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Abstract. Higraphs, a kind of hierarchical graph, underlie a number of
sophisticated diagrammatic formalisms, including Statecharts. Naturally
arising from hierarchy in higraphs is an abstraction operation known
as zooming out, which is of profound importance to reasoning about
higraph-based systems. We motivate how, in general, the use of zoom-
ing in reasoning requires sophisticated extensions to the basic notion of
higraph and a careful definition of higraph dynamics (i.e. semantics),
which we contribute. Our main results characterise zooming by means
of a universal property and establish a precise relationship between the
dynamics of a higraph and that of its zoom-out.

1 Introduction

Recent years have witnessed a rapid, ongoing popularisation of diagrammatic no-
tations in the specification, modelling and programming of computing systems.
Most notable among them are Statecharts [5], a notation for modelling reactive
systems, and the Unified Modelling Language (UML), a family of diagrammatic
notations for object-based modelling. Being spatial rather than linear represen-
tations of computing systems, diagrams lend themselves to a variety of intuitive
structural manipulations, common among which are those implementing filtering
and abstraction operations to control the level of detail [10].

Often, such manipulations are employed to assist in the visualisation process
[10], as diagrams may grow impractically large even in economic and compact
notations. Of particular importance also are uses of filtering and abstraction in
the course of reasoning about the represented system. In that case, the user at-
tempts to simplify the reasoning task by considering a higher-level, more abstract
diagrammatic representation of the system in question, obtained by discarding
detail which is deemed irrelevant to the reasoning argument. Thus, a precise
relationship between the form (syntax) and meaning (semantics) of a diagram
resulting from filtering or abstraction and those of the original one is pre-requisite
to ensuring soundness of reasoning.
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Starting with higraphs, which are structures underlying a variety of sophisti-
cated diagrammatic formalisms in computing, we provide such a precise relation-
ship for a practically important filtering operation known as zooming out. Doing
so, we argue, requires sophisticated extensions to the basic notion of higraph
and a careful definition of zooming and of higraph dynamics (i.e. semantics),
all of which we contribute. So we give precise definitions of a meet higraphs, the
dynamics of meet-higraphs, and zooming-out of a meet-higraph. We further con-
tribute two main results. The first characterises one’s informal understanding of
zooming by means of the universal property of an adjunction. The other estab-
lishes how the dynamics of a higraph is reflected in the dynamics of its zoom-out,
as required for supporting the use of zooming in reasoning about higraph-based
systems.

The work in [4, 1], concerned with compositionality and modularity ques-
tions, also addresses some similar semantic issues. It does, however, require that
hierarchical graphs are extended to include, for each node, a set of “interface
points.” Here, we do not wish to rely on this kind of non-standard extension.
Instead we develop, explain and formalise our solution in terms only of the de-
vices, known as “stubs” or “loose edges”, which are already used in practice and
have been adopted in UML and other applications.

Thus, our work relates closely to Harel’s original formulation of higraphs [6]
and to the notions of “zooming out” and “loose higraph” which were briefly and
informally introduced therein. We have formalised these structures in [11, 2, 12].
After recalling our previous analyses and results from [12], our work here extends
our theory and develops new results. This is necessary, as we argue below, in
order to address important practical applications of higraphs which lie beyond
the scope of Harel’s original brief treatment. The latter focused zooming on
only a limited class of higraphs (those arising from Statecharts), but which are
clearly too restricted for other important applications, including the hierarchical
entity-relationship (ER) modelling of complex databases, also from [6].

The utility, nonetheless, of the framework of concepts and techniques which
we develop here extends beyond higraphs. The concept of hulls, for instance,
which is introduced and studied below, naturally pertains, more generally than
higraphs, to other graph-based notations which feature intersecting vertices.
There has been increasing computational interest in such notations, one recent
example being the Constraint diagrams [3] for use alongside UML.

In the following section we recall the most basic notions of higraph and
zooming, and we motivate the need for developing more subtle higraph structures
so as to support uses of zooming in reasoning. Meet higraphs, such suitably
sophisticated structures, are developed in Section 3. Hulls, a related but more
widely applicable concept, is independently developed in Section 4. In Section 5,
we define a zooming operation appropriate to meet-higraphs and prove the main
theorem asserting its intuitive universal property. A notion of dynamics for our
higraphs and the main theorem relating the dynamics of a meet higraph and
those of its zoom-out is the subject of Section 6. Finally, in the concluding
section we remark on how our work can benefit the development of software
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(d) Simple zoom-out
of blob A in (a).

Fig. 1. Interpretation, completion and zooming on a higraph.

tools for higraph-based, as well as other diagrammatic notations. Owing to space
considerations, some proofs and lemmas are delegated to an Appendix.

2 Higraphs, Zooming and Reasoning

Higraphs are structures extending graphs by permitting spatial containment
among the nodes. Since their introduction by Harel [6] as a foundation for Stat-
echarts [5], higraphs have rapidly become prominent structures in computing.
Beyond Statecharts and UML, their diverse applications include notations for
the entity-relationship diagrams [6] of database theory and knowledge repre-
sentation, and for reasoning with temporal logics [8], as well as programming
languages, such Argos [9].

