Compositional Circular Assume-Guarantee
Rules Cannot Be Sound and Complete

Patrick Maier

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany
maier@mpi-sb.mpg.de

Abstract. Circular assume-guarantee reasoning is used for the composi-
tional verification of concurrent systems. Its soundness has been studied
in depth, perhaps because circularity makes it anything but obvious.
In this paper, we investigate completeness. We show that compositional
circular assume-guarantee rules cannot be both sound and complete.

1 Introduction

The goal in compositional verification of concurrent systems is to prove that a
complex system, a parallel composition of several subsystems, satisfies a complex
property, a conjunction of several simpler properties. In principle, verification
tools can attack such a goal directly, at least if the complex system is finite still.
However, the state space of the system may be exponentially larger than that
of any subsystem — a phenomenon called state explosion — which may cause
verification to become intractable in practice. Compositional verification tries
to use the modular structure of complex systems and properties to decompose
intractable verification tasks into a bunch of smaller, hopefully tractable sub-
tasks; ideally, each subtask only establishes properties of a single subsystem in
isolation. Later, one deduces from all these subtasks via a suitable proof rule
that the original complex system satisfies the desired complex property.

Systems, Properties. We model systems and properties uniformly as elements
of S = (S, A, 1, <), a meet-semilattice with one, i.e., a partial order (S, <) with
greatest element 1 in which the greatest lower bound x Ay of any two elements x
and y exists. In this model, the expression z < y can have three different readings
depending on whether x and y denote systems or properties, respectively. If both
are systems then z < y means that x refines y, if both are properties then it
means that x entails ¢, and if x is a system and y a property then x < y expresses
that x satisfies y. Likewise, x A y denotes composition if x and y are systems, it
denotes conjunction if z and y are properties, and if = is system and y a property
then x Ay — z constrained by y — is the coarsest refinement of = that satisfies
y. Thus, all we require of systems (properties) is that refinement (entailment)
is an order and that composition (conjunction) is an associative commutative
and idempotent operation which respects the order. Section @lwill show that this

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 343-B57, 2003.
© Springer-Verlag Berlin Heidelberg 2003

344 Patrick Maier

abstract algebraic setting already suffices for proving incompleteness of circular
assume-guarantee reasoning. In particular, no notion of computation is required,
unlike in the proofs for soundness.

Example 1. Meet-semilattices are a natural model for systems and properties.
For instance, in (linear-time) temporal verification, often one views systems and
properties as languages over some non-empty (and possibly infinite) alphabet
X, In this setting, refinement and entailment correspond to language inclusion,
and composition and conjunction correspond to language intersection, so we
have a meet-semilattice structure. How that meet-semilattice actually looks like,
depends on the type of properties we want to verify.

By the characterization in [3], safety properties are expressible as prefix-
closed *-languages. I.e., a safety property may be viewed as a subset L of X*
such that for all w € X* if w belongs to L then all prefixes of w belong to
L, too. So for verification of safety properties, the meet-semilattice is the set of
prefix-closed *-languages (over X). Note that these are exactly the languages
generated by (possibly infinite) labeled state transition graphs, which are a nat-
ural representation of systems. In general, when verifying arbitrary temporal
properties, the meet-semilattice will be the set of w-languages (over X), i.e., the
power set of X*. Here, natural representations of systems and properties are
some more elaborate variants of state transition graphs, for instance fair transi-
tion systems [I4] or (possibly infinite state) w-automata [19]. O

Proof Rules. In general, there are two kinds of proof rules for compositional
verification, non-circular and circular ones. We show some examples to demon-
strate the difference. Let s1,s2 € S be systems and p1,ps € S properties and
suppose we want to verify that the composition of s; and s satisfies the con-
junction of p; and py. (@) shows two non-circular rules for this purpose. Both
rules decompose the goal into two subgoals, where the subgoals of the first rule
state that system s; satisfies property p;, or in other words: s; guarantees p;. The
second rule differs only in the second subgoal, which states that sy constrained
by p; satisfies ps, or in other words: if p; is assumed then so guarantees p, —
hence the wide-spread term assume-guarantee rule.

s1 <p1 s2 < p2 s1 <1 p1 A S2 < p2
81N\ s2 < p1 Ap2 s1 N\ Sz < p1 Ap2

(1)

Going one step further and also introducing an assumption in the first subgoal,
we obtain the circular rule (2).

p2As1 < p1 p1 N\ Ss2 < pa2
81N\ 82 < p1 Ap2

(2)

Unlike the non-circular rules, (@) is unsound; for instance, if both systems are
1, the greatest element in S, and both properties are equal and different from
1 then both premises hold but the conclusion does not. As soundness is indis-
pensable, rule (@) must be restricted by a side condition which excludes cases as

Compositional Circular Assume-Guarantee Rules 345

the one above. Such circularity-breaking side conditions do exist; in fact, quite
a number of restricted variants of (@) are proven sound (by induction usually)
in the literature, see [IM4JTT[17/20] to name just a few.

