The Converse of a Stochastic Relation

Ernst-Erich Doberkat

Chair for Software Technology
University of Dortmund
doberkat@acm.org

Abstract. Transition probabilities are proposed as the stochastic coun-
terparts to set-based relations. We propose the construction of the con-
verse of a stochastic relation. It is shown that two of the most useful
properties carry over: the converse is idempotent as well as anticom-
mutative. The nondeterminism associated with a stochastic relation is
defined and briefly investigated. We define a bisimulation relation, and
indicate conditions under which this relation is transitive; moreover it is
shown that bisimulation and converse are compatible.
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1 Introduction

The use of relations is ubiquitous in Mathematics, Logic and Computer Science,
their systematic study goes back as far as Schroder’s seminal work. Ongoing
research with a focus on program specification may be witnessed from the wealth
of material collected in [I8] [4]. The map calculus [5] shows that these methods
determine an active line of research in Logic.

This paper deals with stochastic rather than set-valued relations, it studies
the converse of such a relation. It investigates furthermore some similarities
between forming the converse for set-theoretic relations and for their stochastic
cousins.

For introducing into the problem, let R be a relation, i.e., a set of pairs of,
say, states. If (x,y) € R, then this is written as * —p y and interpreted as a
state transition from z to y. The converse R~ shifts attention to the goal of the
transition: y —r—  is interpreted as y being the goal of a transition from .
Now let p(x,y) be the probability that there is a transition from x to y, and the
question arises with which probability state y is the goal of a transition from z.
This question cannot be answered unless we know the initial probabilities for the
states. Then we can calculate p;(y, x) as the probability to make a transition
from x to y weighted by the probability to start from x conditional to the event
to reach y at all, i.e.

P (yaz) = wa) -play)
ne > u(t) - p(t,y)

Consider as an example the simple transition system p on three states given
in the left hand side of Fig. [0l The converse p,” for the initial probability p :=
[1/2 1/4 1/4] is given on the right hand side.
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Fig. 1. A Stochastic Relation and Its Converse

The situation is more complicated in the non-finite case, which is considered
here; since some measure theoretic constructions do not work in the general
case, we assume that the measurable structure comes from Polish, i.e., second
countable and completely metrizable topological spaces (like the real line R).
A definition of the converse K  of a stochastic relation K given an initial
distribution p is proposed in terms of disintegration. An interpretation of the
converse in terms of random variables is given, and it is shown that the con-
verse behaves with respect to composition like its set-theoretic counterpart, viz.,
(IKGL), = Loy K7, where K*(p) denotes the image distribution of 1 under
K, and the composition is the Kleisli composition for the corresponding monad
(section M]). This is of course the probabilistic counterpart to the corresponding
law for relations R and S, which reads (R;S)” = S—;R~.

The set { K, (y)|y € Y} of all sub-probability measures constituting the con-
verse turns out to have an interesting property: it is topologically rather small,
i.e., its closure is compact in the weak topology of sub-probability measures
on Y (Cor.[d2). This indicates that the converse K ;" does not carry as much
information as K or u do.

A stochastic relation K between X and Y induces a set-theoretic relation Ry
(called the fringe relation) in the following way: let (z,y) € Ry iff K(z)(U) >0
for each open neighborhood U of y. Relation Rk is considered as K’s nondeter-
minism, since it indicates the set of all pairs that are possible for the stochastic
relation K. The relationship between these relations is briefly investigated in
terms of natural transformations between two functors in Sect. [3.

A stochastic relation models the dynamics of a system, which is partly cap-
tured through the notion of bisimilarity. Thus the question of stability under
bisimilarity arises when constructing the converse. We define in section [l a suit-
able notion of bisimilarity and show that this is a transitive relation. It is shown
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that the converses K~ and L, are bisimilar, provided K and L as well as the
initial distributions p and v are bisimilafl.
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2 Stochastic Relations

Before stochastic relations are introduced, some basic facts from measure theory
are recalled. We also introduce some basic operations on these relations.

A Polish space (X, T) is a topological space which has a countable dense sub-
set, and which is metrizable through a complete metric. The Borel sets B(X,T)
for the topology 7 is the smallest o-algebra on X which contains 7. A Stan-
dard Borel space (X, .A) is a measurable space such that the o-algebra 4 equals
B (X,T) for some Polish topology 7 on X. Although the Borel sets are deter-
mined uniquely through the topology, the converse does not hold, as we will
see in a short while. Given two measurable spaces (X,.4) and (Y,B), a map
f: X —Y is A— B-measurable whenever f~![B] C A holds, where f~1[B] :=
{f~1[B]|B € B} is the set of inverse images f~![B] := {x € X|f(x) € B} of
elements of B. If the g-algebras are the Borel sets of some topologies on X and
Y, resp., then a measurable map is called Borel measurable or simply a Borel
map. The real numbers R carry always the Borel structure induced by the usual
topology which will not be mentioned explicitly when talking about Borel maps.