We recall from [11] the definition of an (ordinary) higraph:

Definition 1. A higraph is a quadruple (B, E; s, t : E → B), where B and E
are posets and s, t are monotone functions. ��

We refer to the elements of B as blobs and to those of E as edges, while
the functions provide for each e ∈ E its source s(e) and target t(e). The partial
order on B captures containment, and thus b ≤ b′ is interpreted as asserting the
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containment of b in b′, which trivially includes the case of b and b′ being the same
blob. The partial order on the edges is of lesser importance for the purposes of
the present paper. More broadly, however, it is a justified generalisation over
pictorial intuition and, as detailed in [11], also a necessary device in studying
completion (Fig. 1(c)) and “conflicts” among the edges. We write b < b′ to mean
(b ≤ b′ and b �= b′). Therefore, b �< b′ holds when b ≥ b′ or when b and b′ are
unrelated by the partial order. The spatial containment of blobs is commonly
referred to as depth.

Example 1. Fig. 1(a) may be seen as the pictorial representation of the higraph
with blobs {A, B, C, D, E, F} where B, C, D < A; edges {e1, e2, e3, e4} where
e2 < e1; s(e1) = E, t(e1) = A, s(e2) = E, t(e2) = C, and so on. ��

Note, however, that

A

B and B

A

are both pictorial represen-
tations of the same higraph. That is, the definition of higraph does not account
for non-trivial intersections [6]. (We say that two blobs b1 and b2 in a higraph
intersect trivially whenever there is a third blob b3 contained in both b1 and b2.)
Yet, the need for intersections often arises most naturally in the diagrammatic
modelling of computing structures, and particularly of complex and interrelated
datasets, as is evident in ER modelling with higraphs [6] and in constraint mod-
elling [3].

Also in computing, higraphs are employed as uncluttered representations of
(the graphs which underlie) complex state-transition systems. The basic idea
behind such efficient, higraph-based representations is to generalise the notion
of transition from individual states to whole collections of states. Each such
collection, concretely represented as a blob which in turn contains other blobs,
corresponds to a (conceptual or actual) sub-system.

Example 2. A higher-level edge such as the one from A to F in Fig. 1(a) is
understood as implying lower-level edges, in this case from each of the blobs
B, C and D contained in the sub-system represented by A, to the target blob
F. Thus, the higraph of Fig. 1(a) concisely represents the transition system in
Fig. 1(b). ��

In general, this relationship of the underlying transition system to its rep-
resentation as a higraph is understood in terms of completing a higraph with
the addition of all implied edges. This completion operation, which we charac-
terised mathematically in [11], is illustrated in Fig. 1(c) (in which added edges
are shown dashed).

We therefore seek a notion of dynamics (i.e. of state-transition behaviour) for
higraphs which implicitly contains the behaviour of the represented transition
system. Central to the dynamics, as well as to more “static” interpretations, is
a notion of a path appropriate for higraphs:

Definition 2. A path in a higraph is a finite sequence 〈e0, . . . , en−1〉 of edges
such that t(ei) ≤ s(ei+1) or s(ei+1) ≤ t(ei), i.e. the target t(ei) of ei is contained
in the source s(ei+1) of ei+1, or vice versa. ��
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One of the most fundamental operations on higraphs is that of zooming
out [6]. The idea is that one often wants to eliminate all structure contained
within a given (i.e. selected) blob in a higraph. More precisely, zooming results
in the selected blob becoming atomic (or minimal) by identifying with it all
the blobs it contains. Fig. 1(d) illustrates the result of zooming out of A in
the higraph of Fig. 1(a). Because abstraction of subsystems is such an essential
device in reasoning about complex systems, and zooming is such a natural way
of effecting this kind of abstraction on higraphs, the practical importance of
zooming in reasoning is profound.

In order, however, to soundly infer results about the dynamics of a higraph
from the dynamics of its zoom-out, one must know precisely which paths in
latter higraph also exist in former. In other words, it is imperative that any
reasonable operation of zooming-out does not introduce paths in a way which
may lead to false inferences. So, in Section 6, once the terms in its statement
have been precisely defined, we prove a generalisation of the following

Theorem: Whenever a higraph µ, in which blobs may intersect, zooms out
to a higraph µ′, then every (must-)path in µ′ is reflected (i.e. is the image of) a
(must-)path in µ.

Unfortunately, this requirement is failed by the simple, almost naive notion
of zooming-out which we have so far outlined:

Example 3. Observe that zooming has created the path 〈e2, e3〉 from E to itself
in Fig. 1(d) which does not exist in the original higraph of Fig. 1(a). ��

In response to this problem, we require a more subtle notion of higraph which
permits edges to be loosely attached to blobs. Zooming out of blob A in Fig. 1(a)
now results in the loose higraph of Fig. 2. Here, the understanding is that the
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Fig. 2. Zoom-out of the higraph in Fig. 1(a) as a loose higraph.

suppressed target of e2, indicated as having been some blob originally contained
in A, may have not been the same as the suppressed source of e3. (We note in
passing that, should an edge had existed between, say, B and C in Fig.1(a), it
would have appeared as a loose edge from A to itself in Fig.2. For the purposes of
our semantic analysis, as well as mathematically natural reasons, we retain such
completely loose edges in our definitions. To remove them, as implementations
of zooming typically do, a further operation may easily be defined and which
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composes with our basic notion of zooming.) Thus, in contrast with ordinary
higraphs where only one notion of path exists, the introduction of loose edges
deliberately creates a distinction between two notions of path: must-paths (i.e.
certain paths), such as 〈e1, e4〉 in Fig. 2, and may-paths, such as 〈e2, e3〉. Observe
also that 〈e1, e3〉 is a must-path, as e1 implies edges to all blobs contained in
A, including the suppressed source of e3. In terms of the above distinction, we
consequently demand at least that the theorem above holds of loose higraphs
and must-paths.