Completeness. As there are many variants of sound circular assume-guarantee
rules, the question arises whether some are better than others. An important
criterion for rating rules is the restrictiveness of the side condition; if the side
condition is overly restrictive the rule is applicable to few cases only, hence it
is considered worse than a variant with a less restrictive side condition (as long
as that variant is sound still). In the best case, the rule is complete, i.e., the
side condition is true whenever premises and conclusion are true. Thus, the
side condition of a complete rule does not restrict the rule unnecessarily since
it is true whenever the rule should be applicable. Note however, that the side
condition is not redundant in complete rules; it may still be indispensable for
proving soundness.

Compositionality. Recall that compositional verification seeks to reduce a
large, intractable goal into many smaller subgoals. The rules in (Il) and (2)
support this approach as the premises of these rules are less complex than their
conclusions. In particular, no premise involves the composition of the systems
s1 and s9 any more, so verification of the subgoals is more likely to be tractable
than direct verification of the goal. However, when using a circular rule which is
restricted by a side condition, it does not suffice to verify the subgoals that arise
from the premises; additionally, we need to prove that the side condition holds. It
may be the case that this proof requires to consider both systems simultaneously
— e.g., for establishing some mutual exclusion property — and thus involves
some aspects of the composition, which is against the spirit of compositional
verification. Therefore, a rule can be called compositional only if checking the side
condition is possible without taking into account both systems simultaneously,
i.e., only if the side condition is expressible as a boolean combination of sub-
conditions, each of which involves at most one of the systems.

Plan. Section Pl formally presents proof rules which are restricted by a side
condition and defines soundness and completeness. Section [3 specifies what we
mean by circular assume-guarantee reasoning in the context of compositional
verification and formalizes the precise requirements for rules to be compositional.
Section @ proves the main result that compositional circular assume-guarantee
rules cannot be both sound and complete. Finally, Section [discusses related
work and Section [l concludes. Proofs which have been omitted here due to lack
of space can be found in [I3].

2 Inference Rules

Terms, Formulas. We fix a set of variables Var. Terms are built inductively
from variables in Var, the nullary operator T, called top, and the binary operator

346 Patrick Maier

M, called meet. We consider top neutral w.r.t. meet, which is seen as associative,
commutative and idempotent. We call a term t atomic iff ¢ is a variable or t is
top. By wvar(t), we denote the set of variables occuring in ¢, and we say that a
term ¢’ is a subterm of t iff var(t’) C var(t).

A formula ¢ is a pair (t,t') of terms, written as ¢t C t'. We refer to ¢ as the
left-, to t' as the right-hand side of p. We denote the set of variables occuring in
@ by var(p), i.e., var(y) = var(t) U var(t’), and for every set of formulas &, we
define var(®) = U g var(p).

Truth, Entailment. We fix S = (S,A,1,<), a non-trivial meet-semilattice
with one. By Val, we denote the set of valuations, i.e., the set of total functions
from Var to S. We extend a valuation a to terms in the canonical way, i.e.,
a(T) =1 and a(t; Mt2) = a(t1) A a(tz). Note that we may view any term ¢ as
a total function from Val to S by defining the function application ¢(«) as «f(t).

We say that a formula ¢t C ¢’ is true under a valuation «, denoted by a
tCt,iff a(t) < a(t"). We extend truth to sets of formulas, i.e., a E @ iff a |E ¢
for all p € @.

We say that @ entails ¥, denoted by & = ¥, iff for all & € Val, o = & implies
a = . We say that @ is equivalent to ¥, denoted by & = ¥, iff & = ¥ and
¥ = @. Note that in sets of formulas the operators top and meet are redundant
on right-hand sides since for terms ¢, t/, ¢}, we have the equivalences {t C T} =0
and {t C#, Nty = {t T H tC).

Relations. Let X, Y and Z be sets and n € N. Given n functions fi,..., fn :
X — Y and an n-ary function g : Y™ — Z, we define the n-ary composition of
g and f1,..., fn as the function g[f1,..., fn] : X — Z such that for all z € X,
91, or fal(@) = gUF (@), ful2)):

Let n € N, let ¢1,...,t, be n terms and let C : 8™ — {0,1}, i.e., C is
the characteristic function of an n-ary relation on S, the carrier of our fixed
meet-semilattice S. Viewing terms as functions from Val to S, the function
Clt1y...,tn] + Val — {0,1} is well-defined — it is the characteristic function
of some set of valuations — and we say that C is associated with the terms
t1,...,t,. Note that for every enumeration x1, ..., x,, of a superset of the vari-
ables occuring in the terms t1,. .., , there is a unique function C’ : S™ — {0, 1}
such that C’[x1,...,2m] = C[t1,...,t,]. Therefore, without loss of generality,
we may assume that the associated terms are variables.

A relation I' is an n-ary function C' : S™ — {0, 1} associated with n variables
X1y, Xy, loe, I'=Clay,. .., z,]. We denote the set of variables occuring in I’
by var(I'), i.e., var(I') = {x1,...,2n}.

We define a notion of truth for relations, similar to the one for formulas.

