
Towards a Behavioural Theory of Access and

Mobility Control in Distributed Systems

(Extended Abstract)

Matthew Hennessy1, Massimo Merro2, and Julian Rathke1

1 School of Cognitive and Computing Sciences
University of Sussex

matthewh,julianr@cogs.sussex.ac.uk
2 Dipartimento di Informatica

Universitá di Verona
merro@sci.univr.it

Abstract. We define a typed bisimulation equivalence for the language
Dpi, a distributed version of the π-calculus in which processes may mi-
grate between dynamically created locations. It takes into account re-
source access policies, which can be implemented in Dpi using a novel
form of dynamic capability types. The equivalence, based on typed ac-
tions between configurations, is justified by showing that it is fully-
abstract with respect to a natural distributed version of a contextual
equivalence.
In the second part of the paper we study the effect of controlling the
migration of processes. This affects the ability to perform observations
at specific locations, as the observer may be denied access. We show
how the typed actions can be modified to take this into account, and
generalise the full-abstraction result to this more delicate scenario.

1 Introduction

The behaviour of processes in a distributed system depends on the resources
they have been allocated. Moreover these resources, or a process’s knowledge of
these resources, may vary over time. Therefore an adequate behavioural theory of
distributed systems must be based not only on the inherent abilities of processes
to interact with other processes, but must also take into account the (dynamic)
resource environment in which they are operating. In our approach judgements
will take the form

Γ |= M ≈ N,

where N and M are systems and Γ represents their computing environment.
Intuitively this means that M and N offer the same behaviour, relative to the
environment Γ . The challenge addressed by this paper is to give an adequate
formalisation of this idea, where

– the systems M and N are collections of location aware processes, which may
be allocated varying access rights to resources at different locations and may
migrate between these locations to exercise their rights

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 282–298, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Towards a Behavioural Theory of Access and Mobility Control 283

– the computing environment Γ may vary dynamically, reflecting both the
overall resources available to M and N and the evolving knowledge that
users may accumulate of these resources.

This is developed in terms of the language Dpi, [9], a version of the π-calculus,
[13], in which processes may migrate between locations, which in turn can be
dynamically created. As explained in [9] resource access policies in Dpi may
be implemented using a capability based type system; thus in this setting it is
sufficient to develop typed behavioural equivalences in order to capture the effect
of resource access policies on process behaviour. But in this paper we extend the
typing system of [9] by allowing types to be created dynamically and to depend
on received data.

The language Dpi and its reduction semantics is summarised in Section 2,
which relies heavily on the corresponding section of [9]. The typing system, dis-
cussed briefly in Section 3, contains two major extensions to the original typing
system of [9]. The first introduces a new kind of type, rc〈A〉 for registered channel
names, which allows channels names to be used consistently at multiple loca-
tions. The second allows types to be constructed dynamically and be dependent
on received data. Subject reduction still holds for this extended type system.

The second novelty of the paper, in Section 4.1, is a definition of typed action

Γ � M µ−→ Γ ′ � N (1)

indicating that in an environment constrained by the type environment Γ the
system M may perform the action µ and be transformed into N ; the environment
Γ may also be changed by this interaction, to Γ ′, for example by the extrusion of
new resources, or new capabilities on already known resources. Here the actions
µ are either internal moves, τ , or located input or output actions, of the form
k.a?v or (b̃)k.a!v. Informally, the action in (1) is possible if M is capable of
performing the action µ in the standard manner and the environment Γ allows
it to happen.

With these typed actions we can define a standard notion of (weak) bisimu-
lations between configurations, consistent pairs of the form Γ � M ; the formal
definition is given in Section 4 and we use Γ � M ≈bis N to denote that there is
a bisimulation containing the two configurations Γ � M and Γ � N .

The first main result of the paper is that this notion of typed bisimulation
captures precisely an independently defined contextual equivalence, which we
denote by ∼=rbc.

The final topic of the paper is the effect of migration on the behaviour of sys-
tems. In Dpi the migration of processes is unconstrained. The relevant reduction
rule is

k�goto l.P � → l�P �.