To obtain this important result in general, a further extension to the notion
of (loose) higraph is still required. Problematic situations, which are not resolved
by the introduction of loose edges alone, still arise when blobs intersect by means
of having common sub-blobs.

Example 4. Fig. 3(a) illustrates a (loose) higraph, where blobs A and B intersect
by means of containing D. Zooming out of A in that loose higraph produces,

A

C D
B

FE
e’ e

G
e’’

(a) A (loose) higraph featuring blob in-
tersection.

E

G

F
BAe’

e’’

e

(b) Problematic zoom-out of
blob A in (a)

Fig. 3. The problem of intersecting blobs.

rather unexpectedly, the result of Fig. 3(b), in which a must-path 〈e, e′〉 has
been created that did not previously exist. ��

The problem in the preceding example is caused by the inclusion of A into
B in Fig. 3(b), which occurs as a side-effect of identifying D with A, owing to
the intuitive coherence requirement that zooming must also respect the original
containment of D in B. Thus, any reasonable notion of zooming here must not
identify D with A (or with B, in the case of zooming out of B). Intuitively, resolv-
ing the situation requires the identification of D with a new entity representing
the intersection of A with B in the picture of Fig. 4. Thus, we have argued that,
generally, zooming necessitates an extension to higraphs which substantiates
blob intersections.

3 Meet Higraphs

In response, the present paper develops the notion of a higraph with meets, and
its “loose” variant, together with an appropriate operation of zooming-out. To



398 John Power and Konstantinos Tourlas

A
B

FE
e’ e

G
e’’

Fig. 4. Intuitive zoom-out of Fig. 3(a).

explicitly account for a notion of intersection among blobs (which, in particular,
includes trivial intersections), we first endow the poset B in Definition 1 with
meet semi-lattice structure, thus resulting in the following:

Definition 3. A meet higraph consists of: a poset E; a finite, ∧-semi-lattice
B; and monotone functions s, t : E → B. ��

A
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E F

D

e

e’

G

Fig. 5. Meet higraph in which blobs A and D intersect trivially.

Example 5. Fig. 5 represents a meet higraph with underlying ∧-semi-lattice
having elements {A, B, C, D, E, F, G, A ∧ B, B ∧ C, A ∧ B ∧ C, A ∧ D,⊥}, and
where G < A, E < A∧B∧C, A∧D < A, and so on; ⊥ is the least element (which
is, by convention, not pictured); A∧G = G, F ∧E = . . . = F ∧D∧E = . . . = ⊥
and so on; s(e) = A ∧ D and s(e′) = D. ��

To illustrate the subtle difference between Definitions 1 and 3, the following
example compares and contrasts the relation of the two notions of higraph wrt.
the usual pictorial representation and intuition:

Example 6. Consider the four-point ∧-semi-lattice shown as a Hasse diagram
in (a) below. Regarded as a meet higraph with no edges, it corresponds to the
picture shown in (b) below. By contrast, when regarded as an ordinary higraph
without edges it corresponds to the picture (c):
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Further, to capture the notion of selecting a blob (or, more generally, inter-
section region) in a meet higraph we introduce the following:

Definition 4. A pointed meet higraph is a meet higraph (B, E; s, t : E → B)
together with a distinguished element p of B, called the point. ��

We have informally argued in Sec. 2 that the effect of zooming on a pointed
meet higraph should be to identify each blob strictly contained in the point with
the intersection of certain blobs that contain it. In zooming out of A in Fig. 5,
for instance, one intuitively expects that G becomes identified with A, and E
with A ∧ B ∧ C. To make this idea precise, we introduce and study in the next
section the salient and topologically natural notion of hull.

4 Hulls

Definition 5. Let X be finite, ∧-semi-lattice and x0 ∈ X. For every x ≤ x0,
the hull of x relative to x0 is the meet of all elements not strictly less than x0

which are greater than or equal to x:

hullx0(x) def=
∧

{x′ | x′ �< x0 and x ≤ x′} ��

Example 7. Taking X to be the ∧-semi-lattice underlying the example of Fig. 5
and x0 to be the blob labelled ‘A’, one has hullA(G) = A, hullA(E) = A∧B∧C,
hullA(A) = A, hullA(A ∧ D) = A ∧ D and so on. ��

To establish some of the intuition behind Def. 5 and facilitate the under-
standing of subsequent technical proofs, we record in the following Lemma and
its corollary three basic properties of hulls (while deferring their proof to the
Appendix).

Lemma 1. For every finite ∧-semi-lattice X and x, x0 ∈ X such that x ≤ x0:

1. x ≤ hullx0(x) ≤ x0

2. hullx0(hullx0(x)) ≤ hullx0(x). ��

Corollary 1. For all x ≤ x0, hullx0(hullx0(x)) = hullx0(x). ��
The concept of hull is not only central to the more sophisticated notion of

zooming which is sought here. Being a topologically natural concept, it is a
particularly natural notion to associate not only with meet higraphs, but also
with many other notions of graph which feature intersections.

