys are not restricted to be atomic.
– we focus on spi calculus to its full extent, including public/private key cryp-

tosystems, and the related operators.
– the intruder’s knowledge is always kept in a minimized form that both speeds

up and simplifies processing.

Moreover, as most other researchers do, our method relies on the following
well-known, perfect encryption assumptions:

– to extract the cleartext m from the encrypted messages {m}k, {[m]}k+ and
[{m}]k− , the corresponding decryption keys k, k− and k+ must be known.

– the cryptosystem has enough redundancy so that the decryption algorithm
can determine whether its task succeeded in, and to prevent encryption col-
lisions.

– it is not possible for an attacker to guess or forge any secret data item.

The intruder’s model we adopted is the so-called Dolev-Yao model, and has
been inspired by [7]. In other words, we assume that the intruder is able to:

– eavesdrop on, remove, replay and arbitrarily reorder messages sent over pub-
lic communication channels.

– forge new messages with the pieces of messages already intercepted, possibly
from previous protocol sessions, and inject them into the public channels.

– generate its own nonces.
– decrypt encrypted messages, provided it has got the appropriate key, and

split compound cleartext messages into pieces.

Let A be the set of spi calculus names, including the integer constant 0,
and M(A) the set of all spi calculus terms that can be built by combining the
elements of A by means of the operators defined in Tab. 2. For simplicity, and
without loss of generality, name overloading is forbidden, i.e. it is assumed that
distinct elements are always identified by distinct names.

The closure of a set of terms Σ ⊆M(A) is denoted Σ̂ and is defined as the
set of all spi calculus terms that can be built by combining the elements of Σ
by means of the operators defined in Tab. 2 and their inverses. Formally, Σ̂ is
the least set of terms such that, for each σ, σ1 and σ2 ∈ M(A), the following
closure rules hold:

σ ∈ Σ ⇒ σ ∈ Σ̂ (1)

σ ∈ Σ̂ ⇒ suc(σ) ∈ Σ̂ (successor) (2)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ (σ1, σ2) ∈ Σ̂ (pairing) (3)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ {σ1}σ2 ∈ Σ̂ (sh. key encryption) (4)

σ ∈ Σ̂ ⇒ H(σ) ∈ Σ̂ (hashing) (5)

σ1 ∈ Σ̂ ∧ σ+
2 ∈ Σ̂ ⇒ {[σ1]}σ+

2
∈ Σ̂ (pub. key encryption) (6)

σ1 ∈ Σ̂ ∧ σ−2 ∈ Σ̂ ⇒ [{σ1}]σ−2 ∈ Σ̂ (private key signature) (7)

σ ∈ Σ̂ ⇒ σ+ ∈ Σ̂ ∧ σ− ∈ Σ̂ (key projection) (8)

A New Knowledge Representation Strategy 289

suc(σ) ∈ Σ̂ ⇒ σ ∈ Σ̂ (prec) (9)

(σ1, σ2) ∈ Σ̂ ⇒ σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ (projection) (10)

{σ1}σ2 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (sh. key decryption) (11)

{[σ1]}σ+
2
∈ Σ̂ ∧ σ−2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (pub. key decryption) (12)

{[σ1]}σ−2 ∈ Σ̂ ∧ σ+
2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (signature check) (13)

σ+ ∈ Σ̂ ∧ σ− ∈ Σ̂ ⇒ σ ∈ Σ̂ (key pairing) (14)

In principle, if Σ is the set of messages the intruder has intercepted so far,
the generation of individual elements of Σ̂ (informally, the set of all messages
the intruder can generate at a given point) starting from Σ can be viewed as a
derivation in a natural deduction system [17].

In this respect, closure rule (1) represents the ability to derive an element
from itself, closure rules (2)-(8) are equivalent to the introduction rules of the
natural deduction system (I rules), and closure rules (9)-(14) are equivalent to
its elimination rules (E rules).

For example, using the rule notation of [17], closure rule (4) is equivalent to
the introduction rule:

σ1 σ2

{σ1}σ2

{}-I rule . (15)

Informally, we can read this rule as: “when both σ1 and σ2 are known to the
intruder, then the intruder also knows about {σ1}σ2 .”