Any agent is allowed to migrate from a site k to the site l. Indeed this rule is
essential in establishing the above theorem. For example consider the systems
M1, M2 given by

(new k : K) l�c!〈k〉� | k�a!〈〉 stop� and (new k : K) l�c!〈k〉� | k�stop� (2)

284 Matthew Hennessy, Massimo Merro, and Julian Rathke

where K is the declaration type loc[a : rw〈〉], and Γ an environment which has
read capability at type K on c at l. These are not bisimilar in the environment
Γ , as after exporting the new name k on c at l, that is performing the bound
output action (k)l.c!k, only the former may have the typed action

(Γ ′ � k�a!〈〉 stop�) k.a!〈〉−−−→ (Γ ′ � k�stop�)

where Γ ′ represents the environment Γ updated with the new knowledge of a
at k. Moreover they can be distinguished contextually because of the Γ -context

l�c?(x) .gotox.a?(y) goto l.ω!〈〉� | −

An environment which has read or write capability on a channel at k can auto-
matically send an agent there to perform a test and report back to base. Note
that this test works only because systems allowed by Γ have the automatic abil-
ity to migrate to the site k. If on the other hand migration were constrained, as
one would expect in more realistic scenarios, then these tests would no longer
be necessarily valid and these terms may become contextually equivalent.

There are many mechanisms by which migration could be controlled in lan-
guages such as Dpi. In this paper we introduce one such mechanism, based on a
simple extension of the typing system, which allows us to examine the effect of
such control on behavioural equivalences. We introduce a new location capability
move. Then migration from any location to k is only allowed with respect to an
environment Γ , if in Γ the location k is known with a capability move; we say
Γ has migration rights to k. This idea is easily implemented by using a slight
extension to our typing system, and is sufficient to demonstrate the subtleties
involved when migration is controlled.

The remainder of the paper is devoted to extending the characterisation result
given above, characterising a contextual equivalence using bisimulations, to this
language. The typed actions (1) above are readily adapted to this scenario. Here
we allow, for example, the action

Γ � M k.a!v−−−→m Γ ′ � N (3)

if, in addition to the requirements for (1), the environment has the capability
move for k; intuitively for the environment to see the action (3) it must be able
to move to the site k.

These actions lead to a new bisimulation equivalence, denoted ≈m
bis, and we

can prove

Γ |= M ≈m
bis N if and only if Γ |= M ∼=m

cxt N

where ∼=m
cxt is a suitable modification of the contextual equivalence ∼=rbc; in the

definition of ∼=m
cxt

we only require the equivalence to be preserved in the context
of processes at locations to which the environment has migration rights. Thus
referring to (2) above we will have

Γ |= M1 ∼=
m

cxt
M2

Towards a Behavioural Theory of Access and Mobility Control 285

if Γ does not have migration rights to k. Note that neither of these systems can
give rise to the modified typed actions, as given in (3) above.

However it is easy to envisage a natural version of contextual equivalence
which does distinguish between M1 and M2 of (2) above. Although the environ-
ment may not have migration rights to k, it may, apriori, have a process running
there. If this were allowed, and the environment had the appropriate capabil-
ity on the channel a at k then the systems M1 and M2 could be distinguished.
The question then arises of finding a bisimulation based characterisation for this
modified contextual equivalence.

We address a parameterised version of this problem. Let T be the set of lo-
cations at which apriori the environment can place testing processes and let ∼=T

cxt

be the resulting contextual equivalence. Unfortunately this is not characterised
by the natural modification to the equivalence ≈m

bis, which we denote by ≈T
bis. A

counterexample is given in Section 5.2.
It turns out that we must be careful about the location at which information

is learnt. Information about k learnt at l can not be used without the capability
to move to k. However this information must be retained because that move
capability may subsequently be obtained. This leads to a more complicated form
of environment Γ , which records

– locations at which testing processes may be placed, T
– globally available information on capabilities at locations
– similar locally available information.

The details are given in Section 5.2, which also contains a generalisation of the
typed actions of (1) above to these more complicated environments. The final
result of the paper is that the new bisimulation equivalence based on these
actions again captures the contextual equivalence.

In this extended abstract all proofs are omitted, as indeed is most of the
technical exposition of the typing system. The reader is referred to the full
version of the paper, [7], for all the details.

2 The Language Dpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of Dpi from
[9]. This presupposes a general set of names Names ranged over by n, m, and a
set of variables Vars ranged over by x, y; informally we will often use a, b, c, . . .
for names of channels and l, k, . . . for locations or sites. Identifiers, ranged over
by u, v, w, may either be variables or names. The syntax also uses a set of types;
discussion of these is postponed until the next section.

The syntax is built in a two-level structure, the lower level being processes,
agents or threads. The syntax here is an extension of the π-calculus, [9], with
primitives for migration between locations. At this level there are three forms of
name creation:

286 Matthew Hennessy, Massimo Merro, and Julian Rathke

Fig. 1. Syntax of Dpi

M, N ::= Systems
l�P � Located Process
M | N Composition
(new n : T) M Name Scoping
0 Termination

P, Q ::= Processes
u!〈V 〉P Output
u?(X : T)P Input
goto v.W Migration
if u = v then P else Q Matching
(newc n : A) P Channel Name creation
(newreg n : G) P Registered Name creation
(newloc k : K) with C in P Location Name creation
P | Q Composition
∗ P Replication
stop Termination

U, V, W ::= Values
(α1, . . . , αn), n > 0 tuples

α, α′ ::= Generalised Identifiers
u Identifiers
(u1, . . . , un)@u, n ≥ 0 Located Identifiers

– (newca : A) P , the creation of a new local channel name of type A called a.
– (newreg n : rc〈A〉) P , the creation of a new registered name for located chan-

nels of type A. These may be used in the declaration types of locations and
treated uniformly across them.