The category &8 has as objects Standard Borel (SB) spaces, a morphism
f€6B(X,Y) between two SB spaces X and Y is a Borel map f: X — Y.

Recall that a map f : X — Y between the topological spaces (X,7) and
(Y,S) is continuous iff the inverse image of an open set from S is an open set
in 7. Thus a continuous map is also measurable with respect to the Borel sets
generated by the respective topologies.

When the context is clear, we will write down Polish spaces without their
topologies, and the Borel sets are always understood with respect to the topology.
M (X)) denotes the vector space of all bounded real-valued Borel maps on the
SB-space X.

The set S (X) denotes the set of all sub-probability measures on the SB
space X. The former set carries the weak topology, i.e., the smallest topology
which makes the map p — [ [ dp for all continuous functions f : X — R
continuous as soon as X carries a Polish topology. It is well known that the

! The full paper is available as Technische-Berichte/Doberkat_SWT-Memo-113-ps.gz
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weak topology on S (X) is a Polish space [16] Theorem I1.6.5], and that its Borel
sets are the smallest o-algebra on S (X)) for which for any Borel set B C Y the
map p — p(B) is measurable. This o-algebra is sometimes called the weak-*-
o-algebra in stochastic dynamic optimization. Note that the weak-*-c-algebra
depends only on the g-algebra of the underlying SB-space, hence is independent
of any specific Polish topology. An argument due to Giry [1I] shows that S is
the functorial part of a monad over &8, and that the Kleisli morphisms coming
with this monad are just the stochastic relations.

Given two Polish spaces X and Y, a stochastic relation K : X ~» Y is a Borel
map from X to the set S (Y). Hence K : X ~» Y is a stochastic relation iff

1. K(z) is a sub-probability measure on (the Borel sets of) Y for all x € X,
2. x+— K(z)(B) is a measurable map for each Borel set B C Y.

Composition of stochastic relations is the Kleisli composition: let K : X ~» Y
and L :Y ~ Z, then define for x € X,C € By:

(KGL) (2)(C) r=/YL(y)(C) K(z)(dy).

Standard arguments show that K;L : X ~» Z.

In terms of input/output systems, K (z)(dy) may be interpreted that dy is
the output of the system modelled by K after input x; the system does not need
to be strictly probabilistic in the sense that each input produces an output with
probability 1, i.e., K(z)(Y) = 1 does not hold necessarily. K(x)(Y) < 1 may
occur when K models a non-terminating computation, so that 1 — K (x)(Y) is
the probability for the event no output at all. Note that the Markov processes
investigated in [6, [T0] are special cases.

Ezample 1. In the discrete case a stochastic relation p between {1,...,n} and
{1,...,m} is represented through a non-negative substochastic matrix

(p(i,4))1<i<n1<j<m-

The composition of two stochastic relations p and ¢ is expressed through matrix
multiplication, which is the discrete analogue to the Kleisli product above. &

We collect some constructions and indicate some well known properties which
will be helpful in the sequel. It shows how a measurable map and a measure
induce a measure on the range of that map, and how a measure and a stochastic
relation define a measure on the relation’s target space, and on the product
space, resp.

Definition 1. Let X and Y be SB-spaces.
1. fP(u)(B) := u(f~'[B]) defines a map &B (X,Y) xS (X) — S(Y) such that

db/L = ofd
/g (1) /9 [ du
holds for each g € M (Y).
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2. K*(u = [y K w(dz) defines a map B (X,S(Y)) x S(X) —

S (Y) such that
Joarte= [ [ o K@y naz)

holds for each g eM ( )
3 (L@ K)(D):= [, K(z) w(dzx) defines a map S (X)xG&B(X,S(Y)) —
S (X x Y) such that

/ny (n® K)= // 9(z,y) K(z)(dy) p(dz)

is true whenever g € M (X xY).

Since the integral in property [l changes variables, it is sometimes referred to
as the Change of Variables formula. Property Bluses D, := {y € Y|(z,y) € D}
for the measurable set D C X xY; it gives the integral over a product as repeated
integrals and contains the Fubini Theorem as special case.

