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Abstract. We develop an efficient identity based signature scheme based
on pairings whose security relies on the hardness of the Diffie-Hellman
problem in the random oracle model. We describe how this scheme is ob-
tained as a special version of a more general generic scheme which yields
further new provably secure identity based signature schemes if pairings
are used. The generic scheme also includes traditional public key signa-
ture schemes. We further discuss issues of key escrow and the distribution
of keys to multiple trust authorities. The appendix contains a brief de-
scription of the relevant properties of supersingular elliptic curves and
the Weil and Tate pairings.
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1 Introduction

Digital signatures are one of the most important security services offered by
cryptography. In traditional public key signature algorithms the public key of
the signer is essentially a random bit string picked from a given set. This leads
to a problem of how the public key is associated with the physical entity which
is meant to be performing the signing. In these traditional systems the binding
between the public key and the identity of the signer is obtained via a digital
certificate. As noticed by Shamir [I8] it would be more efficient if there was no
need for such a binding, in that the users identity would be their public key,
more accurately, given the users identity the public key could be easily derived
using some public deterministic algorithm.

An identity based signature scheme based on the difficulty of factoring in-
tegers is given in [I8], and it remained an open problem to develop an identity
based encryption scheme. In 2001 two such schemes were given, the first by
Cocks [7] was based on the quadratic residuosity problem, whilst the second
given by Boneh and Franklin [3] was based on the bilinear Diffie-Hellman prob-
lem with respect to a pairing, e.g. the Weil pairing.
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Originally the existence of the Weil pairing was thought to be a bad thing
in cryptography. For example in [10] it was shown that the discrete logarithm
problem in supersingular elliptic curves was reducible to that in a finite field
using the Weil pairing. This led supersingular elliptic curves to be dropped from
cryptographic use. The situation changed with the work of Joux [9], who gave
a simple tripartite Diffie-Hellman protocol based on the Weil pairing on super-
singular curves. Since Joux’s paper a number of other applications have arisen,
including an identity based encryption scheme [3] and a general signature algo-
rithm [4]. The extension to higher genus curves and abelian varieties has also
recently been fully explored in [RIT6]. This new work has resulted in a rekindling
of cryptographic interest in supersingular elliptic curves.

In [I7] an identity based public key signature algorithm is given which uses
the Weil pairing and other identity based signature schemes [5lT4] have recently
been proposed.

In this paper we present an identity based signature scheme whose security is
based on the Diffie-Hellman problem in the domain of the pairing. Furthermore,
we describe a generic scheme in a more general underlying situation and relate its
security to a computational problem. Instantiations of this scheme using pairings
then yield further new identity based signature schemes with security again based
on the above Diffie-Hellman problem. These schemes are different from [5/14)17]
and we argue that they can offer advantages over those schemes. Furthermore
it appears possible that there are other instantiations of the general scheme,
using for example RSA one way functions instead of pairings similar to Shamir’s
scheme [1§]. Finally we address issues regarding key escrow and the distribution
of keys to multiple trust authorities and discuss in the appendix how our schemes
can be realized using elliptic curves and the Weil or Tate pairings.

2 An Identity Based Signature Scheme

Let (G, +) and (V,-) denote cyclic groups of prime order [, P € G a generator
of G and let e : G x G — V be a pairing which satisfies the following conditions.

1. Bilinear: e(z1 + x2,y) = e(z1,y)e(x2,y) and e(z,y1 + y2) = e(x,y1)e(x, y2).
2. Non-degenerate: There exists ¢ € G and y € G such that e(x,y) # 1.

We also assume that e(z,y) can be easily computed while, for any given
random b € G and ¢ € V, it should be infeasible to compute x € G such that
e(z,b) = c. We remark that the pairing e is not required to be symmetric or
antisymmetric. Furthermore we define the hash functions

hi{0,1}* x V — (2/1Z)*, H:{0,1}* — G*

where G* := G\{0}. We also abbreviate V* := V\{1}.

The identity based signature scheme consists of four algorithms, Setup, Ex-
tract, Sign and Verify. There are three parties in the system, the trust author-
ity (or TA), the signer and the verifier.
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Scheme 1.