To formalise the connection between hulls and the sought notion of zooming
which emerged from the analysis in the previous section, we consider first the
simple case of a pointed meet higraph with no edges. Every such meet higraph is,
in essence, a pointed, finite, ∧-semi-lattice 〈B, p〉. Then, in this degenerate case
of no edges, the required operation of zooming out of p should have precisely the
effect of identifying each b ≤ p with hullp(b). (This may be seen by recalling the
transition from Fig. 3(a) to Fig. 4 while ignoring all edges in the two pictures.)
The following definition makes this construction explicit:
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Definition 6. Given a pointed, finite ∧-semi-lattice 〈X, x0〉, define a function
ζ〈X,x0〉 : 〈X, x0〉 → 〈X, x0〉 as follows:

ζ〈X,x0〉(x) def=
{

hullx0(x), if x ≤ x0

x, otherwise

Beyond being monotone (Lemma 3, Appendix), each function ζ〈X,x0〉 in-
herits, as a corollary of Lemma 1 above, properties which intuitively include
idempotency: ζ〈X,x0〉 ◦ ζ〈X,x0〉 = ζ〈X,x0〉.

Regarding 〈B, p〉 as a pointed meet higraph without edges we may now pre-
cisely, with the aid of the function ζ〈B,p〉, capture its “zoom-out” ζ(〈B, p〉), as
in the following:

Definition 7. For every pointed, finite ∧-semi-lattice 〈X, x0〉 define ζ(〈X, x0〉)
to be the pair 〈Xζ , x0〉, where Xζ is the sub-poset of X with elements all those
x ∈ X such that ζ〈X,x0〉(x) = x. ��
Example 8. For 〈X, x0〉 as in Example 7, Xζ = X \ {E, G}. ��

For this construction to be meaningful in our context one must establish that
Xζ is a sub-∧-semi-lattice of X and that x0 ∈ Xζ , thus making each ζ(〈X, x0〉)
a finite, pointed ∧-semi-lattice. Indeed, it is not hard to prove the following

Proposition 1. For every finite, pointed ∧-semi-lattice 〈X, x0〉, the poset Xζ of
Definition 7 is a sub-∧-semi-lattice of X. Moreover, x0 ∈ Xζ , and for all x ≤ x0

in Xζ , hullx0(x) = x. ��
The statement hullx0(x) = x in the preceding proposition asserts, in agree-

ment with one’s intuition about zooming, that the point of ζ(〈B, p〉) is minimal,
in the specific sense that all hulls relative to it are trivial. To make this notion
of minimality precise before discussing its intuitive appeal, we introduce the
following

Definition 8. The point x0 in a pointed, finite, ∧-semi-lattice 〈X, x0〉 is mini-
mal (with respect to hulls) if hullx0(x) = x for all x ≤ x0. ��

The reader is urged to observe the difference between this hull-specific no-
tion of minimality and the usual order-theoretic one (x ∈ X is order-theoretically
minimal in X whenever x′ ≤ x =⇒ x′ = x for all x′ ∈ X). In particular, min-
imality wrt. hulls does not not imply minimality in the order-theoretic sense.
Instead, the notion of minimality in Def. 8 alludes an intuitive notion of “pic-
torial minimality” expressed in terms of the spatial containment of contours
representing blobs in pictures of meet higraphs.

Example 9. Consider again the ∧-semi-lattice underlying the example of Fig. 5.
The point corresponding to the blob labelled ‘A’ in the same figure is not minimal
wrt. hulls, as hullA(E) = A∧B∧C. By contrast, the point labelled ‘D’ is minimal
wrt. hulls, as D ∧ A is the sole element less than D and hullD(D ∧ A) = D ∧ A.
Neither A nor D, however, are minimal in the usual order-theoretic sense. Yet,
the contour labelled D in the figure is “pictorially minimal” in the intuitive sense
of not wholly containing the contour of any other blob.
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Before proceeding to considering edges, we explicate (Theorem 1, below) the
universal property associated with Def. 7. It arises from the minimality (wrt.
hulls) property of the point in each ζ(〈X, x0〉), and will be much useful later.

Definition 9. Let SLfin,∧
� denote the category having objects all finite, pointed

∧-semi-lattices, and arrows f : → 〈X, x0〉〈Y, y0〉 all monotone functions f : →
XY which, in addition, preserve points and hulls: i.e., f(x0) = y0 and ∀ x. x ≤
x0 =⇒ f(hullx0(x)) = hully0(f(x)). Further, let SLfin,∧

�,min denote the full sub-
category of SLfin,∧

� consisting of all those objects 〈X, x0〉 in which the point x0

is minimal in the sense of Def. 8. We write J for the full and faithful functor
including SLfin,∧

�,min into SLfin,∧
� . ��

Noteworthy here for its central role in subsequent development, and for ex-
plaining how the elements of each 〈B, p〉 map to elements in its “zoom-out”
ζ(〈B, p〉), is the following family of morphisms:

Definition 10. For each finite, ∧-semi-lattice 〈X, x0〉 let η〈X,x0〉 : 〈X, x0〉 →
J(ζ(〈X, x0〉) be the morphism in SLfin,∧

� defined by x ∈ X �→ ζ〈X,x0〉(x). ��
The statement of the following Theorem is now the expression, in very precise

terms, of the intuitive understanding of ζ(〈X, x0〉) as obtained from 〈X, x0〉 by
making the point x0 minimal wrt. hulls, but without otherwise disturbing the
structure of 〈X, x0〉:
Theorem 1. The function ζ : Obj (SLfin,∧

� ) → Obj (SLfin,∧
�,min) of Def. 7 extends

to a functor ζ : SLfin,∧
� → SLfin,∧

�,min which is left adjoint to J . The unit η of the
adjunction has components the morphism of Def. 10.