Note that f°(u) is S (f) (), the former notation being somewhat more light-
handed; K* is just the forgetful functor from the Kleisli category of the Giry
monad, and the tensor construction in the third part arises from the tensorial
strength of the monad.

Ezxample 2. Nllustrating these constructions through the discrete case, assume
that p: {1,...,n} ~ {1,...,m} is astochastic relation, and let p€S ({1,...,n})
be an initial distribution. Then

L (@) = Zf(i):j w(i) is the probability that f: {1,...,n} — {1,...,m}
hits the value j.

2. p*(p)(j) = >, p(i) - p(i, j) is the probability that response j is produced,
given the initial probability p.

3. (n®@p)({z,7)) = pu(@) - p(3, j) gives the probability for the input/output pair
(i, ) to occur, given the initial probability p (which is responsible for input
i), and the probability p(, j) for output j after input i.

These properties are easily established using elementary computations. <

Some properties of the general constructions are collected for the reader’s
convenience:

L (K;L)M = K3(L;M),
2. (K;L)® = K*® o L*® (where o denotes the usual composition of maps),
3. for f € M(Z) and for € X the equality

/deL //f dz) K (x)(dy)

holds.
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4. K;ly = K and I[x;K = K, where [ x : X ~» X is the unit kernel on X which
is defined by

Ix(x)(A) :==0,(A) := if © € A then 1 else 0 fi.

It is remarkable that the construction in Def.[Il Blcan be reversed, and this is
in fact the cornerstone for constructing the converse of a stochastic relation, as
will be seen in Sect. M. Reversing the construction means that each measure on
the product of two SB-spaces can be represented as a product from the measure
of a measure and a stochastic relation (or, putting it in terms of Def[l} the map
(u, K) — p® K defined in part Blbetween S (X)x B (X,S(Y)) and S(X x Y)
is onto).

Proposition 1. Let X and Y be SB-spaces, and ¢ € S(X xY). Then there
exists a stochastic relation K : X ~»Y such that ¢ = w&xY,X(C) ® K, Txxv,x
denoting the projection from X xY to X.

Proof. [16] Theorem V.8.1]. O

The stochastic relation K is uniquely determined up to sets of y-measure
zero; it is known as the regular conditional distribution of wy given wx, cf. [16]
Ch. V.8]. We will call K a version of the disintegration of ¢ w.r.t. W&Xy,x(g).

Ezample 3. Let ¢ € S({1,...,n} x {1,...,m}), then the probability p(i, j) for
input 7 generating output j is the probability (((i, j)) for the pair (i, j) to occur
conditioned on the probability >} | (({i,t)) that input i is produced at all. Thus
relation p satisfies the equation

C((i,4) = <Z<<<i,t>>> - p(i, §)-

This is the discrete version of Prop.[Il. In contrast to the discrete case, however,
the version of the disintegration of ¢ with respect to its projection usually cannot
be computed explicitly in the general case. &

There is a rather helpful interplay between the projection of p ® K to the
second component and K *(u) which will be exploited later on:

Observation 1 If u € S(X) is a sub-probability measure, and K : X ~Y is a
stochastic relation, the equality ngxy,y(ﬂ ® K) = K*(u) holds.

3 Nondeterminism: The Fringe Relation

Probabilistic modelling is a special case of nondeterministic modelling: we do
not only indicate possible outcomes but also assign a weight to them. Thus it
comes as a natural construction that each stochastic relation defines a set-valued
relation, at least on Polish spaces. This relation is defined now, and we will have
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a look at the correspondence between both types of relations. We will assume in
this section that the SB-spaces are endowed with a fixed Polish topology.

The support supp(p) of a probability measure 0 # p € S (X) is the set of all
points z € X such that each open neighborhood U of x has positive measure.
This set is the smallest closed set F' with u(F) = u(X), it is denoted by supp(p);
for completeness, supp(0) := 0 is defined for the zero measure 0 € S (X).

We investigate the set valued map x — supp(K (z)), when K is a transition
probability from the Polish space X to the Polish space Y. This map is the
relational counterpart to a stochastic relation, as we will see. It is clear that the
map takes values in the set of all closed nonempty subsets of a Polish space, and
that for any open subset U of Y the set

supp(K (-))"'[U] = {z € X| K()(U) > 0}

is a measurable subset of X.