Similarly, closure rule (11) is equivalent to the elimination rule:

{σ1}σ2 σ2

σ1
{}-E rule . (16)

Informally, we can read this rule as: “when the intruder knows both {σ1}σ2

and σ2, then it can succesfully perform a decryption and add σ1 to its knowl-
edge.”

In an elimination rule, the premise that contains the operator removed by
the rule is called the major premise, while all other premises are called minor
premises. For example, in rule (16), {σ1}σ2 is the major premise and σ2 is the
minor premise.

The theory of natural deduction [17] implies that, if σ ∈ Σ̂, then σ can
be deduced from Σ with a natural deduction in normal form, that is, a chain
of applications of E rules followed by a chain of applications of I rules, along
the rules’ major premises. This is not necessarily true along minor premises,
so the closure of Σ under E rules only is not a suitable candidate to represent
the intruder’s knowledge, unless some additional constraints are imposed, such
as the atomicity of encryption keys; this is exactly the approach adopted, for
example, in [5,16]. In the following, we show that this difficulty can be overcome
by introducing the concept of minimal closure seed of Σ and by suitably refining
the derivation rules of the deduction system.

290 I. Cibrario et al.

We say that a set of terms is finite if it contains a finite number of finite length
elements. Given a finite set of terms Σ, we define the minimal closure seed of
Σ, and denote it as Σ, the subset of Σ̂ that satisfies the following predicates for
each a ∈ A, and for each σ, σ1, σ2 ∈M(A):

a ∈ Σ ⇔ a ∈ Σ̂ (17)
suc(σ) �∈ Σ (18)
(σ1, σ2) �∈ Σ (19)

{σ1}σ2 ∈ Σ ⇔ σ2 �∈ Σ̂ (20)

H(σ) ∈ Σ ⇔ σ �∈ Σ̂ (21)

{[σ1]}σ+
2
∈ Σ ⇔ σ+

2 �∈ Σ̂ ∨ σ1 �∈ Σ̂ (22)

[{σ1}]σ−2 ∈ Σ ⇔ σ−2 �∈ Σ̂ ∨ σ1 �∈ Σ̂ (23)

σ+ ∈ Σ ⇔ σ �∈ Σ̂ (24)

σ− ∈ Σ ⇔ σ �∈ Σ̂ (25)

For example, if Σ = {{[m]}a+ , a−}, then Σ = {{[m]}a+ , a−,m}, because:

– a− ∈ Σ, by rule (25), because a �∈ Σ̂ and is therefore impossible to represent
the key pair (a+, a−) with the key name a alone.

– m ∈ Σ: since a− ∈ Σ ⊂ Σ̂, then a− can be used to decrypt {[m]}a+ , by rule
(12). Then, being m a name, by rule (17), m ∈ Σ.

– {[m]}a+ ∈ Σ, by rule (22), because a+ �∈ Σ̂, so there is no way to construct
{[m]}a+ starting from other members of Σ.

Before discussing the basic properties of Σ, let us preliminarily define r(σ,Σ)
as the boolean value obtained by executing the following algorithm:

boolean r(σ, Σ) {
if σ ∈ Σ then return TRUE;
else if σ = suc(σ1) then return r(σ1, Σ);
else if σ = (σ1, σ2) then return r(σ1, Σ) ∧ r(σ2, Σ);
else if σ = {σ1}σ2 then return r(σ1, Σ) ∧ r(σ2, Σ);
else if σ = H(σ1) then return r(σ1, Σ);
else if σ = {[σ1]}σ+

2
then return r(σ1, Σ) ∧ r(σ+

2 , Σ);

else if σ = [{σ1}]σ−2 then return r(σ1, Σ) ∧ r(σ−2 , Σ);

else if σ = σ+
1 then return r(σ1, Σ);

else if σ = σ−1 then return r(σ1, Σ);
else (σ ∈ A \ Σ) return FALSE;

}

Informally, this algorithm recursively checks whether σ can be deduced from
the set Σ using introduction rules (2)-(7) only; in this respect, an introduction
rules is a rule that builds a new term by introducing an operator between one
or more simpler terms. The basic properties of Σ are then expressed by the
following theorems:

A New Knowledge Representation Strategy 291

Theorem 1. (Finiteness) For each finite set of terms Σ ⊆M(A), Σ is finite.