– (newloc k : K) with C in P , the creation of a new location name k of type K,
with the code C running there, and P as a local continuation. Our typing
system will ensure that K is a well-formed location type; for example this
means that it may only use the registered channel names.

Systems are constructed from located threads, of the form l�P �, representing
the thread P running at location l. These may be combined with the paral-
lel operator | and names may be shared between threads using the construct
(new e : T) .

Reduction Semantics: This is given in terms of a binary relation between closed
systems, system terms which have no free occurrences of variables:

M → N

Towards a Behavioural Theory of Access and Mobility Control 287

Fig. 2. Reduction semantics for Dpi

(r-comm)

k�c!〈V 〉Q� | k�c?(X : T) P � → k�Q� | k�P{|V/X|}�

(r-split)

k�P | Q� → k�P � | k�Q�
(r-c−create)

k�(newc n : A) P � → (new n : A@k) k�P �

(r-move)

k�goto l.P � → l�P �
(r-r−create)

k�(newreg n : G) P � → (new n : G) k�P �

(r-unwind)

k�∗ P � → k�P | ∗ P �
(r-l−create)

k�(newloc l : L) with C in P � →
(new l : L) (l�C� | k�P �)

(r-str)

M ≡ N, M → M ′, M ′ ≡ N ′

N → N ′

(r-eq)

k�if u = u then P else Q� → k�P �

(r-neq)

u �= v

k�if u = v then P else Q� → k�Q�

Fig. 3. Structural equivalence for Dpi

(s-extr) (new n : T) (M | N) = M | (new n : T) N
if n(n) �∈ fn(M)

(s-com) M | N = N | M
(s-assoc) (M | N) | O = M | (N | O)
(s-zero) M | 0 = M
(s-flip) (new n : T) (new n′ : T′) N = (new n′ : T′) (new n : T) N

if n(n) �∈ T′, n(n′) �∈ T

and is a mild generalisation of that given in [9] for Dpi. It is a contextual re-
lation between systems; that is, it is preserved by the static operators | and
(new e : E) . The defining rules are given in Figure 2, one of which uses a struc-
tural equivalence, whose axioms are given in Figure 3.

3 Typing

The collection of types, given in Figure 4, is an extension of those used in [9],
to which the reader is referred for more background and motivation. Note that
the formation of local channel type rw〈T, U〉 requires a subtyping relation <:;
however in the examples of this extended abstract we only use types of the form

288 Matthew Hennessy, Massimo Merro, and Julian Rathke

Fig. 4. Types

Base Types: B ::= int | bool | unit | 	 | . . .
Local Channel types: A ::= r〈T〉 | w〈T〉 | rw〈T, U〉

provided U <: T
Capability Types: R ::= u : A
Location Types: K ::= loc[R1, . . . , Rn], n ≥ 0
Registered Name Types: G ::= rc〈A〉
Value Types: C ::= B | A | G | (Ã)@u | (Ã)@K
Transmission Types: T ::= (C1, . . . , Cn), n ≥ 0

rw〈T, T〉, which we abbreviate to rw〈T〉. But there are four major differences
from [9]:

– We use a top type � for names with no capabilities.
– We use a new category of types, registered name types, to explicitly manage

the resource names which can be shared between different locations.
– The types expressions are allowed to contain variables, thereby giving rise to

what we call dynamic types; the constraints they place on agent behaviour
is determined dynamically by instantiation of these variables.

– The notion of type environment is changed; they do not explicitly contain
associations between names and location types.

A type judgement will take the form Γ � M where Γ is a type environment,
a list of assumptions about the types to be associated with the identifiers in the
system M . Typical examples used in environments include w : rw〈T〉@k, meaning
w is a read/write channel at location k, w : rc〈A〉 meaning w is a registered
channel name, and w : loc meaning that w is a location name. Because of lack
of space in this extended abstract we omit the rules for the judgements; they
may be found in the full version, [7], which also contains a proof of Subject
Reduction.