As an aside, we look at supp from an algebraic point of view. Polish spaces
with continuous maps form the category Pol. For the Polish space X the space
of all its probabilities S (X) is also a Polish space. We denote by SubProb
the subcategory whose objects are all spaces S (X) when X ranges over Polish
spaces. A morphism K : S(X) — S(Y) is a continuous map between S (X) and
S (Y) when both spaces carry their weak topologies. Following a result due to
Giry [I1, Theorem 1], the functor G which assigns each Polish space its space
of sub-probability measures is the functorial part a monad in Bol. Denote by
G the composition of G with the forgetful functor Gubrob — Set, the latter
denoting the category of sets with maps as morphisms.

Let F(X) be the space of all nonempty closed subsets for a Polish space X,
endowed with the Vietoris topology. This topology has as a subbase the sets
{F| F CUL}N{F| FNUy # 0} for the open sets U;,Us C X.

Here things are a bit more complicated than in the probabilistic setting: if X
is a compact metric space, so is F(X) [13], 4.9.12, 4.9.13]; if X is a Polish space,
then the compacta in F(X) form a Polish space under the Vietoris topology.
From [13] 4.9.7] it may be deduced that X is a compact metric space provided
F(X) is a Polish space. Anyway, denote by €£ the category which has F(X)
for Polish X as objects. A morphism F(f) := f#: F(X) — F(Y) is induced by
the continuous map f : X — Y through the topological closure of the images
under closed sets, hence f#(A) := (f [A])CI is defined. Clearly, f* is continuous in
the Vietoris topology, since f is under the metric topology, and since (g o f)ti =
gt o % we see that F : Pol — €€ is a functor. The discussion above indicates
that F is in general no monad in Pol (it is, however, when QPol is replaced by
the category of all compact metric spaces). Consequently, it is not possible to
relate both monads directly. A weaker result may be obtained, however.

Compose this functor with the forgetful functor €£ — Get to obtain the
functor Fy.

Proposition 2. supp : Gy B F; is a natural transformation.
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Hence the map « — supp(K(x)) relating a transition probability to a set of
elements with positive probability is given by a natural transformation.
Leaving this side track, we define the fringe relation:

Definition 2. Let K : X ~ Y be a stochastic relation between the Polish spaces
X and Y. The fringe relation Ry associated with K is defined as

Ry = {(z,y) € X x Y|y € supp(K (z))}.

Conversely, let R C X XY be a set-theoretic relation, then a stochastic relation
K : X ~Y is said to satisfy R (abbreviated by R = K ) iff Rk = R holds, hence
iff R is just the fringe of K.

Ezxample 4. Let f: X — Y be a measurable map between the Polish spaces X
and Y, and put K(z) := dy(,), 6, denoting as usual the Dirac measure on y.
Then K : X ~» Y is a stochastic relation for which Rx = Graph(f) holds. &

Investigating the relationship between the stochastic relation K and its fringe
Ry, we find that composition carries over as follows:

Observation 2 Let K : X ~Y and L :Y ~ Z be stochastic relations, then

1. R oRg C Rg;1,
2. suppose that for each x € X the probability K (x)(Q) is positive for each open
set G C X, then also Rk.;, C Rr o Ri.

R = K indicates that, if R is the nondeterministic specification of a system,
stochastic relation K is its probabilistic refinement. Define for K, K’ : X ~ Y,
and for 0 < p <1 the stochastic relation K &, K’ upon defining

(K @&p K') (2)(B) = p- K(z)(B) + (1 —p) - K'(2)(B),

(thus (K @, K')(z) is just the convex combination of the measures K (z) and
K'(z)). The operator @, is interpreted as a weighted choice operator. It is easy
to see that the following holds:

REKREK 0<p<1
RE (K &, K)

Consequently, the set of all stochastic relations satisfying a given nondeterminis-
tic specification is convex, hence closed under weighted choice. Convexity models
the observation that nondeterministic systems are underspecified, as compared
to stochastic ones (cf. the discussion in [I5]).

Each stochastic relation has a fringe, and the inverse correspondence can be
established under suitable topological assumptions: Given a set-valued relation
R, a stochastic relation K that satisfies R can be found. For this, R has to take
closed values, and a measurability condition is imposed:
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Proposition 3. Let R C X x Y a relation (X,Y Polish) such that

1.Vre X:R(x):={yeY| (x,y) € R} e F(Y),
2. whenever U CY is open, {x € X| R(x) NU # 0} is a measurable subset of
X.

IfY is o-compact, or if R(x) assumes compact values for each x € X, then there
exists a stochastic relation K : X ~»Y with R = K.

Thus each set-valued relation can be represented by a stochastic one under
the conditions stated above, so that each nondeterministic specification can be
satisfied by a stochastic relation.