Proof. By inspection of rules (17)-(25) it is clear that any structured element of
Σ has at least a subterm that does not belong to Σ̂, i.e. a subterm that cannot
be built by combining the elements of Σ. This means that any element of Σ is
necessarily a subterm of an element of Σ. But since Σ is finite, the subterms of
its elements are also finite. This implies that Σ is finite. ��

Theorem 2. (Minimality) Let Σ ⊆M(A) be a finite set of terms, and σ ∈ Σ.

Then ̂(Σ \ {σ}) ⊂ ̂Σ.

Proof. From rules (1)-(14) it is clear that ̂(Σ \ {σ}) ⊆ ̂Σ. So, it is enough to

show that there is at least an element of ̂Σ that does not belong to ̂(Σ \ {σ}).
Such an element is σ. It belongs to ̂Σ by rule (1), but it does not belong to
̂(Σ \ {σ}) because by rules (17)-(25) it is either a name or a structured term

with at least a subterm that cannot be built from the elements of Σ̂ (which

includes ̂Σ by definition). ��

Theorem 3. (Decidability) Let σ ∈ M(A) be any finite term, Σ ⊆ M(A) be
a finite set of terms, and let us assume that Σ is known. Then, determining if
σ ∈ Σ̂ is decidable.

Proof. We claim that σ ∈ Σ̂ iff r(σ,Σ) is true. This claim can be proved by
induction, proving directly the cases σ ∈ Σ and σ ∈ A \ Σ, and proceeding
inductively for the other cases. Once the claim is proved, it remains to be shown
that the computation of r(σ,Σ) takes a finite number of steps, but this descends
directly from the fact that σ and Σ are finite, and at each recursion step the
function r is invoked on proper subterms of its argument σ. ��

The minimal closure seed Σ enjoys some additional properties, that make it
a good candidate as a finite and minimized representation of the term generation
capabilities of an intruder that has learned the set of terms Σ:

Theorem 4. (Closure preservation) For each finite set of terms Σ ⊆ M(A),
̂Σ = Σ̂.

Theorem 5. (Computability) For each finite set of terms Σ ⊆ M(A), Σ can
be computed in a finite number of steps.

An obvious corollary of the above theorems is:

Corollary 1. Let σ ∈ M(A) be any finite term and Σ ⊆ M(A) be a finite set
of terms. Then, determining whether σ ∈ Σ̂ is decidable.

292 I. Cibrario et al.

Proof. We claim that the computation of Σ from Σ can be carried out by repeat-
edly applying closure rules (1)-(14). More precisely, let us define a reduction rule
as a triple R = 〈ΣI , C, ΣO〉, where ΣI and ΣO are sets of terms representing
respectively premises and conclusions of closure rule C.

Applying reduction step R to a finite set of terms Σ means eliminating the
premises from and adding the conclusions to Σ. This is written Σ R−→ Σ′, where
Σ′ = (Σ \ΣI) ∪ΣO is the resulting set.

Given a finite set of terms Σ, a reduction of Σ is a finite sequence of appli-
cation of reduction rules Ri to finite sets of terms Σi, denoted:

Σ0
R0−→ Σ1

R1−→ Σ2 · · · Σk−1
Rk−1−→ Σk ,

such that Σ0 = Σ and Ri ∈ R(Σi), where R(Σi) is the set of reduction rules
whose pre-conditions are satisfied by Σi. Below, the notation a→ b means that
if the pre-condition a is true, then the reduction rule b can be applied in Σi, that
is, b ∈ R(Σi). The set R(Σi) is the least set such that the following relations
hold:

H(σ) ∈ Σi ∧ r(σ,Σi)→ 〈{H(σ)}, (5), ∅〉 (26)
{[σ1]}σ+

2
∈ Σi

∧ r(σ1, Σi) ∧ r(σ+
2 , Σi)

→ 〈{{[σ1]}σ+
2
}, (6), ∅〉 (27)

[{σ1}]σ−2 ∈ Σi∧ r(σ1, Σi) ∧ r(σ−2 , Σi)
→ 〈{[{σ1}]σ−2 }, (7), ∅〉 (28)