Setup : The TA picks a random integer ¢t € (Z/IZ)*, computes Qra = tP and
publishes Q74 while ¢ is kept secret.

Extract : This algorithm is performed by the TA when a signer requests the
secret key corresponding to their identity. Suppose the signer’s identity is given
by the string ID. The secret key of the identity is then given by Sip = tH(ID),
which is computed by the TA and given to the signer.

The extraction step is typically done once for every identity and uses the
same setup data for many different identities.

Sign : To sign a message m the signer chooses an arbitrary P, € G*, picks a
random integer k € (Z/IZ)* and computes:

1. r = e(Py, P)~.
2. v=h(m,r).
3. u=vSp +kPr.

The signature is then the pair (u,v) € (G, (Z/IZ)*).
Verify : On receiving a message m and signature (u, v) the verifier computes:

1. r=e(u,P)-e(H(ID), —Qra)".
2. Accept the signature if and only if v = h(m,r).

It is straightforward to check that the verification equation holds for a valid
signature.

We discuss some general performance enhancements for Scheme 1. The sign-
ing operation can be further optimized by the signer precomputing e(P;, P) for
a P; of his choice, for example P, = Sip, and storing this value with the signing
key. For P, = Spp this means that the signing operation involves one expo-
nentiation in the group V', one hash function evaluation and one multiplication
involving an element in the group G.

The verification operation requires one exponentiation in V', one hash func-
tion evaluation and two evaluations of the pairing. One of the pairing evaluations
can be eliminated, if a large number of verifications are to be performed for the
same identity, by precomputing e(H (ID), —Q1a).

For the security of Scheme 1 we have the following theorem. The attack model
is explained in section Bl

Theorem 1. In the random oracle model, suppose that an adaptive adversary
A exists which makes at most ny > 1 queries of an identity hash and extraction
oracle, at most ne > 1 queries of a message hash and signature oracle and which
succeeds within time Ta of making an existential forgery with probability

2
anin
> 22

EA = I
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for some constant a € Z='. Then there is another probabilistic algorithm C and
a constant ¢ € Z=' such that C solves the Diffie-Hellman problem with respect
to

(Pa QTAa R)

on input of any given R € G*, in expected time

cninsd'y
To < ————.
€A

Proof. Follows from Theorem 2land Example 1 in section[5l See also the remarks
after Theorem [2.

If G is represented as a subgroup of another group G the definition of H
might be difficult in practice. Just as in section 4.3 and Theorem 4.7 of the
full version of [3] one can relax this requirement on the hash function H that
it produces elements in G by using admissible encodings, without affecting the
above security theorem.

3 Comparison to Other Identity Based Schemes

We compare Scheme 1 to the three most recent schemes [5J14]17] which are also
based on pairings.

First, the setup and extraction steps are virtually identical for all four schemes
and compatible with the identity based encryption scheme in [3]. Next we com-
pare the efficiency. In the following table we denote by E an exponentiation in V,
by M a scalar multiplication in G, by SM a simultaneous scalar multiplication
of the form AP + u@ in G and by P a computation of the pairing. We do not
take hash evaluations into account.

Scheme 1 5] [14] 7]
Signing 1E + 1M 2M IM + 1SM M
Verifying (1E + 2P / 1E + 1P|IM + 2P|2E + 2P / 2E + 1P|3P / 2P
Signature| G x (Z/IZ)* Gx@ Gx@ Gx@

The pairing computation is the operation which by far takes the most running
time. The verifying step in Scheme 1 and the scheme of [I4] can be optimized
to 1E + 1P and 2E + 1P respectively if the same identities occur frequently,
thus roughly taking half the runtime of [5]. The scheme in [I7] requires 3P (2P
in the optimized version) and is hence the slowest. In terms of communication
requirements Scheme 1 is at least as efficient as the other two since an element
in G requires at least as much memory as an element in (Z/IZ)* (remember
#G =1). Often one would actually need to apply special compression techniques

in G.
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In terms of provable security Scheme 1 and the scheme of [5] rely on the
hardness of the Diffie-Hellman problem in G. There is no formal reduction to an
underlying hard problem in [14/17].