Proof. Consider any arrow f : 〈X, x0〉 → J(〈Y, y0〉) in SLfin,∧
� and any x ∈

X such that x ≤ x0. Since all hulls in 〈Y, y0〉 are trivial (wrt. y0), it follows
from f(x) ≤ f(x0) = y0 that hully0(f(x)) = f(x). Preservation of hulls by
f now yields: f(hullx0(x)) = hully0(f(x)) = f(x). Thus, we have shown that
∀ x. x ≤ x0 =⇒ f(hullx0(x)) = f(x). From this it follows easily that there exists
morphism f � : ζ(〈X, x0〉) → 〈Y, y0〉 in SLfin,∧

�,min such that f = J(f �) ◦ η〈X,x0〉.
Since each η〈X,x0〉 is epi, this factorisation is unique. ��

5 Loose Meet Higraphs and Zooming-Out

Having introduced hulls and the mechanics of zooming-out in the restricted case
of meet higraphs with no edges, we proceed to treat the general case. While,
as we argued in Sec. 2, the addition of “loose edges” to ordinary higraphs is
in itself insufficient, loose edges are still a necessary device in developing a full
solution to the problem of reasoning with the aid of zooming-out abstraction. We
therefore begin by allowing edges in our meet higraphs to be loosely attached,
thus resulting in a corresponding notion of loose meet higraph.

Consider again the loose higraph of Fig. 2. We recall from [2, 12] that every
such loose higraph with blobs B can be formally cast as an ordinary higraph
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having the same edges but containing two distinct copies 〈0, b〉 and 〈1, b〉 of each
b ∈ B, tagged with 0’s and 1’s. In the pictorial representation of loose higraphs
the convention is that blobs tagged with 0 are not shown at all and that, for
instance, an edge with target of the form 〈0, b〉, such as e2 in Fig. 2 with target
〈0, A〉, has its endpoint lying inside the contour picturing b. Formally,

Definition 11. Given any poset B define poset B� as having underlying set
{0, 1} × B, and partial order generated by the following two rules:

– 〈0, b〉 < 〈1, b〉 for all b ∈ B; and
– 〈1, b〉 ≤ 〈1, b′〉 whenever b ≤B b′ in B.

Further, define the “projection” πB : B� → B as mapping both 〈0, b〉 and 〈1, b〉
to b, for each b ∈ B. The function (−)� extends to an endofunctor on Poset, by
taking (f : A → B)� to be the monotone map sending 〈i, a〉 to 〈i, f(a)〉. ��

We shall use b, b′, b1, . . . to range over the poset B and v, v′, v1, . . . to range
over B�. Using this auxiliary poset structure we can now make precise the defi-
nition of a meet higraph with loosely attached edges:

Definition 12. A meet higraph with loosely attached edges (or loose meet
higraph for short) is a quadruple (B, E; s, t : E → B�) where: E is a poset; B is
a finite, ∧-semi-lattice; and s, t : E → B� are functions making both πB ◦ s and
πB ◦ t monotone. A pointed, loose meet higraph µ� = 〈µ, p〉 consists of a loose
meet higraph µ = (B, E; s, t : E → B�) together with a distinguished element
p ∈ B called the point. ��

Example 10. In the loose meet higraph of Fig. 4, one has s(e′) = 〈0, A〉, s(e′′) =
〈0, A ∧ B〉, t(e) = 〈1, B〉, and so on. ��

We now seek a notion of morphism for pointed loose meet higraphs which
smoothly extends the morphisms of Def. 10 to the new setting. In addition to
components fE , fB which map the elements (edges and blobs) that are visible
in pictures, such a morphism f must also have a component fB� which also
maps the invisible elements. While fB� cannot, in general, be monotone (as
〈0, b〉 �≤ 〈0, b′〉 even when b ≤ b′), it must at least be consistent with fB and
well-behaved with respect to hulls. Making this precise, we have:

Definition 13. A morphism f : 〈µ0, p0〉 → 〈µ1, p1〉 of pointed loose meet hi-
graphs, where µ0 = (B0, E0; s0, t0 : E0 → B0

�) and µ1 = (B1, E1; s1, t1 : E1 →
B1

�), consists of: a monotone function fE : E0 → E1; a monotone and hull-
preserving function fB : B0 → B1; and a function fB� : B0

� → B1
�. These data

are subject to the following conditions:

– sources and targets of edges are preserved: e.g., s1 ◦ fE = fB� ◦ s0;
– fB preserves the point and fB� is consistent with fB: fB ◦ πB0 = πB1 ◦ fB�;
– fB� reflects hulls, in the sense that fB�(v) = 〈1, hullp1(fB(b))〉 implies v =

〈1, hullp0(b)〉 for all b ≤ p0 in B0 and v ∈ B0
�. ��
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Morphisms of pointed, loose higraphs compose component-wise and have ob-
vious identities. Thus one has a category LMH� of pointed loose meet higraphs.

In the last section we described how zooming out of a pointed meet higraph
without edges makes the point in 〈B, p〉 minimal wrt. hulls in ζ(〈B, p〉), subject
to the universal property of Thm. 1. A contrasting look at figures 3(a) and
4 confirms one’s intuition that a similar universal property must hold in the
general case of zooming out of an arbitrary loose meet higraph µ�. This is what
we prove in the remainder of this section, starting with defining how the sources
and targets of edges in µ� are appropriately fixed in the zoom-out Z(µ�):

Definition 14. Let µ� = 〈µ, p〉 be a pointed loose meet higraph with µ being
(B, E; s, t : E → B�). Formally, Z(µ�) is the pointed loose meet higraph given by
(Bζ , E ; ηB� ◦ s , ηB� ◦ t : E → Bζ

