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Abstract. Camellia is a 128-bit block cipher, proposed by NTT and
Mitsubishi in 2000. It has been shown that 10 round variant without
FL function under a 256-bit secret key is attackable by Higher Order
Differential Attack and even if FL function is included, 9 round variant
is attackable by Square Attack. In this paper, we present a new attack of
Camellia using 16-th order differential and show that 11 round variant
without FL function is attackable. Moreover, we show that 11 round
variant with FL function is attackable, if we use chosen ciphertexts for
this attack.

1 Introduction

Camellia[1] is a 128-bit block cipher proposed by NTT and Mitsubishi in 2000.
Designers have evaluated it’s strength against various attacks and insist that
it is secure against Truncated Differential and Truncated Linear Cryptanalysis,
if it consists of at least 12 rounds (without FL function) or 11 rounds (with
FL function). Also, Shirai et. al. have shown that it is secure against these
cryptanalysis in the case of 11 round variant (without FL function) or 10 round
variant (with FL function) in FSE2002[12].

On the other hand, we have already shown that 10 round variant without
FL function, under a 256-bit secret key, is attackable by a new attack, which we
call ”Controlled Higher Order Differential Attack”[7]1. Furthermore, Yeom et.
al. have shown that 9 round variant can be attacked by Square Attack, even if
FL function is included[15].

In this paper, we present an attack of Camellia using 16-th Order Differential
and show that 11 round variant without FL function, under a 256-bit secret key,
is attackable. Moreover, we show that 11 round Camellia with FL function
is attackable, if we use chosen ciphertexts. Table.1(a)[15] summarizes known
attacks of Camellia and Table.1(b) shows our results in this paper.

This paper is organized as follows. Section 2 shows the structure of Camellia.
Section 3 describes Higher Order Differential and leads an attack equation for
Camellia without FL function. Section 4 shows the results of computer experi-
ments and these analyses. In section 5, we conduct a basic attack on Camellia

1 We call that paper ”Higher Order Differential Attack of Camellia (I)”

K. Nyberg and H. Heys (Eds.): SAC 2002, LNCS 2595, pp. 129–146, 2003.
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Table 1. The necessary number of chosen plaintexts and complexity for attacks

(a) Previous results

Round FL Method Plaintexts Complexity Authors

5R × SA 210.3 248 Y.He et.al[4]
× SA 216 216 Y.Yeom et.al.[15]

6R × HODA 217 219.4 T.Kawabata et.al.[7]
× SA 211.7 2112 Y.He et.al[4]
× SA 256 256 Y.Yeom et.al.[15]

7R × HODA 219 251.2 T.Kawabata et.al.[7]
× TDC 282.6 192 S.Lee et.al.[10]
◦ SA 258.5 280.2 Y.Yeom et.al.[15]

8R × HODA 220 2126 T.Kawabata et.al.[7]
× TDC 283.6 255.6 S.Lee et.al.[10]
◦ SA 259.7 2138.6 Y.Yeom et.al.[15]

9R × HODA 221 2190.8 T.Kawabata et.al.[7]
◦ SA 250.5 2202.2 Y.Yeom et.al.[15]

10R × HODA 221 2254.7 T.Kawabata et.al.[7]

HODA : Higher Order Differential Attack
SA : Square Attack

TDC : Truncated Differential Cryptanalysis
Complexities are based on the number of encryptions.

(b) Our results‡

Round ET K1/K2/K3 Plaintexts Complexity FL

6R +1R 8/0/0 217 218∗ ×
7R +2R 48/40/0 219 257 ×

−1 + 1R 24/0/16 234 234∗∗ ×
8R +3R 112/104/0 220 2120 ×

−1 + 2R 64/40/16 236 271 ×
−2 + 1R 80/0/72 292 293 ×

9R +4R 176/168/0 221 2188 ×/◦
−1 + 3R 128/104/16 237 2136 ×
−2 + 2R 120/40/72 292 2111 ×

10R +5R 240/232/0 221 2252 ×
−1 + 4R 176/168/16 237 2201 ×/◦
−2 + 3R 184/104/72 292 2186 ×

11R −2 + 4R 248/168/72 293 2255.6 ×/◦
Computer Simulation ∗ : 0.2[sec] , ∗∗ : 1.5[h]