We conclude that Scheme 1 can offer advantages in runtime, communication
requirements and provable security over the schemes [5T4[17].

4 Key Escrow

In this section we pause to discuss the issue of key escrow. The generalization of
Scheme 1 will then be given in the next section.

One criticism against identity based signature schemes, as opposed to identity
based encryption schemes, is that the trust authority has access to the signer’s
private key and hence can sign messages as if they came from the signer. This
escrow facility is deemed a great draw back for signature schemes, whereas one
could debate that such an escrow facility for encryption may be desirable.

All previous identity based signature schemes have this built in escrow prop-
erty. By using multiple trust authorities however the threat from escrowing the
private key can be reduced. For Shamir’s original scheme [18] one would for ex-
ample need to produce an RSA modulus NV and a public exponent e such that
no individual trust authority knows the factors of N and each trust authority
has a share d; of the private exponent d. Protocols exist for this problem, see for
example [1], [2] and [6]. In order to distribute shares of the private key, a secret
sharing scheme has also been applied in [3] in the identity based encryption set-
ting. In general such a strategy would require a third party which computes the
shares of the private key and distributes them to the trust authorities, together
with some other data (e.g. appropriate Lagrange coeflicients) allowing a signer
to reconstruct his private key given the private partial information he obtains
from sufficiently many trust authorities. In the case of an (n,n)-threshold secret
sharing scheme the third party can however be dropped resulting in a similar,
more efficient technique as follows.

Suppose we have the trust authorities TA; for 1 < i < n. We can trivially
“distribute” the master secret ¢t among the n trusted authorities in the following
way. Each TA; generates their own private key t; independently of each other
and publishes Qra, = ¢; P. The master private key is defined to be t = Y7 | #;,
a quantity completely unknown to any of the participants in the scheme. The
master public key is Qra = Z?:l Qra,. A signer obtains a share of its private
key from each TA; via ng) = t;Qp. The signer’s secret key is then computed
by the signer via S;p = Y-, S}ZD). For the trust authorities to determine the
signer’s private key they would all need to collude, providing the (n, n)-threshold
secret sharing scheme.

There is the possibility of one or several trust authorities cheating and not
responding with the correct value of S}B, with respect to Qra,, for a given
signer’s key extraction request. This would have the effect of producing an invalid
private key for the signer. A signer can check whether some trust authorities have
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responded with incorrect values, and which trust authorities have been involved,
in one of the two following ways.

1. The signer tries to sign and verify a message using only the data provided
by each TA; in turn. This method clearly requires O(n) signing operations.

2. The signer could detect the incorrect value by forming and checking the
various subkeys of the form )", S}B, using a binary search method. This is
a technique which will require O(log n) signing operations to determine an ¢
with an incorrect value of S}ZD).

5 A Generic Signature Scheme

In this section we explain the general principle behind Scheme 1 thereby obtain-
ing the generic scheme and further identity based signature schemes. We relate
the security of these schemes to a computational problem which specializes to
the Diffie-Hellman problem in G if pairings are used. Finally the key escrow
problem is discussed briefly and some examples are given.

Let (G,4), (G1,+) and (V,-) denote cyclic groups of prime order ! and
p: G — V an efficiently computable monomorphism. We define a hash function

h: {01} x V = (Z/IZ)* x (Z/IZ)*

with image size greater than or equal to [. There will be various choices for h as
described later. We further define a full hash function

H:{0,1}" — G}

where Gf := G1\{0}. We also abbreviate again G* := G\{0} and V* := V\{1}.

The general signature scheme consists of four algorithms, Setup, Extract,
Sign and Verify. There are three parties in such a system, the trust authority
(or TA), the signer and the verifier.

Scheme 2.

Setup : The TA chooses efficiently computable monomorphisms s : G; — G
and ¢ : G; — V with p(s(x)) = ¢q(z) for all z € G; and publishes ¢, while s is
kept secret.

Extract : This algorithm is performed by the TA when a signer requests the
secret key corresponding to their identity. Suppose the signer’s identity is given
by the string ID. The secret key of the identity is then given by a = s(H(ID)),
which is computed by the TA and given to the signer.