�) and point p ∈ Bζ , where ηB� : B� → Bζ
�

is the function sending each 〈i, b〉 ∈ B� such that b �∈ Bζ to 〈0, η〈B,p〉(b)〉; and to
〈i, η〈B,p〉(b)〉 otherwise. (Recall that η〈B,p〉, regarded here as a monotone function
from B to Bζ , is defined in Def 10 and that Bζ is the ∧-semi-lattice underlying
ζ(〈B, p〉) in Def 7.) ��

Example 11. The preceding definition formalises how the source of an edge such
as, say, e′′ in Fig. 3(a) is fixed to 〈0, A ∧ B〉 in Fig. 4, after its original source
〈1, D〉 becomes identified with 〈0, hullA(D)〉 = 〈0, A ∧ B〉 as a result of zooming
out of blob A. ��

With LMH�,min we shall denote the (full) subcategory of LMH� consisting
of all pointed, loose meet higraphs in which the point is minimal in the sense
of Def. 8. Thus the function Z in Def. 14, being a function from the objects of
LMH� to those of LMH�,min , formalises the intuitive understanding of zooming
out as reducing the point of µ� to a minimal (wrt. hulls) point in Z(µ�). More-
over, it does so without otherwise disturbing the structure of µ�. Before proving
this universal property of Z in Thm. 2 below, we need an intuitive mapping (i.e.
morphism) from each µ� to its zoom-out:

Definition 15. Let I be the (fully faithful) inclusion functor LMH�,min →
LMH�. For each object µ� = 〈µ, p〉 of LMH�, where µ = (B, E; s, t : E → B�),
define a morphism ηµ� : µ� → I(Z(µ�)) with the following components: (ηµ�)E =
idE : E → E ; (ηµ�)B = η〈B,p〉 (where η〈B,p〉 is the morphism of Def 10 regarded
here as a monotone, hull preserving function from B to Bζ) ; and (ηµ�)B� is the
function ηB� in Def. 14. ��

Theorem 2. The function Z : Obj (LMH�) → Obj (LMH�,min) extends to a
functor which is left adjoint to I, with unit being the morphisms ηµ� of Def. 15.

Proof. (Sketch) Given any morphism f : µ� → I(µ′
�), where µ� and µ′

� are ob-
jects of LMH� and LMH�,min respectively, define a morphism f � : Z(µ�) → µ′

�

in LMH�,min as having the following components: f �
E maps each e ∈ E to fE(e);

f �
B is the induced by the adjunction in Thm. 1, unique morphism f �

〈B,p〉 : B → B′
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such that f �
B ◦ (ηµ�)B = fB; and f �

B� = fB� ◦ ι〈B,p〉 where ι〈B,p〉 is the inclusion
of ζ(〈B, p〉) = 〈Bζ , p〉 into 〈B, p〉.

In addition to f �
E ◦ (ηµ�)E = fE and f �

B ◦ (ηµ�)B = fB, which hold straight-
forwardly, one also has (Lemma 5, Appendix) that f �

B� ◦ (ηµ�)B� = fB� . Thus,
f = I(f �)◦ηµ� . As each component of ηµ� is epi, f � is moreover the unique mor-
phism in LMH�,min with this property, and the proof concludes with an appeal
to Theorem IV.2(ii) of [7]. ��

The preceding result directly parallels the corresponding theorem in [12] for
(non-meet) loose higraphs. What, however, the new notion of zooming on loose
meet higraphs makes possible, over and above previous work in [12], is the ability
to fully relate the semantics before and after a zoom-out, as we show next.

6 Dynamics of Loose Meet Higraphs

In this section we make precise the dynamics, i.e. transition semantics, of loose
meet higraphs by introducing a notion of run akin to similar notions in use with
ordinary (“flat”) transition systems. In an ordinary higraph, or a meet higraph,
a run is essentially a sequence of edges (transitions) together with the blobs
(or states, in the popular jargon of most applications) which are traversed by
performing the transitions:

Definition 16. A run through a meet higraph (B, E; s, t : E → B) is a finite
sequence of the form b0

e1−→ b1
e2−→ . . .

en−→ bn where, for all 1 ≤ i ≤ n, bi−1 ≤B

s(ei) and bi ≤B t(ei). ��

Example 12. In Fig. 1(a) (regarded trivially as a meet higraph), E
e1−→ A

e4−→ F

is clearly a run, as is E
e1−→ D

e3−→ E because s(e3) = D < A = t(e1). Similarly,
E

e2−→ C
e4−→ F is also a run because t(e2) = C < A = s(e4). ��

In ordinary transition systems, the sequence of states traversed is implicit
in the notion of path (i.e. connected sequence of transitions). In higraphs and
meet higraphs, where higher-level edges are taken to imply lower-level ones, as
is implicit in the joining condition bi−1 ≤B s(ei) and bi ≤B t(ei) of Def. 16
above, the notion of path no longer provides adequate state information, hence
the need for a notion of “run”. Suggestive of dynamics though its name might
be, we wish to stress that the mathematical structure of runs also pertains, by
subsuming the notion of path, to more static interpretations of higraphs.

Recall (Section 2) how the introduction of loosely attached edges incurs a
distinction between must- and may-paths. Intuitively, the idea is that a may-path
may perish, in the sense of becoming disconnected, when one makes explicit the
suppressed end-points of every loose edge in the path. In Fig. 2, for instance,
one may introduce two new, distinct blobs C and D contained in A, so as to
make t(e2) = 〈1, C〉 and s(e3) = 〈1, D〉, thereby making 〈e2, e3〉 a non-path. By
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contrast, a must-path must persist, no matter how one attaches its loose edges
to newly introduced blobs.