We say that a relation C[z1,...,x,] is true under a valuation «, denoted by
a = Clzr,. .., zy], M Clzy,. .., 2,]() = 1. Rewriting this with the definition of
n-ary composition, we see that o = Clxy,...,z,] iff C(a(z1),...,a(z,)) = 1.

We say that a relation I' is true iff a |= I' for all a € Val. Note that every set of
formulas @ may be expressed by an equivalent relation I's with var(I's) = var(®),
where for all valuations «, a = @ iff a = I's. However, relations are strictly more

Compositional Circular Assume-Guarantee Rules 347

expressive than formulas. For instance, inequality of two distinct variables and
y is not expressible by formulas, i. e., there is no set of formulas & such that for
all « € Val, a = @ iff a(zr) # a(y).

Inference Rules. An inference rule (or rule, for short) R is a triple (@, 4, I"),
where the premises @ are a finite set of formulas, the conclusion 1 is a formula,
and the side condition I is a relation. We say that R is syntactic iff the side
condition I" is true. We write a rule R as R : /v if I" or

R: W if Clz1,..., 2]

when @ = {¢1,...,¢m} and I' = Clz1,...,2,]. If R is syntactic then we may
omit the side condition and write R : @/v, simply. Without loss of generality
we will assume that the right-hand sides of all premises are atomic and that
var(y) U var(I') C wvar(P), i.e., every variable of the conclusion or the side
condition occurs in the premises.

Soundness, Completeness. Let R : @/ if I' be an inference rule. We say
that R is sound iff for all valuations o, o = @ and o = I" implies o = 9. We say
that R is syntactically sound iff @ = 1. Note that syntactical soundness implies
soundness, and every sound syntactic rule is syntactically sound.

We say that R is complete iff for all valuations «, o = @ and « = ¢ implies
a = I'. Note that every syntactic rule is complete, trivially. Also note that
for syntactically sound rules completeness is not an issue, as every syntactically
sound rule R : @/ if I' can be transformed by omitting the side condition into
the (sound and complete) syntactic rule R’ : ¢/1). Hence, there is no reason why
a syntactically sound rule should be restricted by a side condition.

Example 2. Assume that S = (S, A, 1, <) is the four-element meet-semilattice
which is not a chain. Let sq, s2, p1 and ps be four distinct variables, where we
think of the s; as representing systems and of the p; as representing properties.
We define the rules Ry and Rs, where

p2ls1 Epr p11s2 £ p2
s1Ms2 E p1Mp2

Ry, if Cx[s1,s2,p1,p2]

and for all a,b,¢,d € S, Ci(a,b,¢,d) = 1 iff ¢ and d are incomparable, and
Ca(a,b,c,d) =1 iff aAb < c and a Ab < d. Both rules are sound as both side
conditions are restrictive enough to prevent unsound circular reasoning. Ro is
trivially complete as Cy[s1, s2, p1, p2] is equivalent to the conclusion. However,
R; is incomplete as, for instance, it is not applicable to the (trivial) case when
both properties equal 1. Note that the relation C[s1, 2, p1, p2] is not expressible
by formulas, which demonstrates that the language of side conditions is more
expressive than languages of premises and conclusions. a

348 Patrick Maier

s1 L p1 s2 L p2

p2lls1 Epr p1Msa E p2

Rs : Rg
s1Ms2 & p1Mpe s1Ms2 & p1Mp2
R4.51Ep1 p1Ms2 E po R7.p3|_|81gp1 p1Ms2 E p2
’ s1Ms2 E p1 Mp2 ’ s1Ms2 E p1 Mp2
R5,p3ﬂ51Ep1 p1Ms2 Ep2 Rg,p1I'I81ET p2 C 52
© psMsiMs2CpiNpe © piMsiEsaMpe

Fig. 1. Sample assume-guarantee rules

3 Assume-Guarantee Rules

Assume-Guarantee Rules. We call an inference rule R : ¢/ if I' an assume-
guarantee rule (or A-G rule, for short) iff for all premises ¢ € &, the left-hand
side of ¥ and the right-hand side of ¢ do not share any variables. We call an
A-Grule R: ®/¢ if T circular iff & £ .

Example 3. As the definition of A-G rules does not involve the side condition,
we may illustrate it using syntactic rules only, see figure [[] There, s1, s2, p1, P2
and ps are five distinct variables, where the system/property distinction is as in
example 2

The rules R3, R4 and Ry are non-circular A-G rules. Note the second premise
of Ry, which may be read as assuming the property p1 the system ss guarantees
the property po. Likewise, the conclusion of Rs may be read as assuming ps the
composition of s1 and sy guarantees both p1 and p2. This should explain where
the term assume-guarantee rule comes from.