The extraction step is typically done once for every identity and uses the
same setup data for many different identities. The public key of the signer is
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y = q(H(ID)) which can be computed by the verifier using the identity of the
signer.

Sign : To sign a message m the signer picks a random k € G* and then computes:

1. r=p(k)
2. (v,w) = h(m,r)
3. u=va+wk

The signature is the pair (u,7) € G x V*.

Verify : On receiving a message m and signature (u,r) the verifier computes:

1. (v,w) = h(m,r)
2.y = q(H(ID))
3. Accept the signature if and only if p(u) = y?r?.

That this verification equation holds for a valid signature follows from the fol-
lowing algebra:

=p(a)“ (k )

= p(s(H(ID)))"p(k)”
= q(H(ID)) p(k)"
— y’UT’LU

ElGamal Variations and Schnorr Version

There are a number of variations of Scheme 2. First of all, the signer and verifier
could compute (w,v) = h(m,r) instead of (v,w) = h(m,r). If G = (Z/IZ)T they
could additionally assign h(m,r) to any of the six combinations (u,v), (u,w), ...
and the signer would solve for the remaining variable in the equation u = va+wk.
The signature consists then of the value of this remaining variable together
with r. We remark that the case G = (Z/IZ)" does however not lead to true
identity based schemes. These variations are equally secure (in the random or-
acle model) since the respective tuples (u,v,w) are computationally indistin-
guishable, because of a,k # 0. These variations correspond to the well known
six variations of the modified ElGamal scheme, see [11/13].

There are various possibilities for the definition of h. If h; : {0,1}* —
(Z)1Z)*, hy : V — (Z/IZ)* and hs : {0,1}* x V. — (Z/IZ)* are hash func-
tions we can for example consider h(m,r) := (hi(m),ha(r)) or h(m,r) :=
(hs(m,r),1). The choice h(m,r) := (h(m),r) would however not be admissible.
The case h(m,r) := (hs(m,r),1) is of particular interest. Namely, in Scheme 2
we then have w = 1 and the verification equation is p(u) = y”r. This means we
can solve r = p(u)y~?. It is hence equivalent giving (u,v) as a signature instead
of (u,r) and depending on V this might take less memory. The modification of
the signing and verification steps is straightforward and yields a general version
of Schnorr signatures (compare also with Scheme 1).
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Security

We proceed with the security discussion. We consider an adversary A which is
assumed to be a (polynomial time) probabilistic Turing machine which besides
the global scheme parameters takes as input ¢ and a random tape. The adver-
sary’s goal is to produce an existential forgery of a signature by a signer ID of
its choice. To aid the adversary we allow it to query four oracles:

Identity Hash Oracle : For any given identity ID this oracle will produce the
corresponding hash value H(ID).

Extraction Oracle : For any given identity ID this oracle will produce the
corresponding secret key s(H (ID)).

Message Hash Oracle : For any given message m and r € V* this oracle will
produce the corresponding hash value h(m,r).

Signature Oracle : For any given message m and identity ID this oracle will
produce a signature from the user with identity ID on the message m.

Of course the output of the adversary A should not be a signature such that
the secret key of the corresponding identity or the signature itself have been
asked of the oracles.

Theorem 2. In the random oracle model, suppose that an adaptive adversary
A exists which makes at most nq > 1 queries of the identity hash and extraction
oracle, at most no > 1 queries of the message hash and signature oracle and
which succeeds within time T of making an existential forgery with probability

2
anin
> 2

EA = I

for some constant a € Z='. Then there is another probabilistic algorithm C and
a constant ¢ € Z=1 such that C' computes