‡ Complexities are based on the number of encryptions. ET column shows
an “Elimination Technique”, in which we call +nR when we guess the last n
round keys and −nR when we guess the first n round keys for the attack. K1
denotes the total number of guessed key bits. K2 and K3 denote the number
of guessing key bits, for which we perform simple brute-force search, in the
last (n − 1) round, and the first n round, respectively.
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without FL function using 16-th order differential, and expand the attack in
section 6,7. Section 8 shows some computer experiments, which gives an attack
of 11 round Camellia with FL function by the chosen ciphertext. Section 9
summarizes this paper.

2 Camellia[1]

Camellia is a 128-bit block cipher and supports 3 kinds of secret key size, 128,
192, and 256 bits. It’s number of rounds are 18 (128-bit secret key) and 24 (192,
256-bit secret key), respectively. It has a Feistel structure with SPN type round
function, called F function. Additionally, FL/FL−1 function is inserted every 6
round.

Fig.1,2 and Fig.3 shows the main structure of Camellia and its components.
For simplicity, we call Camellia without FL function as Camellia. Note that
we omit key inputs of KWi in the following explanation, since these have no
influence on our attacks.

Let PL, PR be the left and right half of a plaintext P , and CL, CR be those
of the ciphertext, respectively. Let XLi, XRi be the left and right half of an i-th
round input variables, and YLi, YRi be these outputs, respectively. Note that in
r round Camellia,

XLi = YL(i−1) , XRi = YR(i−1) (1)
XL1 = PL , XR1 = PR (2)
CL = YLr , CR = YRr . (3)

Let Xi, Yi be the input and output variable of i-th round F function, respec-
tively. And Ki denotes an input key to the function.

Yi = F (Xi; Ki) (4)


Xi = t(xi1, · · · , xi8) xij ∈ GF(2)8 (j = 1 ∼ 8)
Yi = t(yi1, · · · , yi8) yij ∈ GF(2)8 (j = 1 ∼ 8)
Ki = t(ki1, · · · , ki8) kij ∈ GF(2)8 (j = 1 ∼ 8)

(5)

Let Zi be the intermediate variable in the function.

Zi = t(zi1, · · · , zi8) zij ∈ GF(2)8 (j = 1 ∼ 8) (6)

Fig.2 illustrates these variables in i-th round F function. F function is com-
posed of two function layers. One is S function, the other is P function.
[S Function]

Zi = S(Xi ⊕ Ki) (7)


zi1 = s1(xi1 ⊕ ki1)
zi2 = s2(xi2 ⊕ ki2)
zi3 = s3(xi3 ⊕ ki3)
zi4 = s4(xi4 ⊕ ki4)
zi5 = s2(xi5 ⊕ ki5)
zi6 = s3(xi6 ⊕ ki6)
zi7 = s4(xi7 ⊕ ki7)
zi8 = s1(xi8 ⊕ ki8)

(8)
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Fig. 1. Camellia(128-bit secret key)
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Fig. 3. FL function

where s1(), s2(), s3(), and s4() denote S-Boxes, which are bijective functions over
GF(28).
[P Function]

Yi = PZi, (9)

where P is a regular matrix as follows.

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




(10)

3 Higher Order Differential Attack

3.1 Higher Order Differential[9]

Let E() be a function that transforms an input X ∈ GF(2)n to the output
Y ∈ GF(2)m under a key K ∈ GF(2)s.

Y = E(X ; K) (11)

Let {A1, · · · , Ai} be a set of linear independent vectors in GF(2)n and V (i) be
the vector sub-space spanned by these vectors. Then, i-th order differential is
defined as follows.

∆
(i)

V (i)E(X ; K) =
⊕

A∈V (i)

E(X ⊕ A; K), (12)

where
⊕

A∈V (i) denotes the ex-OR sum over V (i). In the following, we denote
∆

(i)

V (i) as ∆(i), when it is clearly understood.
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In this paper, we use the following properties of Higher Order Differential:
[Property 1]

If the degree of E(X ; K) equals N , then

degXE(X ; K) =
{

∆(N+1)E(X ; K) = 0
∆(N)E(X ; K) = const.