The rules Rg, R7 and Rs (and also Ry and Rs from example [2) are circular
A-G rules as they are not syntactically sound. The term circular is justified
for Rg, whose premises express circular assume-guarantee dependencies between
the properties p; and ps. For R7y and Rg, however, there is no circularity in the
premises. In the case of R7, unsoundness arises from the unresolved assumption
p3; compare to Rs where that assumption is resolved. Rg is unsound because it
is nonsense, it serves to demonstrate that not every assume-guarantee rule has
a meaningful reading. So, the term circular should not be taken literally, rather
it is an abstraction capturing the most important property of circular assume-
guarantee reasoning, namely its lack of syntactical soundness. ad

The following propositions provide an alternative characterization of circularity
resp. a sufficient criterion for the truth of the premises of an A-G rule.

Proposition 1. An A-G rule R : &/ty, Tty if I' is circular if and only if
D -ty Cx for some x € var(ty').

Proposition 2. Let R : @/t Tt if I' be an A-G rule and let « be a valuation.
If for all x,y € var(P) \ var(ty),

Compositional Circular Assume-Guarantee Rules 349

— & =ty T x implies a(x) =1, and
— Pty Cxand @Bty Ty implies a(x) = a(y),

then o = @.

A-G Rules for Compositional Verification. As has already been hinted in
example[3], for the purpose of verification we distinguish systems and properties,
so we partition our variable set Var into system wvariables s; and property vari-
ables p;. Section M] will show that already the composition of only two systems
exhibits the incompleteness of compositional circular assume-guarantee reason-
ing, so actually we can restrict the variable set to Var = {s1, s2 }W{p1,p2,p3, ... }.

The goal of compositional verification is to establish that the composition
of some systems (in our case, s; and s9) guarantees some property (possibly
assuming some other property). So for an A-G rule to be useful for compositional
verification, s M so must be a subterm of the left-hand side of the conclusion,
which we will implicitly assume henceforth. Thus, without loss of generality we
may assume that an A-G rule R is presented in the form

R: W if C[s1,82,P1,--Dn)
where {s1,s2} C var(ty) and var({e1, ..., @m,ty Cty'}) = {s1,52,p1,- -, Pn}-
The latter requirement can always be achieved by renaming some property vari-
ables and extending and reordering the associated variables in the side condition.
By the definition of A-G rules, var(ty) N var(t’) = 0 for every premise ¢ C ¢/, so
t' € {T,p1,...,pn} as we assume the right-hand sides of premises to be atomic.

Compositionality. Let R : &/ if C[s1, s2,p1,-..,pn] be an A-G rule. We will
call R compositional if it avoids the system composition s; M s3 in the premises
as well as in the side condition. Formally, we say that R is compositional in the
premises iff s1 M s is not a subterm of any left-hand side in @. We say that R
is compositional in the side condition iff C[s1,s2,p1,...,pn] is expressible as a
boolean combination of relations whose associated variables either do not include
s1 or so. L.e., R is compositional in the side condition iff there are r1,72 € N, a
(r1 + r2)-ary boolean function F : {0,1}"7"2 — {0,1} and rq + 72 (n + 1)-ary
functions C},...,C*,CL, ..., Cy? : S — {0,1} such that

C[Sl,SQ,ﬁ] = F[Cll[slvﬁ]v .. .’0;1 [Slvﬁ]vc’%[SQaﬁ]v .. '7052 [SQaﬁH (3)

where p abbreviates the enumeration py, ..., p,. We say that R is compositional
iff it is compositional in the premises and in the side condition.

One may think of the above functions CF as abstracting the system s; to-
gether with the properties p1,...,p, to a boolean value. Actually, we can relax
the above definition of compositionality in the side condition from boolean to
arbitrary finitary abstractions C¥. I.e., R is compositional in the side condi-
tion iff there are a finite set D and ri,7o € N and F : D"t — {0,1} and
Ct,...,C1+,CL ..., C5? : S"1 — D such that the equation (3) holds.

350 Patrick Maier
2 3 4
Fig. 2. Forks of width 0 to 4

Example 4. Recall the A-G rules R; to Rg from the examples2land Bl All these
rules are compositional in the premises, and the syntactic rules R3 to Rs are
compositional in the side condition, trivially. The rule R; is also compositional
in the side condition but Rs is not. O

4 Incompleteness of Compositional Rules

Forks. We say that Y C S is a fork iff there is x € Y such that for all y,z € Y,
y # z implies © = y A z; if YV is infinite then we say that Y is a fork of infinite
width, otherwise the size of Y is m € N and we say that Y is a fork of width
m — 1. Note that if S contains a fork of infinite width then it also contains forks
of width m for every m € N.

Example 5. Some forks of finite width are depicted in figure[2l Note that if S
is a chain then it contains only forks of width 1, and if S is the power set meet-
semilattice of an arbitrary set X then it contains forks of infinite width iff X is
infinite. In particular, the meet-semilattice of w-languages over some alphabet
X (see example [) contains forks of infinite width iff X' is not unary. The same
holds for the meet-semilattice of prefix-closed *-languages over X. This is so
because if X is unary then the prefix-closed *-languages form a chain. And if X
contains the distinct letters a and b, then Y = {a*} U {a* Ua’b* | i € N} is a
fork of infinite width. O

In order to prove our main theorem, we need two lemmas. Lemma Bl is purely
combinatorial, it states the infeasibility of particular boolean equation systems.
Lemma [forms the core of the main theorem. Provided that the semilattice
S contains forks of sufficient width, it reduces the existence of a sound and
complete circular A-G rule R which is compositional in the side condition to
feasibility of a boolean equation system, which is known to be be infeasible by
Lemma [Bl This contradiction implies that R must be unsound or incomplete.