A similar distinction between must-runs and may-runs through a loose meet
higraph is therefore necessary. Here we concentrate on must-runs only:

Definition 17. A must-run through a pointed, loose meet higraph µ�, where µ
is (B, E; s, t : E → B�), is a sequence of the form 〈i0, b0〉 e1−→ 〈i1, b1〉 e2−→ . . .

en−→
〈in, bn〉, where 〈ij , bj〉 ∈ B� and ej ∈ E, subject to the following conditions:

1. for all 1 ≤ j ≤ n, 〈ij , bj〉 ≤ t(ej) and 〈ij−1, bj−1〉 ≤ s(ej); and
2. π0(t(ej)) = 1 or π0(s(ej+1)) = 1 for all 1 ≤ j < n, where π0 is the projection

mapping each 〈i, b〉 ∈ B� to i. ��

Example 13. Consider Fig. 2, this time as representing a (pointed) loose meet
higraph. While 〈1, E〉 e1−→ 〈1, A〉 e4−→ 〈1, F 〉 is a run, the sequence 〈1, E〉 e1−→
〈1, A〉 e3−→ 〈1, E〉 isn’t because it violates the first condition in Def. 17. However
〈1, E〉 e1−→ 〈0, A〉 e3−→ 〈1, E〉 is a run, as is 〈1, E〉 e1−→ 〈0, A〉 e4−→ 〈1, F 〉. But
〈1, E〉 e2−→ 〈0, A〉 e3−→ 〈1, E〉 is not, as it violates the second condition. ��

The following theorem now establishes precisely how each must-run through
Z(µ�) is the image of a corresponding must-run through µ�:

Theorem 3. Every must-run through I(Z(µ�)), where µ is (B, E; s, t : E →
B�), is of the form ηµ�(v0)

e1−→ ηµ�(v1)
e2−→ . . .

en−→ ηµ�(vn), for some run
v0

e1−→ v1
e2−→ . . .

en−→ vn through µ�, where ηµ� is the component at µ� of the
unit of the adjunction of Theorem 2.

Proof. (Sketch) Let v̂0
e1−→ v̂1

e2−→ . . .
en−→ v̂n, where v̂j ∈ Bζ

�, be an arbitrary
run through Z(µ�). Take v0 = 〈i0, πB(s(e1))〉. Calculation establishes v0 ≤ s(e1)
and ηµ�(v0) = v̂0. Similarly take vn = 〈in, πB(t(en))〉. For 1 ≤ j < n, each vj is
obtained by an application of Lemma 6 in the Appendix. ��

7 Conclusions

Of particular importance to practitioners is the kind of semi-formal, tool-assisted
reasoning which consists of the progressive simplification of a diagram, by repeat-
edly using abstraction, until either a counter-example is reached or the property
can easily be proven. The potential for error in this style of reasoning is great,
and so supporting tools must intervene to prohibit any unsound steps or in-
ferences. To do so, we have argued using higraphs as concrete examples, tools
must often maintain internal representations (such as meet higraphs) which are
more sophisticated than the user’s notation. Also, such tools must know how the
semantics of a zoom-out relates to the semantics of the original diagram. Here
we have developed such a semantics and precise relationship based on, but not
limited to, the common interpretation of higraphs as transition systems. More
generally, we have argued, our work also applies to other notations, particularly
those which feature intersections among vertices.
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Appendix: Technical Lemmas and Proofs

Meet Higraphs and Hulls

The following are simple properties arising from the definitions of hull (Def. 5)
and of the functions ζ〈X,x0〉 (Def. 6):
Lemma 1. For every finite ∧-semi-lattice X and x, x0 ∈ X such that x ≤ x0,
the following hold:

1. x ≤ hullx0(x) ≤ x0

2. hullx0(hullx0(x)) ≤ hullx0(x).
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Proof. Fix arbitrary x ≤ x0.

– To show (1), observe that x ≤ ∧{x′ | x′ �< x0 and x ≤ x′} because
x is a lower bound of that set. Moreover, one clearly has x0 ∈
{x′ | x′ �< x0 and x ≤ x′}, and thus hullx0(x) ≤ x0.

– For showing (2) observe that, for all x′ such that x′ �< x0 and
x ≤ x′, one has hullx0(x) ≤ x′ (by the very definition of
hullx0(x) as a meet). Hence, the following inclusion of sets holds:
{x′ | x′ �< x0 and x ≤ x′} ⊆ {x′ | x′ �< x0 and hullx0(x) ≤ x′}, from which
one obtains hullx0(hullx0(x)) ≤ hullx0(x).

Lemma 2. Given any elements x1, x2, x0 in a finite ∧-semi-lattice such that
x1 ≤ x2 ≤ x0, one has hullx0(x1) ≤ hullx0(x2).

Lemma 3. Each function ζ〈X,x0〉 is monotone.

Proof. Arbitrarily fix x1, x2 ∈ X such that x1 ≤ x2. As one always has x2 ≤
ζ〈X,x0〉(x2) (by Lemma 1(1) and Definition 6), we show that ζ〈X,x0〉(x1) ≤ x2 by
case analysis:

1. x1, x2 ≤ x0. Monotonicity follows from Lemma 2 above.
2. (x1 ≤ x0 and x2 �≤ x0). In this case hullx0(x1) ≤ x2 because x2 is an

element of the set {x′ | x′ �< x0 and x1 ≤ x′}. It follows from Definition 6
that ζ〈X,x0〉(x1) = hullx0(x1) ≤ x2.