σ+ ∈ Σi ∧ r(σ,Σi)→ 〈{σ+}, (8), ∅〉 (29)
σ− ∈ Σi ∧ r(σ,Σi)→ 〈{σ−}, (8), ∅〉 (30)

suc(σ) ∈ Σi → 〈{suc(σ)}, (9), {σ}〉 (31)
(σ1, σ2) ∈ Σi → 〈{(σ1, σ2)}, (10), {σ1, σ2}〉 (32)

{σ1}σ2 ∈ Σi ∧ r(σ2, Σi)→ 〈{{σ1}σ2}, (11), {σ1}〉 (33)
{[σ1]}σ+

2
∈ Σi

∧ r(σ−2 , Σi) ∧ ¬r(σ1, Σi)
→ 〈{{[σ1]}σ+

2
}, (12), {σ1, {[σ1]}σ+

2
}〉 (34)

[{σ1}]σ−2 ∈ Σi∧ r(σ+
2 , Σi) ∧ ¬r(σ1, Σi)

→ 〈{[{σ1}]σ−2 }, (13), {σ1, [{σ1}]σ−2 }〉 (35)

σ+ ∈ Σi ∧ σ− ∈ Σi → 〈{σ+, σ−}, (14), {σ}〉 (36)

It can be shown by inspection that reductions preserve closures, i.e. that the
following proposition holds:

Proposition 1. if Σ R−→ Σ′ is a one-step reduction, then Σ̂ = Σ̂′.

Our initial claim can be proved by proving the following proposition:

Proposition 2. Given a finite set of terms Σ, there exists a finite reduction of
Σ:

A New Knowledge Representation Strategy 293

Σ = Σ0
R0−→ Σ1 · · · Σk−1

Rk−1−→ Σk ,

such that Σk = Σ.

A reduction that leads from Σ to Σ can be found if we keep applying re-
duction rules Ri ∈ R(Σi) as long as some can be applied. It can be verified
by inspection that reduction rules Ri ∈ R(Σi) always add subterms of terms
that are already included in Σi, and that the application of each Ri ∈ R(Σi)
cannot produce loops. Since Σ is finite, it is guaranteed that in a finite number
of steps we reach a Σk on which no reduction rule can be applied. When this
happens, Σk = Σ, because all the pre-conditions of relations (26)-(36) are false,
which implies that Σk satisfies the minimal closure seed definition predicates
(17)-(25).

Theorem 4 directly descends from propositions 1 and 2, while theorem 5
descends from the above two propositions and from the fact that the computation
of r(σ,Σi) takes a finite number of steps. ��

In analogy with the natural deduction system, and unlike [5], we allow both I
and E rules to be applied in the computation of Σ from Σ, under the constraint
of their pre-condition and at the expense of a greater computational complexity,
which will be analyzed in section 4. However, as entailed by these theorems, this
approach does neither sacrifice decidability nor computability.

Theorems 1, 2 and 4 state that the closure seed representation of a finite set
of terms Σ is finite and is the minimal set of terms having the same closure of
Σ, where minimality means that any element cannot be built from the other
ones by means of term composition operators only, i.e. there are no redundant
elements. This is a significant departure from the approach of [11,14], whose
methods accumulate all the terms the intruder knows about without aiming to
minimize their representation.

The proof of theorems 4 and 5 entails that if a new term ρ is added to a
minimal closure seed Σ, e.g. as a consequence of an output process, the new
minimal closure seed Σ ∪ {ρ} can be incrementally computed by a reduction
that starts from Σ ∪ {ρ}, without restarting from scratch; it can be expected
that the incremental computation is far less expensive in terms of computing
power.

In general, the net effect of such a reduction is to eliminate some elements
from and add some other new elements to the former Σ. We denote δ−

Σ
(ρ) the

set of eliminated elements and δ+
Σ

(ρ) the set of added elements. Formally:

δ−
Σ

(ρ) = Σ \
(

Σ ∪ {ρ}
)

(37)

δ+
Σ

(ρ) =
(

Σ ∪ {ρ}
)

\Σ (38)

Let us now define formally how the intruder’s knowledge representation is up-
dated when a new term ρ is received by the intruder: an algorithm that computes
the updated intruder’s knowledge Σ′ is the one that computes a reduction of

294 I. Cibrario et al.

Σ ∪{ρ}, thus determining δ+
Σ

(ρ) and δ−
Σ

(ρ) as sketched in the proof of theorems
4 and 5, then computes Σ′ = (Σ ∪ δ+

Σ
(ρ)) \ δ−

Σ
(ρ) .