4 Converse Relations

Given a sub-stochastic matrix (p(i, 7)) <;<,.1<;<m rePresenting a stochastic rela-
tion {1,...,n} ~ {1,...,m} and an initial distribution, the Introduction shows
that the probability p;”(j)(i) of responding with j € {1,...,m} on a stimulus
i €{l,...,n} is calculated as

— () = ) PG d)
Py (1)) = S u(t) ptg)

The probability p,” under consideration reverses p given an initial distribu-
tion, so is regarded as the converse of p (inverse might at first sight be considered
a better name, but this seems to suggest invertibility of the matrix associated
with p).

In view of ExamplesBland[Z, this amounts to the disintegration of u® p with
respect to the distribution p®(u) = % vy (1 ® p).

This observation guides the way for the definition of the converse for a general
stochastic relation. Fix a stochastic relation K : X ~» Y, and a sub-probability
measure £ € S(X). Then p® K € S(X xY) has a kind of natural converse:
define 7 := 7’ (u ® K), where 7 : X x Y — Y x X switches components. Thus
r[R] = R~ := {(y,x)|{z,y) € R}, whenever R C X x Y is a relation, so r
produces the converse. Because 7 € S (Y x X), this measure is — according to
Prop. [l — representable through a stochastic relation K, : Y ~» X by writing
T =7(1)® K, . Since W%;XX’Y(T) = K*(u) by Obs. [l the definition of the
converse of a stochastic relation now reads as follows.

Definition 3. The p-converse K~ of the stochastic relation K with respect to
the input probability p is defined by the equation r°(p ® K) = K*(u) ® K.

It is remarked that the converse K~ always exists, and that it is unique y-almost
everywhere. Since

u(A) = (p@ K)(AxY) = (K*(n) ® K7)((Y x A)7)
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is true for the Borel set A C X,

A= [ K ) K uan) = [ K7(4) Ko,

we infer that p = (K;).(K‘(,u)) = (K;K,7)%(p) holds. Hence the converse

K, solves the equation p = (K;T)*(p) for T. This equation does, however,
not determine the converse uniquely. This is so because it is an equation in
terms of the Borel sets of X, hence may only be carried over to the “strip”
{AxY| AC X Borel} on the product X x Y. This is not enough to determine
a measure on the entire product.

A probabilistic interpretation using regular conditional distributions may be
given as follows: Let (£2,.A4,P) be a probability space, ¢; : 2 — X; random
variables with values in the Polish spaces X; (i = 1, 2). Let p be the joint
distribution of ((1,(2), and let p; be the marginal distribution of {;. If m; :
X1 x Xo — X; are the projections, then clearly p; = m;(n). K denotes the
regular conditional distribution of (s given (y, thus we have for the Borel sets
A CX;

P({w € 2161 (w) € A1, G(w) € Az}) = (A1 x As)

= [ K(z1)(A2) pa(dzy).
Ay
We will show now that K, is the regular conditional distribution of ¢; given
(5. In fact, let L be the latter distribution, then the definitions of K and L,
resp., imply K*®(u1) = po and L®(u2) = p1. Let 4; € X, be Borel sets, then
(K*(p1) @ L) (A2 x Ay) = (11 ® K) (A1 x Az).

Interpreting a stochastic relation as a regular conditional distribution of a
random variable (7 given (o, its converse may be interpreted as the conditional
distribution of ¢ given (;. The start probability x in the definition of K~ is
then interpreted as a marginal distribution. This is essentially the probabilistic
setting for the definition of the converse in [I].

Returning to the general case, the defining equation for the converse is spelled
out in terms of an integral (where D* := {y € Y|(y,z) € D} for D C Y x X,
the cut D, is defined above):

[ K@) ptda) = [ 1 w)(Dy) K ) a).
This will be generalized and made use of later:

Observation 3 Let f € M (X xY), then this identity holds:

b//fxy 2)(dy) u(dz) L//fxy (y)(dz) K*(1)(dy).

Thus the order of integration of f may be interchanged, as in Fubini’s The-
orem, but, unlike that Theorem, we have to adjust the measures used for inte-
gration.
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Some properties of forming the converse will be investigated now. We begin
with an analogue of the property R~ = R which holds for the set theoretic
converse. Taking the initial distribution into account, this property is very similar
for the probabilistic case.

Proposition 4. If K : X ~ Y, and if p € S(X), then (K, = K. holds

H )K'(M)
everywhere except possibly on a set of pu-measure zero.

The question under what condition a stochastic relation may be represented
as the converse of another relation is a little more difficult to answer than for
the set-valued case. In view of the probabilistic interpretation using conditional
distributions, however, the following solution arises naturally.