3. x1 �≤ x0 and x2 �≤ x0. In this case, trivially, ζ〈X,x0〉(x1) = x1 ≤ x2.

Lemmas Used in the Proof of Theorem 2

Lemma 4. Let f : 〈µ0, p0〉 → 〈µ1, p1〉 be a morphism in LMH�, where 〈µ1, p1〉
is minimally pointed wrt. hulls. Then, for all b ≤ p0 the following two hold:

1. fB�(〈0, b〉) = 〈0, fB(b)〉; and
2. b �∈ Bζ =⇒ fB�(〈1, b〉) = 〈0, fB(b)〉.

Proof. From b ≤ p0, monotonicity of fB and preservation of points by fB it
follows that fB(b) ≤ p1, whereby, from the minimality (wrt. hulls) of p1, one has

fB(b) = hullp1(fB(b)) . (1)

To show (1) assume fB�(〈0, b〉) �= 〈0, fB(b)〉 and derive a contradiction. The only
possibility is fB�(〈0, b〉) = 〈1, fB(b)〉 whereby, from equation (1) and condition
(3) of Def. 13, it follows that 〈0, b〉 = 〈1, hullp0(b)〉: a contradiction, as 0 �= 1.

To show the contrapositive of (2) assume fB�(〈1, b〉) �= 〈0, fB(b)〉. The only
possibility is fB�(〈1, b〉) = 〈1, fB(b)〉 whereby, from equation (1) and condition
(3) of Def. 13, it follows that 〈1, b〉 = 〈1, hullp0(b)〉, eqivalently b = hullp0(b),
equivalently b ∈ Bζ by Def 7.
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Lemma 5. Let f �
B� , (ηµ�)B� and fB� be as in the sketched proof of Thm 2.

Then f �
B� ◦ (ηµ�)B� = fB� .

Proof. For notational simplicity, we abbreviate ηµ� to just η in the course of this
proof. Consider now arbitrary 〈i, b〉 ∈ B�.

– In the case of b ∈ Bζ , the equation (f �
B� ◦ ηB�)(〈i, b〉) = fB�(〈i, b〉) is estab-

lished by straightforward calculation from the definitions of f, η, ι and f �.
– Assume now that b �∈ Bζ . Then, by the definition of η (recall also Def. 6), it

must be that b ≤ p, where p the point of µ� in Thm. 2. One now has (f �
B� ◦

ηB�)(〈i, b〉) = f �
B�(ηB�(〈i, b〉)) = f �(〈0, ηB(b)〉) by definition of η. Further, by

two applications of Lemma 4 above (to f � and f respectively), it follows that
fB�(〈0, b〉) = 〈0, fB(b)〉 = 〈0, f �

B(ηB(b))〉 = f �
B�(〈0, ηB(b)〉) and thus that

(f �
B� ◦ ηB�)(〈i, b〉) = fB�(〈0, b〉) . (2)

In the case of i = 0, equation (2) immediately yields the desired result. When
i = 1, on the other hand, b �∈ Bζ and Lemma 4(2) above yield fB�(〈1, b〉) =
〈0, fB(b)〉 = (f �

B� ◦ ηB�)(〈1, b〉) because of equation (2) above.

Lemmas Used in the Proof of Theorem 3

Lemma 6. Let µ� be (B, E; s, t : E → B�) with point p; e1, e2 ∈ E and v̂ ∈ Bζ
�.

If e1−→ v̂
e2−→ is part of a must-run through Z(µ�) (i.e. v̂, the target t′(e1) of e1

in Z(µ�), and the source s′(e2) of e2 in Z(µ�) satisfy the conditions in Def. 17),
then there exists v ∈ B� such that ηµ�(v) = v̂ and e1−→ v

e2−→ is part of a must-run
through µ�.

Proof. Having arbitrarily fixed µ�, we abbreviate as just η the morphism ηµ� of
Def. 15. We also write, for brevity, tB and sB for the composites πB ◦t and πB ◦s
respectively. Recalling from the definition of Z(µ�) (Def. 14) that s′ = ηB� ◦ s
and t′ = ηB� ◦ t, we proceed by case analysis:

1. Case π0(t′(e1)) = 1. Then, by the definitions of t′ and ηB� , one must have
t(e1) = t′(e1). If also π0(s′(e2)) = 1 then, similarly, s(e2) = s′(e2) and one
can simply take v = v̂. If, on the other hand, one assumes π0(s′(e2)) =
0 then, from condition v̂ ≤ s′(e2) and Def. 11, it follows that one must
also have v̂ = s′(e2). Now, from condition v̂ ≤ t′(e1), it follows that one
must have s′(e2) ≤ t′(e1) which, in turn, implies ηB(sB(e2)) ≤ ηB(tB(e2)).
Taking v = 〈0, sB(e2)〉 one therefore immediately has v ≤ s(e2), as required.
Further, v ≤ 〈1, sB(e2)〉 ≤ 〈1, ηB(sB(e2))〉 ≤ 〈1, ηB(tB(e1))〉 = t′(e1) =
t(e1) because of the definition of ηB (Def 10), and Def. 6. Finally, ηB�(v) =
ηB�(〈0, sB(e2)〉) = 〈0, ηB(sB(e2))〉 = s′(e2) = v̂.

2. Case π0(t′(e1)) = 0. It follows from Def. 17 that one must have π0(s′(e2)) =
1. In that case one takes v = 〈0, tB(e1)〉 and the proof proceeds in a manner
similar to that of the previous case above.
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