4 Contextual Equivalence in Dpi

We now turn to the issue of defining a notion of equivalence for our language. In
general the ability to distinguish between systems depends on our knowledge of
the capabilities at the various sites. For example a client who is not aware of the
resource a at the location k will be unable to perceive any difference between
the two systems k�a?(x) P � and k�stop�. Thus, as explained in the Introduction,
we develop notions of equivalences of the form

Γ |= M ≈ N (4)

Towards a Behavioural Theory of Access and Mobility Control 289

where Γ is a well-defined type environment representing the user’s knowledge of
the capabilities of the systems M and N . It is important to realise that Γ may
not contain enough information to type M, N ; it represents that part of the type
environment of these processes which has been released to the user.

A knowledge-indexed relation over systems is a family of binary relations
between closed systems indexed by closed type environments. We write Γ |=
M R N to mean that systems M and N are related by R at index Γ ; moreover
we assume that both M and N are typeable relative to some extension of Γ ;
that is some environment ∆ with the same domain as Γ such that ∆ <: Γ .
The desirable properties of knowledge-indexed relations which we consider are
as follows:
Reduction closure: We say that a knowledge-indexed relation over systems is
reduction closed if whenever Γ |= M R N and M → M ′ there exists some N ′

such that N →∗ N ′ and Γ |= M R N ′.
Context closure: We say that a knowledge-indexed relation over systems is con-
textual if

(i) Γ |= M R N implies Γ, Γ ′ |= M R N

(ii) Γ |= M R N and Γ � O implies Γ |= (M | O) R (N | O)
(iii) Γ, n : T |= M R N implies Γ |= (new n : T) M R (new n : T) N

Note that in this last clause we have used an abbreviation to cover the three
different forms of names which can be declared, local channels, registered names
and locations, each differentiated by the form which T can take. Moreover we
assume that n is new to Γ .
Barb preservation: For any given location k and any given channel a such that
Γ � k : loc and Γ � a : rw〈〉@k we write Γ � M ⇓barb a@k if there exists some
M ′ such that M →∗ (new ñ) (M ′ | k�a!〈〉P �), where k, a do not appear in ñ. We
say that a knowledge-indexed relation over systems is barb preserving if

Γ |= M R N and Γ � M ⇓barb a@k implies Γ � N ⇓barb a@k

These three properties determine our touchstone equivalence:

Definition 1 (Reduction barbed congruence). We let ∼=rbc be the largest
knowledge-indexed relation over systems which is

– pointwise symmetric, that is Γ |= M ∼=rbc N implies Γ |= N ∼=rbc M

– contextual
– reduction closed
– barb preserving �

We will now characterise ∼=rbc using a labelled transition system and bisimulation
equivalence, thereby justifying our particular notion of bisimulations.

290 Matthew Hennessy, Massimo Merro, and Julian Rathke

Fig. 5. Typed actions

(lts-red)

M −→ M ′

(Γ � M) τ−→ (Γ � M ′)

(lts-out)

Γ
 k : loc
a : r〈T〉@k ∈ Γ
Γ � 〈V : T〉@k exists

(Γ � k�a!〈V 〉P �) k.a!V−−−→ (Γ � 〈V : T〉@k � k�P �)

(lts-in)

Γ
 k : loc
a : w〈U〉@k ∈ Γ
Γ
 V : U@k

(Γ � k�a?(X : T) P �) k.a?V−−−→ (Γ � k�P{|V/X|}�)

(lts-open)

(Γ, n : 	 � M) (ñ)k.a!V−−−−−→ (Γ ′ � M ′)
(Γ � (new n : T) M) (n�n)k.a!V−−−−−−→ (Γ ′ � M ′)

n �= a, k
n ∈ fn(V)

(lts-weak)

(Γ, n : T � M) (ñ:T̃)k.a?V−−−−−−−→ (Γ ′ � M ′)
(Γ � M) (n:T�n:�T)k.a?V−−−−−−−−−→ (Γ ′

� M ′)
n �= a, k

(lts-par)

(Γ � M) α−→ (Γ ′ � M ′)
(Γ � M | N) α−→ (Γ ′ � M ′ | N)
(Γ � N | M) α−→ (Γ ′ � N | M ′)

bn(α) �∈ fn(N)

(lts-new)

(Γ, n : 	 � M) α−→ (Γ ′, n : 	 � M ′)
(Γ � (new n : T) M) α−→ (Γ ′ � (new n : T) M ′)

n �∈ n(α)

4.1 A Labelled Transition Characterisation of Contextual
Equivalence

A standard labelled transition system for Dpi would describe the actions, in-
puts/outputs on located channels, which a system could in principle perform.
However because of possible limited knowledge an external user may not be able
to provoke these actions. Our labelled transition system uses typed actions of
the form

Γ � M µ−→ Γ ′ � M ′

Towards a Behavioural Theory of Access and Mobility Control 291

and the defining rules are given in Figure 5. Again the intuition here is that M is
not necessarily typeable by Γ ; instead it represents that part of the environment
which does type M which is known by the user.