Corollary 1. Let L : Y ~» X be a stochastic relation, and p € S(X). Then
these conditions are equivalent:

1. p=L*(v) for somev €S (Y),
2. L=K, for some K: X ~Y. O

Thus L : Y ~» X may be written in a variety of ways as the converse of a
stochastic relations, viz., L = (Ky) ., for an arbitrary v € S(Y') (where the
relation X ~» Y depends on v). This is in marked contrast to the set-theoretic
case, where the converse of the converse of a relation is the relation itself, hence
unique.

Compatibility of composition and forming the converse is an important prop-
erty in the world of set-theoretic relations. In that case it is well known that
(R;S)™ = S—;R~ always holds. The corresponding property for stochastic re-
lations reads

Proposition 5. Let K : X ~ Y, L : Y ~» T be stochastic relations, and let

p € S(X) be an initial distribution. Then (K:L), = Loy K, holds.

We see that there are some algebraic similarities between set-theoretic and
stochastic relations. There are exceptions, though. Take e.g. Schrider’s Cycle
Rule QoRC S < Q~0S C R < SoR~ C @, the bar denoting complementation
([18, 3.2 (xii)] or [4, Def. 3.1.1]). This rule is very helpful in practical applications,
but it does not enjoy a direct counterpart for stochastic relations, since the
respective notions of negation, and of containment do not carry over. —

If 4(A) = 0 for some Borel set A C X, then K (y)(A) = 0 holds K*(u)-
almost everywhere on Y (i.e., for all y € Y outside a set of K*®(u)-measure zero).
In fact, we can say more by scrutinizing the relationship between K", K and
. This leads to a rather surprising compactness result of the set of measures
comprising the converse.

Recall that for p, v € S (X) the measure v is called absolutely continuous w.
r. t. p iff for every measurable set A C X the implication u(A) =0 = v(A) =0
holds; this is indicated by v << u. It is well known [3 Sect. 32] that v << p is
equivalent to

Ve>03>0: [wA) <d=v(4) <e].
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Absolute continuity is used for defining morphisms between probability spaces
based on Polish spaces in [I} Def. 7.8] which in turn serves for defining the con-
verse of a stochastic relation; we use it here for characterizing the measures
comprising the converse. A subset M C S (X) is accordingly called uniformly
absolutely continuous w.r.t. p (indicated by M << p) iff given € > 0 there exists
0 > 0 such that sup,c; ¥(A) < ¢ whenever p(A) < § holds. It will be shown
now that the set of measures constituting the converse is uniformly absolutely
continuous except on a very small set:

Proposition 6. Let K : X ~» Y be a stochastic relation, and € S (X). Then
for each version K of the converse of K with respect to yu there exists a Borel
set A CY for which K(x)(A) = 0 is true for p-almost all x € X so that
{K,7(y)ly ¢ A} << p holds.

This implies that the set {K ;" (y)|y ¢ A} is topologically not too large. Since
we deal with a specific topology on the set of all sub-probability measures, we
fix a Polish topology on the input space which in turn induces the topology of
weak convergence on S (X).

Corollary 2. Let X be a Polish space, endow S (X) with the topology of weak
convergence, and let Y be an SB-space. Given K : X ~Y and p € S (X), there
exists a Borel set A CY with K(z)(A) = 0 for p-almost all x € X so that the
set {K,7(y)ly ¢ A} is a relatively compact subset of S (X).

Finally, let us have a look at the fringe relation: it turns out that (Rg)~
does not necessarily coincide with RK:.

Ezample 5. Define K as in Example[d] then p® K = idx x f’(x) holds for y €
P (X), so that 75 (u ® K) = f°(p) is inferred. For the Borel sets A C X, BCY
the equalities

(1@ K) (Ax B) = u(AN B = (£(n) & K, ) (B x A).

hold. Now put p = d,+ for some 2’ € X, then the constant relation K (y) = du
is a version of the converse, hence

Ry ={{y,2')ly € Y} # Graph(f)~ = (Rx ™).
Thus building the fringe relation and forming the converse does not commute.

<

5 Bisimulations

Call the relations R; € X; x Y7 and Ry € X5 x Y5 bisimilar iff there exists
UCX;xXoand V CY; xYs and a relation Ry C U x V (U, V and Ry are
called mediating) such that this diagram is commutative:
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X, TU, X, U TU, X5 Xy
Rl R() R2
PY;) — P(V P (Y-

(Y1) Y e V) e (Ya2)

Here P is the powerset functor, and relations are interpreted as set valued
maps. This is the definition of bisimilarity for coalgebras [I7, 2] adapted to the
situation at hand.