Lemma 3. Let m,n € N and F : {0,1}™"" — {0,1}. Then the system of
equations Er over the variables uf (0 < i < gmin{m.n} 1 < f < m) and vé
0<y< gmin{m.n} | <] < n) has no solutions, where Er is defined as

Er —{F(ug,...7uzn,v]1,...7v;") =1 ‘ Ogl,j §2min{m,n}’i7éj}
U{F(u%»~~o7UT,U3,...7U?) =0 ‘ 1 SZSZmIH{m,n}}

Compositional Circular Assume-Guarantee Rules 351

Lemma 4. Let R : &/¢ if C[s1,82,p1,...,0n] be a circular A-G rule. Let
ri,re € N, let F: {0,1}71%2 — {0,1} be a (r1 + r2)-ary boolean function
and let C{,...,C*,C3,...,C3? : STt — 10,1} be (n + 1)-ary functions such
that

0[517327 } [Cl [317 L...,0;1[81,ﬁ}7021[82,]ﬂ7...7052[52,]5}] (4)

where p stands for pi,...,pn. If S contains a fork of width 2™™{"172} then R is
unsound or incomplete.

Proof. Without loss of generality we may assume that there is m € {0,...,n}
such that for all j > 1, & =t C p; iff j < m, where t,, is the left-hand side of
1. In what follows, we sketch a proof by contradiction.

Assume that R is sound and complete and let Y C S be a fork of width
gmin{rira}t e Y = {xg,x1,..., 2o} with 7 = min{r;, 72} such that for all
1,7 > 0 with ¢ # j, xo = z; A z;. By Lemma [B] we know that the system of
equations

{F(u},...,uf*vf, ... v2) =1]0<d,j < 2mintrorat £ g

U{F(u},...,ul",vf, ... 0f2) =01 < <gmin{rira}y

7 Yo i

()

over the variables uf and v (0 <i,j <omin{rirel 1 <k <y 1 <1< ry) has
no solutions. However we W111 show that there is a solutlon to (B), namely with
C¥(x;, 1,330) resp. C’Q(xj, 1,330) as the values of u} resp. v , where 1 abbreviates
thelist 1,...,1 of length m, and zy abbreviates the list g, . . ., o of length n—m.
For all i,j € {0, ce 2mi“{”’”‘}}, we define a valuation ;; such that o;;(s1) = s,
aij(s2) = x5, aij(p1) =+ = aij(pm) =1 and o (pm+1) = -+ = @ij(pn) = To.

First, let 4,5 € {0,...,2™{rm2}) with 4 # j. Then we can show a;j =@
(by Proposition P)) and «;; = 9. Hence by completeness, a;; = C[s1, s2,p], i.¢.,
C[s1,82,p)(cvi;) = 1, which by (@) expands to the equation

F(Cf(:,1,70),...,C* (24, 1,@0), Ca (25, 1,@0), ..., C32(x5,1,70)) = 1.

Second, let i € {1,...,2m»{ .72} Then we can show a;; |= @ (by Proposition 2)
and «ay; £ 9 (using Proposition[dl). Thus, soundness forces a;; = C|s1, s2, 7], i. .,
Cls1, s2, p](ci;) = 0, which by () expands to the equation

F(CH(2:,1,%0), ..., C* (24, 1,%0), Cs (24,1, %0), . . ., C32 (w4, 1, 70)) = 0.
Thus, the system of equations (H) indeed has a solution, which ends this proof
by contradiction. a

We have shown that an A-G rule which is compositional in the side condition
cannot be both sound and complete — provided that the semilattice S contains
forks of sufficient width. The latter is the case trivially whenever S contains a
fork of infinite width.

Theorem 5. If S contains forks of infinite width then there exists no sound and
complete compositional circular assume-guarantee rule.

Proof. Follows from Lemma /[l a

352 Patrick Maier

5 Discussion of Related Work

Incompleteness of Other Rules. Our setting of inference rules in meet-
semilattices is a very abstract one. Most circular A-G rules in the literature
are presented in more concrete settings, i.e., they use more structure than just
meet and order — and that extra structure is usually indispensable for proving
soundness by a circularity-breaking induction. This raises the question to what
extent our incompleteness result is relevant for such concrete rules.

We claim that most circular A-G rules can be transformed — preserving
soundness and compositionality — into equivalent circular A-G rules in meet-
semilattices which contain forks of infinite width. Incompleteness of the trans-
formed rule then points out a defect of the original rule: There must be cases
in which the original rule is not applicable although soundness is not in danger.
Below, we will exemplify two such transformations.