We have now shown that Σ is an adequate, minimal representation of the
intruder’s knowledge, it is incrementally computable, and the question σ ∈ Σ̂
is decidable ∀σ ∈ M(A). So, given an intruder knowledge Σ and a finite term

σ ∈M(A), we can say that the intruder can produce σ iff σ ∈ ̂Σ, i.e. iff r(σ,Σ).

4 Computational Complexity

4.1 On the Computation of the Question σ ∈ Σ

In this and in the following sections, let op(σ) be the number of operators in
term σ and n(Σ) the number of elements in set Σ. Moreover, we extend the
domain of the operator op(·) to sets of terms, by defining it as:

op(Σ) = max
σ∈Σ

(op(σ))

in that case. Assuming that the comparison between atomic terms can be carried
out in constant time, and the lookup of a term in Σ is sequential, then the
computational complexity to check whether σ ∈ Σ is O(nm), where n = n(Σ)
and m = op(σ).

4.2 On the Computation of r(σ,Σ)

The worst case happens when the operator’s tree in σ is fully unbalanced, that
is, each invocation of r(σ,Σ) on a compound term σ with m operators entails
the recursive computation of r(σ1, Σ) and r(σ2, Σ), where σ1 is atomic, and σ2
has m− 1 operators.

In this case, each recursion step executes in O(nm), where n = n(Σ) and
m = op(σ) as shown above, and the recursion depth is m. So, the computational
complexity of r(σ,Σ) is O(nm2), as it has also been proven in [13], in the more
general framework of local inference rule sets.

4.3 On the Incremental Computation of Σ

For the sake of this discussion, and without loss of generality, let us define a
reduction step as the simultaneous application of all independent reduction rules
and let us denote it with →. The incremental reduction of Σ after the addition
of the new term ρ can be seen as a finite sequence of reduction steps starting
from Σ ∪ {ρ} = Σ0; reduction step i acts on set Σi and produces the (partially)
reduced set Σi+1:

Σ ∪ {ρ} = Σ0 → . . .→ Σi → Σi+1 → . . .

A New Knowledge Representation Strategy 295

Let ni = n(Σi) be the number of terms in Σi, and mi = op(Σi) the maximum
number of operators of terms in Σi. Then, we have the initial condition:

{
n0 = n(Σ ∪ {ρ})
m0 = op(Σ ∪ {ρ})

In the worst case, up to ni reduction rules can be applied at step i, one for
each term in Σi; assuming that we can determine which reduction rule must be
applied in constant time, each application of such rule entails one invocation of
the ∈ operator and up to two invocations of r(·, ·); therefore, each application of
a reduction rule at reduction step i has a computational complexity of O(nimi)+
O(nim2

i) = O(nim2
i), and the computational complexity of reduction step i is

O(n2
im

2
i).

At each reduction step i, whenever we remove a term a from Σi, and add
some other terms a1 . . . an derived from it, the added terms will always have
one operator less than the term they originated from, that is, op({a1 . . . an}) =
op(a)− 1.

Therefore, as a result of reduction step i we remove ni terms with mi oper-
ators and add up to 2ni terms with up to mi − 1 operators; rules (34) and (35)
are the only exceptions in this respect, because they do not remove any term.
However, their application does not lead to the worst-case complexity because
they leave in Σi+1 the compound term {[σ1]}σ+

2
or {[σ1]}σ−2 that cannot be fur-

ther reduced, because σ1 ∈ Σi+1 as a consequence of the application of the rule
itself. So, we can write: {

ni+1 = 2ni
mi+1 = mi − 1

After a maximum of m0 reduction steps, Σm0 is reduced to contain only
atoms and no further reductions are possible. So the computational complexity
of the reduction as a whole is:

m0∑

i=0

O(n2
im

2
i) =

m0∑

i=0

O((2in0)2(m0 − i)2) = O(n2
022m0) . (39)

4.4 Comparison with Normal, Natural Deductions

When we assume that encryption keys are atomic, neglect public/private cryp-
tosystems, and restrict our scope to normal, natural deductions only, as in [5], we
can replace all invocations of r(σ,Σ) in pre-conditions (26)-(36) with the simpler
check σ ∈ Σ, and we can drop out reduction rules (27)-(30) and (34)-(36).