As an example the rule (lts-out) says that k�a!〈V 〉P � can only perform the
obvious output action if

– k is known by Γ to be a location
– the user has the capability to accept a value from a at k, that is Γ � a :

r〈T〉@k for some transmission type T
– the information which is being sent to the user does not contradict its current

knowledge. This is formalised using a partial meet operation 	 which is
defined directly on types and extended to type environments; it is a method
for consistently combining type information. In the the rule we also use the
notation 〈V : T〉@k to represent a simple environment obtained by adding
the knowledge that V has type T at location k. The formal definition may
be found in [7].

The rule for input, (lts-in), has a similar flavour.

Definition 2 (Bisimulations). A binary relation R is said to be a bisimula-
tion if Γ � M R Γ � N implies

– Γ � M µ−→ Γ ′ � M ′ implies Γ � N µ̂=⇒ Γ ′ � N ′ for some N ′ such that
Γ ′ � M ′ R Γ ′ � N ′

– Symmetrically, Γ � N µ−→ Γ ′ � N ′ implies Γ � M µ̂=⇒ Γ ′ � M ′ for some N ′

such that Γ ′ � M ′ R Γ ′ � N ′

Here we are using the standard notation from [12]; µ=⇒ means τ−→∗ ◦ µ−→◦ τ−→∗

while µ̂=⇒ is τ−→∗ if µ is τ and µ=⇒ otherwise; this allows a single internal move
to be matched by zero or move internal moves.

We write Γ |= M ≈bis N if (Γ � M) R (Γ � N) for some bisimulation R,
and say that M and N are bisimilar in the environment Γ .

Theorem 1 (Full abstraction of ∼=rbc for ≈bis). Γ |= M ∼=rbc N iff Γ |=
M ≈bis N �

5 Controlling Mobility

We now consider a richer calculus in which movement of processes may be con-
trolled. As explained in the Introduction we extend Dpi with a very simple means
of mobility control and investigate the resulting contextual equivalence.

292 Matthew Hennessy, Massimo Merro, and Julian Rathke

5.1 Migration Rights

Hennessy and Riely have already proposed a simple access control mechanism
for Dpi in the form of the move capability [9], and here we investigate the effect
this has on behavioural equivalence.

The location types in Dpi are of the form loc[u1 : A1, . . . , un : An] where the
ui : Ai can be seen as capabilities at that location. We now introduce an extra
type of capability by allowing location types to be also of the form

loc[move, a1 : A1, . . . , an : An]. (5)

If a location k is known at this type then agents resident at any location have
migration rights to k; we realise that this is a somewhat simplistic approach
to mobility control but it enables us to demonstrate the subtleties involved in
developing behavioural theories in the presence of any such capabilities.

The type system, and the type-checking rules, can easily modified to cater
for this new capability while retaining Subject Reduction; for details see the full
version of the paper, [7].

Instead let us examine the effect migration rights have on behavioural equiv-
alences. Suppose N1, N2 are given by

k�a!〈〉 stop� and k�stop� (6)

The question of whether or not N1 and N2 are contextually equivalent relative
to an environment Γ , now written Γ |= N1 ∼=m

cxt
N2, depends on whether Γ has

migration rights to k. If so, say at a location l, agents may be sent from l to k in
order to observe the difference in behaviour between N1 and N2 at k. But will
these agents be able to report back to the environment? This in turn depends on
whether the environment allows migration from k to l. In general, the situation
can get more complicated. Observing different behaviour at a site k may require
a range of capabilities, and knowledge of these may be distributed throughout
the environment at sites with limited migration rights between themselves.

For this extended language we give, in the following two subsections, two
different generalisations to the full-abstraction result, Theorem 1.

5.2 Mobility Bisimulation Equivalence

It is straightforward to adapt the typed actions in Figure 5 to take into account
these simple migration rights. Essentially for an action to be allowed at a site
k the constraints discussed in Section 4.1 must be satisfied but in addition the
environment must have migration rights to k. Formally we define actions

Γ � M µ−→m Γ ′ � M ′

by replacing the rules (lts-out) and (lts-in) in Figure 5 with

Towards a Behavioural Theory of Access and Mobility Control 293

(lts-outm)

Γ � k : loc[move]
a : r〈T〉@k ∈ Γ
Γ 	 〈V : T〉@k exists
(Γ � k�a!〈V 〉P �) k.a!V−−−→m (Γ 	 〈V : T〉@k � k�P �)

(lts-inm)

Γ � k : loc[move]
a : w〈U〉@k ∈ Γ
Γ � V : U@k

(Γ � k�a?(X : T)P �) k.a?V−−−→m (Γ � k�P{|V/X|}�)

and leaving the other rules unchanged.