Various circular A-G rules have been proposed for settings, where systems
and properties are presented as some form of transition graphs enriched with
input and output, e. g., Moore or Mealy machines [11/J9] or Reactive Modules [4].
These rules establish certain refinement relations, e.g., trace containment or
simulation, between compositions of transition graphs. Thereby, composition is a
partial operation, which is defined only if the components satisfy some condition
called compatibility. These compatibilities form an implicit side condition to the
A-G rules, which is made explicit by the transformation. We demonstrate this
in the following example by means of the transformation of a circular A-G rule
for Moore machines.

Example 6. Let X be a finite set of variables, ranging over an arbitrary non-
empty domain D. A Moore machine M is a (possibly infinite) state transition
graph with input variables Iy C X and output variables Oy C X, where the
nodes resp. edges of the graph are labeled by valuations of the output resp. input
variables; for a formal definition see for instance [9IT1]. Naturally, one associates
a trace language [M] C £* with M, where & = D¥ is the set of valuations of
all variables. The parallel composition M || M3 of two Moore machines M; and
M, corresponds to language intersection, i.e., [M; || M2] = [Ma] N [M2]. Note
that M, || Ms is defined only if My and M, are compatible, i.e., Oy, and Oy,
are disjoint.
For Moore machines with trace semantics, the following circular proof rule
is known:
[Pl S]] [P lSa] € [P2]
[S1 11 S2] € [P || 2]

(6)

where S1, S, Pi, P> are Moore machines such that all parallel compositions
in (B) are defined. We transform this rule into the A-G rule Rpoore for the
meet-semilattice (P(X*),N, X*, C), the power set of X*:

p2ls1 Epr p1M1s2 E pa
RMoore-
81 M s £ py Mpe

if F[Cls1],C[p], Clss], Clpa]

Compositional Circular Assume-Guarantee Rules 353

where D = P(X)W{L} is a finite set and C' : P(X*) — D is a finitary abstraction
mapping each L € P(X*) to the least set of output variables Oy such that M is a
Moore machine with [M] = L; if no such Moore machine exists then C(L) = L.
The function F : D* — {0, 1} is defined by F(Os,,0,,,Os,,Op,) = 1 iff

Os, # 1L and Op, # L and O,, # 1 and O,, # L
and O, N Og, = Oy, NOp, = Op, N0y, = Oy, N O, = 0.

RMoore 18 a compositional circular A-G rule according to Section [3] Circularity
and compositionality in the premises are obvious. Compositionality in the side
condition holds as obviously there exist functions C¥ : P(X*)? — D such that

F[C[s1],Clp1], Clsz], Clp2]]
= F[C{[s1,p1,p2), CT[s1,p1, p2), C3 [s2, p1, p2], C3[s2, p1, p2]].-

Moreover, soundness of Rpioore can be reduced to soundness of the original
rule (@), and vice versa, so both rules are applicable in exactly the same cases.
To see how soundness of Rpyoore reduces to (B, consider the premises and side
condition of Ryjoore t0 be true under a valuation . Then there are Moore ma-
chines S; and P; such that [S;] = a(s;) and [P;] = a(p;) and S1 and So,
P, and P, P, and S; as well as P; and S; are compatible, i.e.; all parallel
compositions in (Bl are defined. Furthermore, we have [P] N [S1] C [P1] and
[Pi]N[S2] C [P:], which by language intersection and soundness of (@) implies
[S1 1] S2] C [P || P2], which in turn by language intersection implies that the
conclusion of Ryjoore is true under «. To show the converse reduction, let S; and
P; be Moore machines such that all parallel compositions in (@) are defined, i.e.,
S1 and S, P; and P», P> and S; as well as P; and S are compatible. Obviously,
soundness of (@) follows by language intersection and soundness of Rpjoore-

As the proof rule (@) has been proven sound in [11], Ryoore is a sound and
compositional circular A-G rule. Thus by Theorem [B, Ryioore is incomplete be-
cause the meet-semilattice (P(X*),N, X* C) contains forks of infinite width.
Hence there are cases in which circular reasoning is admissible yet the rule ()
is not applicable, due to partiality of parallel composition. a

Other kinds of circular A-G rules focus on temporal logics to present properties
(and sometimes systems also), see for instance [I[2/T0]. In order to break the
circularity, such rules usually employ so-called assume-guarantee specifications,
i.e., formulas of the form ¢ > where > is a special temporal operator ensur-
ing that during any computation the guarantee 1 holds at least one step longer
than the assumption . In our meet-semilattice setting, we cannot express A-G
specifications in the premises of inference rules. However, we can move A-G spec-
ifications to the side condition, where their truth is expressible as a relation. In
the following example, we demonstrate this transformation on a simple circular
rule for A-G specifications.

Example 7. Let AP be a non-empty set of atomic propositions. We say that
Y = P(AP) is the set of states, and X is the set of computations. A system

354 Patrick Maier

is a set of computations, and the parallel composition of two systems S; and
Sy is their intersection S; N Ss. Likewise, a property is a set of computations,
and we say that a property P entails another property @ iff P C . We may
represent certain properties by formulas in linear-time temporal logic (LTL),
which are constructed from atomic propositions by means of boolean operators
and the standard temporal operators X (next-time), U (until), F (eventually) and
G (always); for a formal definition of syntax and semantics of LTL see for instance
[B]. Henceforth, we will identify a formula ¢ with the property it represents.