Accordingly, the complexity of a reduction step as defined in the previous
section is reduced to O(nimi), because function r(·, ·) is never invoked in this
case. So, the complexity of the reduction process as a whole reduces to:

m0∑

i=0

O(nim2
i) =

m0∑

i=0

O(2in0(m0 − i)2) = O(n02m0) . (40)

296 I. Cibrario et al.

5 Examples

As an example, let us start with the minimal closure seed

Σ = {c, {{k1}k2}k3 , {[m]}k1
+ , k1

+, k2} ,

and let us observe the reduction process described above when the new term
ρ = k3 is added; in Tab. 3 the second column lists the contents of the partially
reduced sets Σi at each reduction step, the next column recalls the reduction
rule applied in that step, and the rightmost two columns list the set of elements
removed from and added to Σi by the application of the rule, denoted ΣI and
ΣO, respectively.

Table 3. An example of reduction

i Σi Rule ΣI ΣO
0 {c, {{k1}k2}k3 , {[m]}k1+ , k1

+, k2, k3} (33) {{{k1}k2}k3} {{k1}k2}
1 {c, {[m]}k1+ , k1

+, k2, k3, {k1}k2} (33) {{k1}k2} {k1}
2 {c, {[m]}k1+ , k1

+, k2, k3, k1} (29) {k1
+} ∅

3 {c, {[m]}k1+ , k2, k3, k1} (34) ∅ {m}
4 {c, {[m]}k1+ , k2, k3, k1,m} (27) {{[m]}k1+} ∅
5 {c, k2, k3, k1,m}

In the table, rule applications are serialized, i.e. only one rule is applied at
each step for clarity; in an actual implementation, all independent rules can
be applied simultaneously, as outlined in the complexity analysis carried out in
section 4.

Table 4 presents a reduction involving a non-atomic symmetric key; the initial
intruder’s knowledge isΣ = {{kA}kS , {m}{kB}kA , kB ,H(m)} and the added term
is ρ = kS . Note that in the second step, the premises of rule (33) are indeed
satisfied, because r({kB}kA , Σ1) is true, even if {kB}kA /∈ Σ1.

Table 4. A reduction involving a non-atomic key

i Σi Rule ΣI ΣO
0 {{kA}kS , {m}{kB}kA), kB ,H(m), kS} (33) {{kA}kS} {kA}
1 {{m}{kB}kA , kB ,H(m), kS , kA} (33) {{m}{kB}kA } {m}
2 {kB ,H(m), kS , kA,m} (26) {H(m)} ∅
3 {kB , kS , kA,m}

A New Knowledge Representation Strategy 297

6 Concluding Remarks

Most finite [5,6,12] and infinite-state [2,3,4] protocol analysis methods based on
model checking restrict encryption operators to atomic keys only.

For example, in [5] and [16], this restriction comes from the adoption of the
closure of Σ under E rules as a representation of the intruder’s knowledge.

Other approaches based on theorem proving do not pose this restriction but
the tradeoff typically is between incompletness and possible non-termination of
the analysis [14].

It is worth noting that support for constructed, non-atomic keys is becoming
increasingly important to be able to analyze real-world protocols, since it is
common for such protocols to build a symmetric key from shared secrets and
other data exchanged between parties during a run of the protocol itself.

Other papers, such as [10,11], relax this restriction but neither explicitly
introduce the notion of Σ, that is, the minimized, canonical representation of
the intruder’s knowledge, nor analyze and exploit its properties.

The free term algebra of [14], too, allows any term to be used as an encryption
key for both public-key and symmetric key encryption; however, the attacker’s
knowledge representation is not minimized and some other slight restrictions are
in effect, such as for example the assumption that private keys are never leaked.

This assumption seems quite reasonable, but cannot easily be guaranteed by
hand for complex protocols; so, we believe that such property is best checked
with the aid of a formal, automated method.

By contrast, our approach does not pose any restriction on the internal struc-
ture and construction operators of encryption keys, besides those implied by spi
calculus, thus supporting the full term language of spi calculus itself, even though
at the expense of a greater computational complexity, as can be seen by com-
paring equations (39) and (40).