Defining for a relation R the yield relation

zhkry<=(z,y) € R

in analogy to the transition relation —¢% investigated for coalgebras, it is easy
to see that R; and Rs are bisimilar iff

1. for all (z1,22) € U, if 1 kg, yi, then there exists y» € Ya such that
(y1,92) € V and 22 Fg, y2,

2. for all (z1,m9) € U, if xo Fpg, yo, then there exists y; € Ys such that
(y1,y2) € V and 21 Fg, 11.

In fact, Rutten’s proof [I7, Ex. 2.1] carries over. Bisimulations will be studied
now for stochastic relations, and the goal is to show that bisimilar relations give
rise to bisimilar converses. We first define bisimilarity for stochastic relations and
show that under a mild condition bisimilarity is transitive. Then we establish
that the operations we are working with, i.e., forming products of measures and
relations, and transporting measures through relations, maintain bisimilarity.
This holds also for disintegration, and having established this, a small step will
be necessary to show that converses will respect bisimilarity.

Bisimulations are usually defined through spans of morphisms in a suitable
category. In fact, a stochastic relation K : X ~» Y can be considered as an
object (X,Y, K) in the comma category 1ssz | S, where (o, ) : (X,Y,K) —
(X", Y',K') is a morphism iff @ : X — X’ and §:Y — Y’ are measurable such
that Koa = 3’0 K’ holds. A 1-bisimulation (O, Iy, Iy) for objects O1 and O, is
then an object O together with two morphisms I : O — O and I3 : O — Os.
This notion of bisimilarity was discussed and investigated in [8] and specialized
there to the present notion of bisimulation (called 2-bisimulation in [8]), which
is similar in spirit to the one given above for set valued relations:

Definition 4. Let K1 : X1 ~ Y] and Ko : Xo ~ Y5 be stochastic relations,
where all participating spaces are SB-spaces. Then N : U ~»V is called a bisim-
ulation for K7 and Ks iff these conditions are satisfied:

1. UC X1 X Xo and V C Y] X Yy are SB-spaces,
2. Ky omax, =7y, o N and Ky o o x, =7y, © N hold.
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Standard arguments show that N is a bisimulation for K7 and Kj iff (in the
notation of Def. [])

fi dK7($7) = / f7 o 7T'V7yi dN(.Z‘l,JJQ)

Y; v

hold for each pair {x1,z2) € U, and for each f; € M (Y;) (i = 1,2). This
condition is sometimes easier to handle.

Bisimulation turns out to be transitive under a rather mild condition of sur-
jectivity. This property can be established using the existence of semi-pullbacks
for stochastic relations (recall that a semi-pullback for a pair of morphisms fj :
a1 — ¢, fa 1 as — ¢ in a category is a pair of morphisms g1 : b — a1,g92 : b — as
with f1 0 g1 = f2 0 g2). The plan of attack is as follows: 1-bisimilarity is a
transitive relation under the assumption of surjectivity [9, Theorem 2], and the
comparison between 1-bisimilarity and bisimilarity from [8, Prop. 5] shows that
both notions are equivalent under a condition of measurability. This technical
condition which will be established here.

Proposition 7. Let K; : X; ~ Y; (i = 1,2,3) be stochastic relations, and
assume that N1 : Uy ~ Vi and No : Uy ~~ Vi, are bisimulations for Ki, Ko
and Ko, K3, resp. Assume that all projections are onto. Then there exists a
bisimulation N3 : U3 ~» V3 for K1, K3.

In order to show that bisimilar relations give rise to bisimilar converses, it
is practical to introduce the notion of bisimilarity for sub-probability measures,
too; it is easy to see that the same notion of bisimilarity arises when one restricts
oneself to constant stochastic relations.

Definition 5. Let X1, Xy be SB-spaces with p; € S(X;) (i = 1,2). Then
(X1, p1) is said to be bisimilar to (Xa, po) iff there exists a subset Z C X1 X Xo
and ¢ € S(Z) such that

1. Z is a SB-space,
2. 1 =7y x, (C) and ps = 7y x,(C).

(Z,C) is said to mediate between (X1, 1) and (Xo, ua).