s(R)
on input of any given P,R € G5 and Q € G* with Q = s(P), in expected time

T < cninad'y

€A

Proof. We assume familiarity with [T5] and their proof technique. Let P, R € G}
and Q € G* be generators such that @ = s(P) and hence p(Q) = ¢q(P). We
first explain how the oracle queries of A are simulated. For the i-th identity
hash or extraction query for ID; we return H(ID;) := AP and, if requested,
s(H(ID;)) = \i@ where A\, € (Z/IZ)* and A = (\;)i=1,2,... constitutes a random
tape. A query for the hash value h(m,r), if not yet defined, is answered by a
random (v,w) = 0; € (Z/IZ)* x (Z/IZ)* which is successively taken from a
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random tape 6 = (0;)i=1,2,.... To sign a message m for ID we issue the hash
query H(ID) ourselves and generate a random u € G* and a random vector
(v,w) € (Z/I1Z)* x (Z/IZ)* where u = v, and (v, w) = J; are successively taken
from the random tapes v = (v,) and § = (J;) respectively. Let y := ¢(H(ID)).
We then compute r := (p(u)/y¥)"/*. We remark that r is a random element
in V since v and § are random and independent. We define the hash value
h(m,r) := (v,w) and return the signature (u,r). This procedure fails if r = 1
or h(m,r) is already defined (the adversary could for example make a large
number of queries h(m,r) without us computing and recording the associated
signatures). Since r is random the probability for a simulation failure during
the no message hash and signing queries is less than 2n3/l. The simulation is
indistinguishable since (u,r) is random.

Running A and answering its oracle queries in the described way depends
deterministically on A, §, v and the random tape w the adversary A is provided
with. Because of the assumption on A, the indistinguishability and the low failure
probability of the simulation, providing random values and running A results in
a signature in time T4 with probability at least e4 — 2n3/l > €4/2 (true for
a = 14), using at most ny identity and extraction queries, ns message hash
and signature queries. This reduces the discussion to the case of a “passive”
adversary, depending deterministically on A, §, v and w.

We now want to apply the forking lemma technique of [I5] to control the
identity hash and message hash values for which the adversary computes forged
signatures.

We can proceed almost verbatim as in [I5, Lemma 8] and its proof: Since the
probability of guessing the hash value of an identity is 1/l and € 4 /2 > Tny /1 (true
for a = 14), running A repeatedly with random input yields a signature for the
hash value H(IDg) = AgP and (finite) index 3 after (expected) 4/e 4 executions
with probability at least 4/5. Next, with probability 1/4 we have that a replay
of A with the same 0, 7, w, and A = ()\;) unchanged for ¢ < § and randomly
chosen for ¢ > 3, yields a signature with probability at least (¢4/2)/(14n1), for
the now different H(IDg) = A\g P but same 5. The point is that we may as well
answer the (-th identity hash query of A by values pR for random p € (Z/1Z)*
since this is as random as H(IDg) and A does not issue an extraction query
for this identity, which we could not answer. As an aside, note that if we have
an identity hash collision H(IDg) = H(IDg) = 1R we have solved the discrete
logarithm problem R = AP, namely A = Ag/ /.

We combine these steps similar to [I5, Lemma 8]. Replaying A an at most
(14n1)/(ea/2) (expected) times and answering the [-th identity hash query
with random values pR results in a signature for some pR with probability
at least 3/5. We thus obtain a machine B which on input of §, v and the
random tape w’ returns a signature for an identity hash puR in time Tp <
(4/ea + (14n1)/(€a/2))Ta < 32n1Ta/ca with probability e > 1/9, where
depends on 4, v, w’ and is drawn from a set of (14n1)/(c4/2) candidates which
depends only on w’. Furthermore at most 32nins/e4 values are taken from §
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and the message hash h(m,r) of the signature equals one of the last ny queried
values of 4.