However, we believe that the additional expressive power and flexibility of
our method more than outweighs this disadvantage in the range of values found
in practice for n0 and m0.

Last, it should be noted that, even if we adopted the term syntax of spi
calculus in this paper, our method is easily amenable to work with other term
representation languages with similar sets of term composition operators.

Acknowledgments. The authors wish to thank the anonymous referees, whose
valuable comments and suggestions helped to improve the quality of this paper.
This work has been partially funded by the Italian National Research Council,
grant number CNRC00FE45.

References

1. M. Abadi, and A. D. Gordon, “A Calculus for Cryptographic Protocols The Spi
Calculus”, Digital Research Report, vol. 149, January 1998, pp. 1–110.

298 I. Cibrario et al.

2. R. Amadio, and D. Lugiez, “On the Reachability Problem in Cryptographic Pro-
tocols”, Proc. of CONCUR’2000, LNCS 1877, pp. 380–394, Springer-Verlag, 2000.

3. M. Boreale, R. De Nicola, and R. Pugliese, “Proof Techniques for Crypto-
graphic Processes”, Proc. of the 14th IEEE Symposium Logic In Computer Science
(LICS’99), IEEE Computer Society Press, pp. 157–166, 1999.

4. M. Boreale, “Symbolic Trace Analysis of Cryptographic Protocols”, In Proc. 28th
ICALP, Vol. 2076 of Lecture Notes in Computer Science, Springer-Verlag, pp. 667–
681, 2001.

5. E. M. Clarke, S. Jha, and W. Marrero, “Using state space exploration and a natural
deduction style message derivation engine to verify security protocols”, Proc. of
IFIP PROCOMET, Chapman & Hall, London, 1998, pp. p.87–106.

6. E. M. Clarke, S. Jha, and W. Marrero, “Verifying security protocols with Brutus”,
ACM Trans. on Software Engineering and Methodology Vol. 9, No. 4, October
2000, pp. 443–487.

7. D. Dolev, and A. Yao, “On the security of public key protocols”, IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

8. L. Durante, R. Sisto, and A. Valenzano, “A state-exploration technique for spi-
calculus testing equivalence verification”, Proc. of FORTE/PSTV 2000, Pisa, Oc-
tober 2000, pp. 155–170.

9. L. Durante, R. Sisto, and A. Valenzano, “Automatic testing equivalence verification
of spi-calculs specifications”, Politecnico di Torino I.R. DAI/ARC 1-02.

10. M. Fiore, and M. Abadi, “Computing Symbolic Models for Verifying Cryptographic
Protocols”, Proc. of 14th IEEE Computer Security Foundations Workshop, pp.
160–173, June 2001.

11. A. Huima, “Efficient Infinite-State Analysis of Security Protocols”, Proc. of FLOC
Workshop on Formal Methods and Security Protocols, 1999.

12. G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol using
FDR”, Proc. of TACAS’97, Springer LNCS 1055, 1996.

13. D. A. McAllester, “Automatic Recognition of Tractability in Inference Relations”,
Journal of the ACM, Vol. 40, No. 2, April 1993, pp. 284–303.

14. J. Millen, and V. Shmatikov, “Constraint solving for Bounded-Process Crypto-
graphic Protocol Analysis”, 8th ACM Conference on Computer and Communica-
tion Security, pages 166–175, November 2001.

15. R. Milner, J. Parrow, and D. Walker, “A Calculus of mobile processes, parts I and
II”, Information and Computation, pages 1–40 and 41–77, September 1992.

16. L. C. Paulson, “The inductive approach to verifying cryptographic protocols”,
Journal of Computer Security, Vol. 6, pp. 85–128, 1998.

17. D. Prawitz, “Natural Deduction: A Proof-Theoretical Study”, Almqvist & Wiskell,
1965.

	Introduction
	Spi Calculus
	Intruder's Knowledge Representation
	Computational Complexity
	On the Computation of the Question $sigma in Sigma $
	On the Computation of $@mathtt {r}(sigma ,Sigma)$
	On the Incremental Computation of $overline {Sigma }$
	Comparison with Normal, Natural Deductions

	Examples
	Concluding Remarks