Bisimulations are maintained by forming products, and by transporting a
measure through a stochastic relation, as we will see now:

Proposition 8. Let K; : X; ~ Y; be bisimilar stochastic relations over the
SB-spaces X;,Y; for i = 1,2 such that N : U ~ V mediates between them,
and assume that p; € S (X;) such that (X, pu1) and (Xa, ua) are bisimilar with
mediating (Z, (). Assume that Z C U holds. then

1. (Y1, K1*(u1)) is bisimilar to (Ya, Ko®(us2)) with mediating (V, N*({)),
2. (X1 xY1, p1®K1) is bisimilar to (XoxYa, po@Ks) with mediating (t[E], t*(¢®
N)), where E := Z X'V and t(zx1, 22, y1,y2) = (T1,y1, T2, Y2)-
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The argumentation above shows that bisimilar relations and bisimilar initial
distributions lead to bisimilar measures on the product. The process can be
reversed: the idea is that disintegrating bisimilar measures on a product leads
to bisimilar stochastic relations.

Proposition 9. Let X;,Y; be SB-spaces, p; € S(X; x Y;) fori=1,2. Assume
that (X1 x Y1, p1) is bisimilar to (Xo X Yo, po). Define for i = 1,2 the stochastic
relations K; : X; ~Y; as the disintegrations of p; w.r.t Wg(iin,Xi (wi). Then K4
1s bisimilar to K.

Showing that bisimilarity is maintained when forming the converse is now an
easy consequence:

Corollary 3. Under the assumptions of Prop.[8, Ky, is bisimilar to Ky,

6 Related Work

The generalization of set-based relations to probabilistic ones appears straight-
forward: replace the nondeterminism inherent in these relations by randomness.
Panangaden [14] carries out a very elegant construction, arguing as follows: the
powerset functor is a monad which has relations as morphisms in its Kleisli cat-
egory [I12], the functor that assigns each measurable space the set of all (sub-)
probability measures is also a monad having transition probabilities as mor-
phisms in its Kleisli category [I1]. This parallel justifies their characterization as
probabilistic relations. The category SRel of measurable spaces with transition
sub-probabilities is scrutinized closer in [14], and an application to Kozen’s se-
mantics of probabilistic programs is given. Stochastic relations are underlying
stochastic automata; they were introduced and investigated in [7] as a generaliza-
tion of finite stochastic machines. Abramsky, Blute, and Panangaden [I] inves-
tigate the category PRel of probability spaces, hereby introducing the converse
of a probabilistic relation as we do through the product measure (Cor. 7.7). The
process by which they arrive at this construction (Theorem 7.6) is quite similar
to disintegration, as proposed here but makes heavier use of absolute continuity
(in fact, morphisms in PRel use absolute continuity in a crucial way). The ar-
gumentation in the present paper seems to be closer to the set-theoretic case by
looking at what happens when we compute the probability for a converse rela-
tion. Further investigations of the converse do not include the anti-commutative
law. This is probably due to the fact that integration technique are directly used
in the present paper (while [I] prefers arguing with absolute continuity, and
consequently, with the Radon-Nikodym Theorem).

The notion of bisimilarity is — as in [8] — adapted from [6] [[7] to the situa-
tion at hand. Transitivity of bisimulation is demonstrated in [I0] for universally
measurable stochastic relations case, but left open for the general case of Borel
measurable transition probabilities; [9] gives a full solution to this problem.

The observation that each transition probability on a Polish space spawns a
measurable set-valued function through the support function, hence a relation,
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was used in [7] for investigating the relationship between nondeterministic and
stochastic automata. It could be shown that each nondeterministic automaton
can be represented through a stochastic one, and that this representation is
preserved through the sequential work of the automata. Measurable selections
play a major role, but the results are not formulated in terms of monads or
categories.

7 Conclusion

Stochastic relations are generalizations of Markov processes. The converse of
a stochastic relation is investigated, in particular it is shown that it satisfies
some of the algebraic laws which rule their set-theoretic counterparts. Those
relations that arise as converses are characterized, and it is shown that the set
of all sub-probabilities comprising the converse is topologically quite small, i.e.,
is relatively compact in the weak topology. It is demonstrated that forming the
converse does respect bisimulations — if the models one starts with are bisimilar,
the converses will be, too. For a special case which includes the reals it is shown
that bisimilarity of stochastic relations is a transitive relation; the proof makes
use of the fact that semi-pullbacks exist in the corresponding category.

The nondeterminism inherent in a stochastic relation is identified, and it
could be shown that nondeterministic and stochastic relations are related via a
natural transformation that is induced by the support of finite measures. It is
shown that the stochastic relations satisfying a nondeterministic one is convex,
so that a nondeterministic specification provides a large degree of freedom for
probabilistic satisfaction.

Further work will address the characterization of bisimilarity more closely
in order to find necessary and sufficient conditions indicating under which two
probabilistically related components are bisimilar.
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