We apply the forking lemma a second time, now to B and with respect to §
(and regarding 7, w’ as one random tape). The conditions of [I5] Lemma 8] are
satisfied because we may assume that eg > 1/9 > Tny/l (this is true for a = 63).
Feeding 6, v, ', the input to B, from a random tape w’ we obtain a machine C
which on input of w” replays B at most 2/ep + 14ny/ep times and returns two
signatures (u1,7) and (ue,r) with message hash values hq(m,r) and ha(m,r) for
the same m, r and identity hash values p; R and psR, in time To < 16n2T5/ep
and with probability e > 1/9. The value of m,r is the same since up to the
query of hq(m,r) and ho(m, r) identical operations are carried out by the replays
of B, as § = (0;) for j < 8 for some fixed index 3 and +y,w’ remain unchanged.
Furthermore, the h;(m,r) are randomly chosen from the set of successful hash
values &g for the given fixed 7,w’ which has cardinality > ep/(14ns)(l — 1)?
and can be partitioned into > ep/(14n2)(l — 1) classes of linearly dependent
vectors. Also, the p; are chosen from a set of (14n1)/(e4/2) candidates. Let
(v1,w1) = hi(m,r) and (ve,ws) = ha(m,r). The pairs (u1v1,wr), (pave,ws)
are hence linearly dependent with probability < (14n41)/(ca/2)/(ep/(14n2)(l —
1)) < 3528ning/(ea(l — 1)) < 2/3 (true for ¢ = 7056 and ! > 5). Thus C
returns linearly independent (u1v1,w1), (v, ws) in time To < 16015 /ep <
4608n1n2T4 /€ 4 with probability > 1/27.

By dividing the two signing equations p(u;) = y;r* for y; = q(p;R) we
obtain the equation

p(ul _ (w1/w2)u2) — q(R)/lel—(1[}1/1[}2)/L21)2.

Since the (p;v;, w;) are linearly independent we have piv1 — (w1 /we)ugve # 0.
Hence

p((pavr — (w1 /wa)pavz) ™ (ur — (w1 /wa)us)) = q(R)

so that we have solved p(x) = ¢(R) and thus computed z = s(R) in time
< 4608n1n92T4 /e 4 with probability > 1/27. This yields the constants a = 7056
and ¢ = 27 - 4608 = 124416.

Finally, we observe that the expected number of replays of A and B might
not be explicitly known so that B and C' cannot be given in the form above. In
this case we can apply the same technique as in [T5, Thm. 10] for B and C. Here
B would have expected running time T < 844801174 /(c4/2) and thus succeeds
with probability > 1/2 in time 275. The expected running time of C is then
To < 84480n22T5/(1/2) < 8 - 84480%n1n2T4 /< 4, resulting in ¢ = 2 - 1689602,

The constants in the proof can be optimized when [ is chosen large with
respect to n1 and ns. Also, the assumption €4 > a nlng/l of the theorem can be
replaced by weaker assumptions as used in the proof.

Theorem [2] says in other words that, given p,q and one or several equations
@ = s(P), for the signature scheme to be secure it should be infeasible to
compute other values s(R). If this is the case then the TA’s secret knowledge of
s thus provides a generalized trap door with respect to p and gq.
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Multiple Trust Authorities

The general signature scheme can be extended to multiple trust authorities T'A;
in the following way. Suppose s; : G; — G and ¢; : G; — V are the secret and
public monomorphisms of TA; for 1 < i < n. We can then form a virtual trust
authority TA defined by the monomorphisms s(z) := Y., s;(z) and g¢(z) =
[T, gi(x) such that p(s(z)) = q(x) for all x € G;. Note that since the s; are
random and independent, the probability of s and ¢ not to be injective is 1/1. The
signer computes his private key via s(H(ID)) = ). s;(H(ID)) where he obtains
the s;(H(ID)) from each TA; in turn. The verifier determines the signer’s public
key via ¢(H(ID)) =[], ¢:(H(ID)) where he computes the ¢;(H(ID)) using the
public monomorphisms ¢; of each TA;.

Let IUJ ={1,...,n} and INJ = {}. An existential forgery with respect to
the virtual trust authority TA under collusion of the TA; for i € I is equivalent
to an existential forgery with respect to the virtual trust authority obtained by
combining the TA; for i € J, for which we can apply Theorem [2

Examples

Example 1. The pairing based signature scheme Scheme 1 is obtained from
the general Scheme 2 in the following way. We let (G1,+) = (G, +) and define
p(x) :=e(x, P), q(x) := e(x,Qra) and s(z) := tx. Since P and Q4 are public,
p(z) and ¢(z) can be computed by all parties. As ¢ is known to the TA it can
compute s(z). The steps of Scheme 1 are obtained from the steps of Scheme 2
together with the slight modification outlined in the remarks about Schnorr
signatures. Other schemes can be obtained from the variations of hash functions
and the parameter order as described above. With respect to the security we
have p(Q1a) = ¢(P) which we need for the assumptions of Theorem [2]. It follows
that if there is an adversary, we can compute s(z) without knowing ¢. Now, if we
are given (P, Qra, R) we can thus compute s(R) = tR where Q14 = tP, thereby
solving the Diffie-Hellman problem in G. This proves Theorem [l