Definition 3 (Typed m-Bisimulations). Let Γ |= M ≈m
bis N denote the

resulting version of bisimulation equivalence, obtained by replacing the use of
Γ � M µ−→ Γ ′ � M ′ in Definition 2 with Γ � M µ−→m Γ ′ � M ′.

Example 1. As in (6) above let N1, N2 denote k�a!〈〉 stop� and k�stop� respec-
tively, and suppose Γ is such that Γ
� k : loc[move]. Then Γ |= N1 ≈m

bis
N2

because no m-typed actions are possible from these systems.

Example 2. Let N3, N4 represent (new k : loc[move, b : rw〈〉]) l�a!〈k〉� | k�b!〈〉�
and (new k : loc[move, b : rw〈〉]) l�a!〈k〉� | k�0� respectively, and let Γ1 denote the
environment

l : loc, l : move, b : rc〈rw〈〉〉, a : rw〈loc[b : rw〈〉]〉@l

Here the environment can interact at the site l because it has migration rights
there; and via the channel a located at l it can gain knowledge of k. But be-
cause of the type at which it knows a it can never gain migration rights to k.
Consequently we have Γ1 |= N3 ≈m

bis
N4.

However let Γ2 denote

l : loc, l : move, b : rc〈rw〈〉〉, a : rw〈loc[move, b : rw〈〉]〉@l

Here any location name received on the channel a at l comes with migration
rights. So we have Γ2 |= N3
≈m

bis
N4.

The essential property of this new form of equivalence is a restricted form of
contextuality:

Proposition 1. Suppose Γ � k : loc[move]. Then Γ |= M ≈m
bis N and Γ � k�P �

implies Γ |= M | k�P � ≈m
bis

N | k�P �.

This property allows us to give a contextual characterisation of ≈m
bis. We need

to slightly adapt the concepts defined in Section 4.

294 Matthew Hennessy, Massimo Merro, and Julian Rathke

m-Context closure: Here the change is in the second clause of the definition of
Context closure; it is changed to

(ii) Γ |= M R N , Γ � k : loc[move] and Γ � k�P � implies Γ |= (M |k�P �) R
(N | k�P �)

m-Barb preservation: Here we only allow barbs at locations to which migration
rights exist. We write Γ � M ⇓mbarb a@k if in addition to the requirement that
Γ � M ⇓barb a@k we have Γ � k : loc[move] and Γ � a : rw〈〉@k.

We now say that a typed relation over systems is m-barb preserving if Γ |=
M R N and Γ � M ⇓mbarb a@k implies Γ � N ⇓mbarb a@k.

Definition 4 (m-Reduction barbed congruence). Let ∼=m
cxt

be the largest
typed relation over systems which is reduction-closed, m-contextual and m-barb
preserving.

Our first generalisation may now be stated:

Theorem 2 (Full abstraction of ∼=m
cxt for ≈m

bis). Γ |= M ∼=m
cxt N iff Γ |=

M ≈m
bis

N. �

5.3 Re-examining Contextuality

The two examples given in the previous subsection deserve re-examination, par-
ticularly in view of the definition of m-contextuality. In Example 1 above it turns
out that N1 and N2 are not equivalent with respect to any Γ which does not
contain migration rights to k. But an alternative definition of contextual would
require the behavioural equivalence to be preserved by all contexts typeable by
Γ . Suppose Γ is the environment

h : loc, h : move, eureka : rw〈〉@h, k : loc, a : rw〈〉@k

Then one can check that Γ � k�a?() gotoh.eureka!〈〉� and running Ni in parallel
with this well-typed context would enable us to distinguish between them.

This new, but still informal, notion of contextuality presupposes that the
context can have already in place some testing agents running at certain sites to
which it does not have migration rights. An obvious choice of sites would be all
those which are known about, that is all k such that Γ � k : loc. However our
results can be parameterised on this choice.

T -Context closure: Let T be a collection of location names. The concept of
T -Context closure is obtained by changing the second clause in the definition of
Context closure to:

(ii) Γ |= M R N , Γ � k�P �, where either k ∈ T or Γ � k : loc[move], implies
Γ |= (M | k�P �) R (N | k�P �)

Towards a Behavioural Theory of Access and Mobility Control 295

Definition 5 (T -Reduction barbed congruence). Let ∼=T
cxt

be the largest
typed relation over systems which is reduction-closed, T -contextual and m-barb
preserving.