[Property 2]
Higher order differential operation has a linear property.

∆(i) {E1(X ; K1) ⊕ E2(X ; K2)} = ∆(i)E1(X ; K1) ⊕ ∆(i)E2(X ; K2)

[Property 3]
If a set of 2n vectors in GF(2)n, which are outputs of E(X ; K), has the

following properties, the value of n-th order differential becomes to 0.

all : each possible output value appears only once.
balance2 : every output value appears even times.
constant : the output remains a constant value.

3.2 Attack Equation

Fig.4 shows the structure of 6 round Feistel type block cipher with SPN type
round function. In the figure, the following equation holds.

PL ⊕ Y2 ⊕ Y4 ⊕ Y6 = CL

⇐⇒ PL ⊕ CL = PZ2 ⊕ PZ4 ⊕ PZ6

⇐⇒ P−1{PL ⊕ CL} = Z2 ⊕ Z4 ⊕ Z6 (13)

For an i-th byte, the above equation is

{P−1PL}i ⊕ {P−1CL}i = z2i ⊕ z4i ⊕ z6i, (14)

where {•}i denotes the i-th byte of variable •.
Let V (N) be a vector sub-space in PR. Consider N -th order differential of

Eq.(14) with respect to V (N). Since PL has constant property, from Property2
and 3, it can be calculated as

⊕
PR∈V (N)

{P−1CL}i = ∆(N)z2i ⊕ ∆(N)z4i ⊕ ∆(N)z6i. (15)

On the other hand, by guessing the key k6i, N -th order differential of z6i

with respect to V (N) can be calculated as

∆(N)z6i =
⊕

PR∈V (N)

sj(cRi ⊕ k6i), (16)

where cRi denotes i-th byte of right half of the ciphertext CR(see Fig.4).
2 This definition is different from that in Square Attack[15].
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From Eq.(15) and Eq.(16), the following equation holds.

⊕
PR∈V (N)

{P−1CL}i =
⊕

PR∈V (N)

sj(cRi ⊕ k6i) ⊕ ∆(N)z2i ⊕ ∆(N)z4i (17)

If the following condition holds

∆(N)z2i ⊕ ∆(N)z4i = 0, (18)

then we have the following attack equation.

⊕
PR∈V (N)

{P−1CL}i =
⊕

PR∈V (N)

sj(cRi ⊕ k6i) (19)

The above equation(19) always holds when the guessed key k6i is true, and holds
probabilistically when it is false. Thus, we can determine the true key k6i by an
adequate number of N -th order differential. Table.2 summarizes our basic attack.

In the explanation above, we guess the last one round key and check its
correctness by the attack equation(19). We call this +1R elimination technique.
In the same manner, we call +nR elimination technique if we guess the last n
round keys and −nR elimination technique if we guess the first n round keys.
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Table 2. Basic 6R Attack

Chosen Plaintext PL has a constant property.
A variable for which Eq.(18) holds are chosen in PR.

Guessing Key k6i

Attack Equation
⊕

PR∈V (N)

{P−1CL}i =
⊕

PR∈V (N)

sj(cRi ⊕ k6i) (Eq.(19))

4 Effective Chosen Plaintext

4.1 Search for the Effective Chosen Plaintext by Computer
Experiment

Camellia encrypts a plaintext in a byte oriented manner. So we perform the
byte wise search for the variable sub-block with which Eq.(18) holds.

Let’s consider 8-th order differential with respect to one byte of PR. As shown
in Fig.5, if we choose i1-th byte of PR as a variable, z2i1 has all property, and
z2i (i �= i1) has constant property. Thus ∆(8)z2i = 0. Therefore if ∆(N)z4i = 0,
then Eq.(18) holds. So we conducted a computer search for such variable sub-
blocks. However, we could not find any one-byte variable to meet the condition.