Example 2. The usual public key signature schemes are obtained as follows.
Let (G1,+) = (V,-) and ¢ be the identity. The trust authority is now identical to
the signer and there are no other signers associated. The signer chooses a € G*
at random and computes y = p(a). The monomorphism s is the inverse of p.
A typical example would be p(x) = ¢* such that s is the discrete logarithm
map with respect to the element g. In the attack model we would artificially
require q(H(ID)) = H(ID) = y and that precisely one H-query is made. As a
consequence, n; = 1 and Theorem[2implies the standard security of the schemes
in the single user setting, relating it to the inversion of p.

Example 3. If we take (G,+) = (G1,+) = (V,:) = (Z/nZ)* for n an RSA-
modulus we essentially recover versions of the identity based signature scheme
n [I8]. Note that we have defined our general scheme only for cyclic groups
of prime order whereas (Z/nZ)* is in general not cyclic of prime order. Thus



Efficient Identity Based Signature Schemes Based on Pairings 321

Theorem [2] cannot readily be applied. Since (Z/nZ)* is not too far from being
cyclic it might be possible to adapt Scheme 2 and Theorem B|towards this case.

6 Conclusion

We have described a generic signature scheme which gives rise to efficient iden-
tity based signature schemes if pairings are used. The security of these schemes
follows from the security of the generic scheme in the random oracle model
and is based on the Diffie-Hellman problem in the domain of the used pairing.
Other instantiations of the generic scheme include traditional public key signa-
ture schemes in cyclic groups. In addition we have discussed key escrow and the
distribution of keys to multiple trust authorities.
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Appendix
Realization of the Identity Based Signature Schemes

In order use the identity based schemes described in the paper we need to find
suitable groups G, V and pairings e : G X G — V. These groups are provided
by finite fields and elliptic curves over finite fields, and the pairings are derived
from the Weil or Tate pairing, as for example in [3].

More precisely G will be a point subgroup on an elliptic curve over a finite
field and V a subgroup of the cyclic group of a larger finite field. We remark
that elements in G can be represented in compressed form. Also, in Scheme 1
the signature consists of v € (Z/IZ)* instead of r € V, resulting in a more
bandwidth efficient scheme.

The Weil and Tate Pairings on Elliptic Curves

We shall summarize the properties we require of the Weil pairing, much of the
details can be found in [3], [10] and [19]. We also present the Tate pairing since
it is more efficient to compute than the Weil pairing.

Let E be an elliptic curve defined over F, and let G be a subgroup of E(Fy)
of prime order . For simplicity we will assume that [ { #E(F,) so G = E(F,)[l].
We define « to be the smallest integer such that

(g™ = 1).
The full -torsion group E[l] is defined over a unique minimal extension field Fx,

Ell] € E(F ).

In practical implementations we will require k and « to be small. Let G’ be a
subgroup of E[l] such that E[l] = G& G'.
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The Weil pairing is a non-degenerate, bilinear and antisymmetric pairing
e : E[l] x E[l] — quk.

We cannot use it immediately for our purpose since e¢;(P, Q) = 1 for any P,Q €
G. To overcome this problem one possibility is to consider an (injective) non
F,-rational endomorphism ¢ : G — G’. We define

e:GxG—Fp, e(PQ):=e(P ¢(Q)).

This yields a pairing of the required properties since P and ¢(Q) are linearly
independent. Such non rational endomorphisms are known to exist for super-
singular elliptic curves. They do not exist for ordinary elliptic curves since the
Frobenius acts trivially on G. From the non degeneracy of the Weil pairing we
have k > «.

The Tate pairing is a non-degenerate, bilinear pairing

s B(Fge)[l] x E(Fge)IE(F ) — B /(FL).