Given two formulas ¢ and v, we define the assume-guarantee specification
> as an abbreviation of the formula —(¢U—), cf. [I8]. The temporal operator
> satisfies the following (in)equalities:

pY =P A (9= X)) (7)
Ge A (p>9) C Gy (8)
From the fix-point equation ([), we can read off that o> is the weakest property

where 1 holds strictly longer than ¢ along every computation.
For A-G specifications, the following circular proof rule is known:

S1 C a1 Sa2 C 1 > o
Sl ﬂSQ QG(Qpl /\(pQ)

9)

where Sy, Sy are systems and ¢, o are LTL formulas. We transform this
rule into the A-G rule Ry for the meet-semilattice of systems and properties
(P(Z¥),N, 2%, C):

pallsy E ps p3Ms2 Cpy

Ry
81189 & p3Mpy

if Cll[slvpla"‘apd *021[8271)17"'7]94]

where * : {0,1}2 — {0,1} denotes multiplication (i.e., conjunction in logical
terms) and the functions CF : P(X«)5 — {0, 1} are defined by

Cll(Sl,Pl,PQ,Pg,P4):1iﬁP3=GP1 andP4:GP2 and S, QPQDPM
CQI(SQ,Pl,PQ,Pg,P4) =1iff s =GP, and P, = GP, and Sy C P, > Ps.

Note that the equality P3 = GP; is supposed to hold iff there exists an LTL for-
mula ¢ such that ¢ and Gy; represent the properties P; and Ps, respectively;
Py = GP, is to be interpreted similarly.

Obviously, Ry is a compositional circular A-G ruld] according to Section Bl
Moreover, soundness of Ry can be reduced to soundness of the original rule (@),
and vice versa, so both rules are applicable in exactly the same cases. To see
how soundness of R reduces to (@), consider the premises and side condition of
Ry to be true under a valuation . Then there are LTL formulas ¢; such that
Gy1 = a(ps) and Gps = a(ps) and a(s1) € w2 > @1 and a(s2) C @1 > @a. Using
soundness of (@), we infer a(s1) N a(s2) € G(e1 A @2), which implies that the

! The trivial premises p1 C T and p2 C T have been omitted from the definition of
Ry, for the sake of readability.

Compositional Circular Assume-Guarantee Rules 355

conclusion of Ry is true under a. To show the converse reduction, let S; and ;
be systems and formulas, respectively, such that the premises of rule (@) hold.
By (8), these premises imply Gypa NS1 C Gy and Gy NSe C Gea, respectively.
Using soundness of Ry, we infer S1 N S C Gy N Gys, which is equivalent to
the conclusion of ().

As the proof rule (9) is sound, cf. [I6/18], Ry is a sound and compositional
circular A-G rule. Thus by Theorem (] Ry is incomplete because the meet-
semilattice (P(X¥),N, X« C) contains forks of infinite width. As a consequence,
the rule (@) does not capture all sound circular reasoning patterns, i.e., there
are cases in which circular reasoning is admissible yet (@) is not applicable. O

In short, this paper shows that compositionality implies incompleteness. Yet, we
did not encounter any complete rule except for the rather trivial rule Ry from
example [2. This raises the question whether non-trivial sound and complete
circular A-G rules do exist at all. They do — in [12], we present a very general
sound and complete circular A-G rule for certain classes of lattices. Of course,
that rule must be non-compositional; in fact, it is non-compositional both in the
premises and in the side condition. Still, that general rule can be instantiated to
many known circular A-G rules, no matter whether they are compositional or
not.

Other Notions of Completeness. When some complex system should be
verified against a conjunction of properties, one usually applies backward rea-
soning, i.e., one matches the verification goal against the conclusion of a proof
rule and from the premises and the side condition one infers the subgoals that
need to be established. In [1§], the authors investigate a notion of completeness
that characterizes rules which always enable backward reasoning, so we will term
this notion backward completeness. Adopted to our setting, a rule R : &/ if I’
is called backward complete iff for all valuations «, « = ¢ implies o = @ and
o/ = T for some valuation o/ which agrees with o on the variables of 1. Thus,
truth of the conclusion implies that the premises and the side condition can be
made true through choosing (i. e., guessing) appropriate values for the auziliary
variables, 1. e., for those variables in the premises that do not occur in the conclu-
sion. Note that backward completeness does not distinguish premises and side
condition, whereas this distinction is essential for our notion of completeness.
Our notion of completeness relates more to forward reasoning, i.e., from
prior knowledge which subsystems guarantee which properties assuming which
other properties, we want to infer that the complex system guarantees a conjunc-
tion of properties. A complete rule (in the sense of this paper) will enable this
inference whenever the conclusion is consistent with our knowledge. Still, our
incompleteness result bears some significance for backward complete rules. For
arule R: @/ if I' without auxiliary variables, i. e., var(y) = var(®), backward
completeness implies completeness. Thus, as a consequence of Theorem [l every
sound and backward complete compositional circular A-G rule necessarily needs
to employ auxiliary variables. In other words, backward reasoning with compo-
sitional circular rules is likely to require guessing auxiliary assertions about the

356 Patrick Maier

system. I.e., one trades the lower complexity of the (decomposed) system for a
higher complexity of the proof search.