The question now is whether we can devise a bisimulation based characterisation
of ∼=T

cxt
.

The obvious approach is to modify the definitions of the typed actions µ−→m,
to obtain actions µ−→T which allow observations at a site k, if either the environ-
ment has migration rights to k as before, or k ∈ T . With these actions we can
modify Definition 2 to obtain a new behavioural equivalence, which we denote
by ≈T

bis. Unfortunately this does not coincide with the contextual equivalence
∼=T

cxt
.

Example 3. Let N5, N6 be the systems defined by

h�a!〈b@k〉� | k�b!〈〉� and h�a!〈b@k〉� | k�stop�

and Γ the environment

h : loc, h : move, k : loc, a : rw〈r〈〉@k〉@h, b : w〈�〉@k

Then if k is in T one can check that N5
≈T
bis N6. This is because Γ � N5 can

perform the action h.a!b@k followed by k.b!〈〉, which can not be matched by
Γ � N6.

However Γ |= N5 ∼=T
cxt

N6 because it is not possible to find a context to
distinguish between them. A context can be found to augment the knowledge of
the environment at h with the read capability for b at k. But, in a well-typed
context, it is not possible to transfer this information from h to where it can be
put to use, namely k.

This example demonstrates that even with our very restricted move capa-
bility there are problems with the flow of information. Knowledge about the
system learnt at l can not necessarily be passed to k if the environment does
not have move capability at k. This motivates the new form of configurations
we introduce for the labelled transition system necessary in order to characterise

∼=T
cxt.

We replace a simple Γ with a structure Γ = (Γ, Γk1 , . . . , Γkn) where the ki

make up T . Each Γki represents localised knowledge at ki whereas Γ represents
the centralised knowledge, available at any location for which we have move
capability. Given that we can store the centralised knowledge at a location k0,
provided by the environment (with move capability), we can always pass local
knowledge on to k0 (but not vice versa). Thus centralised knowledge is always
greater than any of the local knowledge environments. This leads us to the
following definition:

Definition 6 (Configurations). A configuration (Γ � M) over T consists of
a family of type environments Γ = Γ, Γk1 , . . . , Γkn such that

296 Matthew Hennessy, Massimo Merro, and Julian Rathke

Fig. 6. Labelled transition rules accounting for the move capability

(lts-move−out)

Γ
 k : loc[move]
a : r〈T〉@k ∈ Γ
Γ � 〈v : T〉@k exists

(Γ � k�a!〈v〉P �) k.a!v−−−→ (Γ �0 〈v : T〉@k � k�P �)

(lts-T−out)

Γ �
 k : loc[move]
k ∈ T
a : r〈T〉@k ∈ Γk

Γ �0 〈v : T〉@k �k 〈v : T〉@k exists

(Γ � k�a!〈v〉P �) k.a!v−−−→ (Γ �0 〈v : T〉@k �k 〈v : T〉@k � k�P �)

(lts-move−in)

Γ
 k : loc[move]
Γ
 a : w〈T〉@k
Γ
 v : T@k

(Γ � k�a?(X : A)P �) k.a?v−−−→ (Γ � k�P{|v/X|}�)

(lts-T−in)

Γ �
 k : loc[move]
k ∈ T
Γk
 a : w〈T〉@k
Γk
 v : T@k

(Γ � k�a?(X : A)P �) k.a?v−−−→ (Γ � k�P{|v/X|}�)

(lts-T−weak)

(Γ , (n : T)∇ � M) (ñ:T̃)k.a?V−−−−−−−→ (Γ
′
� M ′)

(Γ � M) (n:T�n:�T)k.a?V−−−−−−−−−→ (Γ
′
� M ′)

n �= a, k

– T = {k1, . . . , kn}
– Γ <: Γki for each 1 ≤ i ≤ n

and a system M which can be typed in some extension of Γ .

We will write Γ
T
∇ to mean the family of environments Γ, Γk1 , . . . , Γkn such that

each component Γki is equal to the environment Γ ; we will typically omit the
parameter T here as it can usually be recovered from context. We understand
Γ , Γ

′
and Γ 	 Γ

′
to be pointwise operations. Finally we need a notation for

increasing knowledge in the individual components of a configuration, for which
we use the notation 	k. For instance we write Γ 	0 Γ ′ to mean the family

Towards a Behavioural Theory of Access and Mobility Control 297

such that the global component becomes Γ 	0 Γ ′ and all other components are
unchanged. Similarly Γ 	k Γ ′ adds, if possible, Γ ′ to the kth component.