For a = 1 we have E(F,)[l] = G and E(F,)/IE(F,) = G. Using this isomorphism
we can define

e:GxG—=TFr, ePQ):= (P, Q) /L,

For o > 1 we have E(Fyo)[l] = E[l], E(Fge)/IE(Fga) = E[l] and k = « from
the non-degeneracy of t;. Here we again need a non rational endomorphism
¢ : G — @' since t; is trivial on G. Using the isomorphism we define

e:GxG— IFar, e(P,Q) := tl(P,d)(Q))(qa*l)/l.

Both cases yield pairings with the required properties.

If there are no non rational endomorphisms we could use any group homo-
morphism ¢ : G — G’ defined by P — P’ for an arbitrary P’ € G'\{0}. The
computation of the pairing in the signature schemes only requires the evaluation
of ¢ at P and Q74 which means that the two additional points P’ = ¢(P) and
Q' 14 = &(Qra), to be computed by the trust authority, have to be publicly
known.

The Weil and Tate pairings are efficiently computable by an unpublished,
but much referenced, algorithm of Miller [T2]. Suppose given P,Q € G we wish
to compute e;(P, ¢(Q)) or t;(P, ¢(Q)). We first compute, via Miller’s algorithm,
the functions fp and fgq) whose divisors are given by

(fp) =1(P + X) = 1(X)

and

(fo@) = U(Q)) — 1(0),
where X € G is randomly chosen such that #{ O, ¢(Q), X, P + X } = 4. Note,
that since P € G C E(IF,) we have

fp € Fy(z,y)
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whilst since ¢(Q) € G’ we have

fo@) € For(x,y)

where 7 = k or r = « respectively. This means that computing fp is easier than
computing fg (). The Weil pairing is then given by

__Ip((6(@) ~ (9)
el(P,¢(Q)) = fo (P +X) = (X))

and the Tate pairing is computed via

t(P,¢(Q)) = fr((6(Q)) — (0)).

We see that not only is the Tate pairing easier to compute, since we do not
need to compute fy(q), but the single function we need to compute, namely
fp, is easier to compute than fyq) since one can work over F; instead of Fyx.
These facts together make computing the Tate pairing around fifty percent more
efficient than the Weil pairing. On the other hand the value of the Tate pairing
has to be raised to the power of (¢* — 1)/l to obtain the final result, and fyq)
can be computed as ¢(fg) using much more operations over F, than over FF .

Supersingular Elliptic Curves

Only supersingular elliptic curves provide non [Fy-rational endomorphisms. The
following table lists the essential examples, the parameter o and a non [Fg-
rational endomorphism ¢.

Field|Curve #E 10

For |92 +y =123 2P +1 (r,y) = (z+Ly+z+§)
For | +y=a2"+2 |22+ 14t2(p)| 4| (z,9) = (£ +Cy+ECx+p)
For | y? +y =2 + 2+ 12" + 1 —ta(p)| 4 | (x,y) — (2 + Py + ECx + p)

Fso |92 =22+ 3P +1

Fso |y> =2 —2+1 |37+ 1+t5(p)

Far |2 =23 —2—1 3P +1—t5(p)
2
2

(z,y) = (—z,1y)
(z,y) = (-2 +71,1y)
(x,y) = (—x+7-1,1y)

(z,y) = (€z,y)

(x’ y) - (—J}, Zy)

F, |y?=23+0 p+1
F, |y?=2%+ax p+1

SR NICNEONE CRNNGISEENCY ot

Here p denotes a prime > 5 and

bo(p) = 2+1/2 for p = +1,47 mod 24 = +1 mod 8,
2WP) = Z9t1)/2 for p = 45, +11 mod 24 = 43 mod 8,

o(p) = 3(+1/2 for p =41 mod 12,
3W)= 3 t1)/2 for p = 45 mod 12.
Furthermore, ¢ is a non rational endomorphism with
E+E+1=0, ¢*+C+E+1=0,
W p+¢+=0, 72 -7,-5=0,

and i? 41 = 0. In order that ¢ ¢ F,, we need p = 2 mod 3 and for i ¢ F,, we need
p = 3 mod 4.
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