6 Conclusion

We have shown that sound and compositional circular assume-guarantee rules,
presented as inference rules restricted by an arbitrary side condition, cannot
be complete. I.e., the side condition of a compositional rule, no matter how
elaborate it is, cannot capture all cases where circular reasoning is admissible.
Consequently, two important criteria for rating the quality of inference rules work
against each other in the realm of circular reasoning. Upon designing assume-
guarantee rules, this raises the question whether we should settle for composi-
tionality or rather for completeness. The answer depends on the intended use of
the rule.

Over the years, the practicality of circular assume-guarantee reasoning as a
technique for compositional verification has been documented in a number of
case studies, see [7;8,15} to name a few. In most cases, these assume-guarantee
rules were tailored for model checking, and as model checkers particularly suffer
from the infamous state explosion problem, the designers of the rules focussed on
(automatic) system decomposition rather than on completeness. Consequently,
these rules avoid to generate subgoals that involve a composition of subsystems.
Here, compositional rules whose side conditions can be checked efficiently (but
are not too restrictive) seem to be very appropriate. There are tools that suc-
cessfully employ such incomplete compositional rules, e. g., in the verification of
thread-parallel software [6]. To some extent, the loss of completeness can be mit-
igated against by human interaction, e. g., in the form of auxiliary annotations
(to the code of the system), which provide more information about the system
so the tools may find better decompositions.

To the best of our knowledge, there is no data available on the practical
use of complete circular assume-guarantee rules in verification. However, in the
case of manual (or almost manual) verification, we see no reason for severely
restricting the power of circular reasoning, so one might prefer a complete rule
over a compositional one. Of course, then one must tackle system decomposition
in the subgoals by other means, e.g., by abstraction. Still, assume-guarantee
reasoning may be superior to direct verification, as the additional assumptions
in the subgoals may enable better abstractions.

Acknowledgement. The author thanks Viorica Sofronie-Stokkermans and An-

dreas Podelski for helpful discussions and comments and Carsten Sinz for support
with theorem provers.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507-534, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Compositional Circular Assume-Guarantee Rules 357

M. Abadi and S. Merz. An abstract account of composition. In MFCS, LNCS 969,
pages 499-508. Springer, 1995.

B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181-185, 1985.

R. Alur and T. A. Henzinger. Reactive modules. In LICS, pages 207-218. IEEE
Computer Society, 1996.

E. A. Emerson. Modal and temporal logics. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 135-191. Elsevier, 1990.

C. Flangan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In ESOP, LNCS 2305, pages 262-277. Springer, 2002.

T. A. Henzinger, X. Liu, S. Qadeer, and S. K. Rajamani. Formal specification
and verification of a dataflow processor array. In ICCAD, pages 494-499. IEEE
Computer Society, 1999.

T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee:
Methodology and case studies. In CAV, LNCS 1427, pages 440-451. Springer,
1998.

T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran. An assume-guarantee
rule for checking simulation. ACM Transactions on Programming Languages and
Systems, 24(1):51-64, 2002.

B. Jonsson and Y.-K. Tsay. Assumption/guarantee specifications in linear-time
temporal logic. Theoretical Computer Science, 167(1-2):47-72, 1996.

P. Maier. A set-theoretic framework for assume-guarantee reasoning. In ICALP,
LNCS 2076, pages 821-834. Springer, 2001.

P. Maier. A Lattice- Theoretic Framework For Circular Assume-Guarantee Reason-
ing. PhD thesis, Universitiat des Saarlandes, 2002. Submitted.

P. Maier. Compositional circular assume-guarantee rules cannot be sound and
complete. Technical Report MPI-1-2003-2-001, Max-Planck-Institut fiir Informatik,
2003.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

K. L. McMillan. Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In CAV, LNCS 1427, pages 110-121. Springer,
1998.

K. L. McMillan. Circular compositional reasoning about liveness. In CHARME,
LNCS 1703, pages 342-345. Springer, 1999.

J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4):417-426, 1981.

K. S. Namjoshi and R. J. Trefler. On the completeness of compositional reasoning.
In CAV, LNCS 1855, pages 139-153. Springer, 2000.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 135-191. Elsevier, 1990.

M. Viswanathan and R. Viswanathan. Foundations for circular compositional
reasoning. In JCALP, LNCS 2076, pages 835-847. Springer, 2001.

	Compositional Circular Assume-GuaranteeRules Cannot Be Sound and Complete
	Introduction
	Inference Rules
	Assume-Guarantee Rules
	Incompleteness of Compositional Rules
	Discussion of Related Work
	Conclusion