We define our new labelled transition system, parameterised on T , as binary
relations between these new configurations. We replace the rules (lts-out) and
(lts-in) in Figure 5 with those in Figure 6 and modifying the remaining rules in
Figure 5 in the obvious manner. The standard definition of (weak) bisimilarity
may be applied to this new labelled transition system. To emphasise the role of
the parameter T we will write the resulting equivalence as ≈T

bis.
We can now state the final result of the paper that, by considering a config-

uration in which the knowledge at every locality is initially Γ , then bisimilarity
coincides with reduction barbed congruence with respect to Γ :

Theorem 3 (Full abstraction). In Dpi with restricted mobility

Γ |= M ∼=
T
cxt

N iff Γ∇ |= M ≈T
bis

N.

6 Conclusions and Related Work

We have presented two labelled transition systems for which bisimilarity coin-
cides with a natural notion of contextual equivalence for distributed systems.
The labelled transitions rely upon a type discipline for the language which can
control resource access and mobility. As in [8,2], the use of a type environment
representing the tester’s knowledge of the system plays an important role in
characterising the contextual equivalences. In particular it aided us in defining a
labelled transition system which accounts for information flow in a distributed
setting with restricted mobility.

There has been a great deal of interest in modelling distributed systems using
calculi in recent years, [14,6,1,4,16,9,3]. The emphasis so far has largely been on
design of the languages to give succinct descriptions of mobile processes with
type systems given to constrain behaviour in a safe manner. Where equivalence
has been used it has typically been introduced as some sort of contextual equiv-
alence very similar to the one found in the present paper [6,1,11]. Proofs of
correctness of protocols or language translations have been carried out with re-
spect to these contextual equivalences. Recently in [5] a form of bisimulation has
been suggested as a proof method for establishing contextual equivalence in the
Seal calculus; but, as far as we know, the only existing example of an operational
characterisation of behavioural equivalence in the distributed setting is found in
[10].

The work in [15] takes a different, more intensional approach to equivalence
in the distributed setting in that, in order to establish correctness of a particular
protocol, a novel notion of equivalence based on coupled simulation tailored to
accommodate migration is identified. Although having many interesting prop-
erties such as congruence, this equivalence is not shown to coincide with any
independent contextually defined notion of equivalence.

298 Matthew Hennessy, Massimo Merro, and Julian Rathke

References

1. Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In Davide San-
giorgi and Robert de Simone, editors, CONCUR ’98: Concurrency Theory (9th
International Conference, Nice, France), volume 1466 of LNCS, pages 301–316.
Springer, September 1998.

2. M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without match-
ing. In 13th LICS Conf. IEEE Computer Society Press, 1998.

3. Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59,
1995. Short version in Proceedings of POPL ’95. A preliminary version appeared
as Report 122, Digital Systems Research, June 1994.

4. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, June 2000.

5. G. Castagna and F. Zappa. The seal calculus revisited. In 22th Conference on the
Foundations of Software Technology and Theoretical Computer Science. Springer-
Verlag, 2002.

6. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In 7th International Conference on Concurrency
Theory (CONCUR’96), pages 406–421, Pisa, Italy, August 26-29 1996. Springer-
Verlag. LNCS 1119.

7. M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access
and mobility control in distributed systems. Computer Science Report 2002:01,
University of Sussex, 2002.

8. M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. In Proc. CATS2002, Computing: Australasian Theory Sym-
posium, Melbourne 2002, 2002. Also available as a University of Sussex technical
report.

9. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

10. M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. ACM
SIGPLAN Notices, 31(1):71–80, January 2002.

11. M. Merro, J. Kleist, and U. Nestmann. Mobile Objects as Mobile Processes. To
appear in Journal of Information and Computation, 2002.

12. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
13. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and

II). Information and Computation, 100:1–77, 1992.
14. Peter Sewell. Global/local subtyping and capability inference for a distributed

pi-calculus. In ICALP 98, volume 1443 of LNCS. Springer, 1998.
15. Asis Unyapoth and Peter Sewell. Nomadic pict: Correct communication infrastruc-

ture for mobile computation. In Conference Record of POPL’01: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
236–247, London, United Kingdom, January 17–19, 2001.

16. J. Vitek and G. Castagna. A calculus of secure mobile computations. In Secure
Internet Programming: Security Issues for Distributed and Mobile Objects, volume
1603 of LNCS. Springer, 1999.

	Towards a Behavioural Theory of Access andMobility Control in Distributed Systems(Extended Abstract)
	Introduction
	The Language {sc Dpi}xspace
	Typing
	Contextual Equivalence in {sc Dpi}xspace
	A Labelled Transition Characterisation of Contextual Equivalence

	Controlling Mobility
	Migration Rights
	Mobility Bisimulation Equivalence
	Re-examining Contextuality

	Conclusions and Related Work