If we select two bytes as variables for Higher Order Differential, we still have
∆(16)z2i = 0. So we searched for such byte pairs by a computer experiment that
make ∆(16)z4i = 0. We show the result in Table.3. For example, the first entry
in the table (1,2) means that if we choose the first and second byte pairs as
variable sub-blocks for 16-th order differential, then ∆(16)z46 = 0. With 16-th
order differential, the attack equation to determine a 6-th round key is as follows.

⊕
(i1,i2)

{P−1CL}i =
⊕

(i1,i2)

sj(cRi ⊕ k6i) (20)

where
⊕

(i1,i2) denotes the sum over the variable, i1-th and i2-th byte in PR.

4.2 The Pattern Whose 16-th Order Differential Equal to 0

If we select pairs (i1, i2) as variable sub-blocks, only z2i1 , z2i2 , which are outputs
of S-Boxes in the second round, are affected by these variables. In the third round,
the input of each S-Boxes are among the following, c, z2i1⊕c, z2i2⊕c, z2i1⊕z2i2⊕c,
where c are some constant values. These outputs in third round S-Boxes are
process by P function to make fourth round inputs. These inputs are converted
by the corresponding S-Boxes in the fourth round to make z4i.

We analyzed these processes. We found that the condition for ∆(16)z4i = 0
is classified into following three patterns:
[pattern1]

z4i = sj1(sj2 (z2i1 ⊕ c1) ⊕ f(z2i1 ⊕ z2i2) ⊕ c2)
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Table 3. Input variables sub-block byte pairs for ∆(16)z4i = 0

(i1i2) observation byte

(1, 2) z46[1]
(1, 4) z45[1]
(1, 6) z43[1], z47[1], z48[2]

◦ (1, 7) z42[1], z43[3], z45[1], z46[1]

(2, 3) z47[1]
(2, 7) z44[1], z45[2], z48[1]

• (2, 8) z43[1], z44[3], z46[1], z47[1]

(3, 4) z48[1]
◦ (3, 5) z41[3], z44[1], z47[1], z48[1]

(3, 8) z41[1], z45[1], z46[2]

(4, 5) z42[1], z46[1], z47[2]
• (4, 6) z41[1], z42[2], z45[1], z48[1]

[ ] denotes the pattern.
Two • pairs (or two ◦ pairs) gives the minimum number of

chosen plaintexts to solve all 6-th round keys.

[pattern2]

z4i = sj1(sj2(z2i1 ⊕ c1) ⊕ sj2(z2i1 ⊕ c2) ⊕ f(z2i1 ⊕ z2i2) ⊕ c3)

[pattern3]

z4i = sj1(sj2(z2i1 ⊕ c1) ⊕ sj2(z2i2 ⊕ c2) ⊕ f(z2i1 ⊕ z2i2) ⊕ c3)
(j1, j2 = 1, 2, 3, 4),

where c1, c2, c3 are constant values, calculated from round keys and plaintext
bytes except i1-th and i2-th in PR. f() denotes some function having z2i1 ⊕ z2i2

as an input.
These patterns are shown in Table.3 as a number in the bracket[ ]. For ex-

ample, when we select pairs (1, 2) as variable sub-blocks, z46 is expressed as
follows.

z46 = s3(s1(z21 ⊕ c1) ⊕ s2(z21 ⊕ z22 ⊕ c2) ⊕
s2(z21 ⊕ z22 ⊕ c3) ⊕ s3(z21 ⊕ z22 ⊕ c4) ⊕ c5) (21)

Then, if we choose f() as

f(z21 ⊕ z22) = s2(z21 ⊕ z22 ⊕ c2) ⊕ s2(z21 ⊕ z22 ⊕ c3) ⊕ s3(z21 ⊕ z22 ⊕ c4),
(22)

z46 is classified to pattern1.
The proofs for ∆(16)z4i = 0 are described in Appendix.
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5 Attack of 6 Round Camellia (Basic Attack)

Based on the previous discussion, we can derive an attack equation to determine
the 6-th round key. For example, when we choose pairs (1, 2) as variable sub-
blocks, the attack equation is as follows.

⊕
(1,2)

s3(cR6 ⊕ k66) =
⊕
(1,2)

{
P−1CL

}
6

(23)

Eq.(23) is a vector equation over GF(2)8. It holds with probability 2−8 for a
false key k66, and always holds for the true key. Let K1 be the number of key bits
on which we must perform a brute-force search in the attack. To remove all false
keys, the necessary number M of 16-th order differential is the one satisfying
the following.

(2−8)M × 2K1 � 1 (24)

Here, we have K1 = 8. So we choose M = 2. This attack requires 216 ×M = 217

chosen plaintexts.
In the straight forward calculation, the computational complexity to deter-

mine the left side of Eq.(23) is 216 S-Box operations for each supposed key k66.
However we can reduce its cost to 28 S-Box operations by an occurrence table
for cR6. Because an even time ex-OR sum always becomes 0.

We have M sets of 16-th order differentials for checking the correctness of
supposed key. On the first check, we can expect 28 possible values of k66 to check.
On the i-th check, there are 28 × 2−8i survived false key values, which we must
check for its correctness. Thus the complexity is

Ts =
M−1∑
i=0

(
28 × 28 × 2−8i

)
< 28 × 28 × 2 = 217 (25)

S-Box operations.
In addition, we have to consider the complexity to prepare the occurrence ta-

ble 3. It equals the complexity of encrypting 216 plaintexts in 6 round Camellia.
So it is estimated as

Tb = M × 216 × 8 × 6 	 223 (26)

S-Box operations. The complexity to complete this task is T =
Ts + Tb

8 × 6
< 220

encryptions. We did computer experiments. It(CPU:alpha 21264A 667MHz) took
about 0.1[sec], which is an average value for 10,000 experiments.

To determine all the 6-th round keys, we need 8 attack equations. It needs
8 × T encryptions. If we choose pairs (1,7) and (3,5) as variables, which are
marked ◦ in Table.3, we can have 4 attack equations for each pairs. So the
necessary number of chosen plaintexts are 2 × M × 216 = 218. We can also use
two • made pairs to make such attack equations.
3 In general, it can be ignored because it is far smaller than the complexity to solve

the attack equation. In this case, however, we can not ignore it.
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6 Expansion of Attack (I)

We expand the attack described in the previous section. Let’s consider the +2R
elimination technique. In this case, we have to guess 5 byte keys in 7-th round
and 1 byte key in 6-th round. So K1 = 48.

From Eq.(24), we choose M = 7 and m = 216 × M 	 219. As previously
mentioned, the complexity to determine k6i can be reduced if we use an occur-
rence table method. In this paper, for the first test, we check the all-possible
value of 6-th round key k6i using the occurrence table under one guessed keys in
7-th round. In the consecutive test, we check the survived keys by a brute-force
search, because the expected number of survived keys k6i are |k6i| = 2−8×28 = 1
and the occurrence table method does not work effectively.

The complexity to prepare all ciphertexts for this attack is Te = M×216×7×
8 < 225 S-Box operations, because each ciphertext requires the encryption of 7
round Camellia. And the complexity for the brute-force search for each guessed
key in 7-th round is Tb1 = 216 × 5 and that for each guessed key in 6-th and
7-th round is Tb2 = 216 × 6. Let K2 be the number of key bits which we have to
guess the last n round except the round in which we apply the occurrence table
method. In this case, K2 = 40. And let T1 be the complexity for the first test,
and T2 be the complexity for consecutive test. These are calculated as follows.

T1 = 2K2 × (Tb1 + 28 × 28) = 2K2 × Tb2 (27)

T2 =
M−2∑
i=0

{
2K2 × |k6i| × Tb2 × 2−8i

}
< 2K2 × |k6i| × Tb2 × 2 (28)

The complexity to complete this task is

Ts = T1 + T2 + Te < 3 × 2K2 × Tb2 	 261. (29)

S-Box operations. This is T = Ts/(8 × 7) = 257 encryptions.
Similarly, we can conduct +3R elimination technique. In this case, K2 = 104,

because we have to guess 64-bit round keys at 8-th round in addition to the
guessed keys on +2R elimination technique. Therefore, we choose M = 15 from
Eq.(24) and m = 216 × M = 220. It’s complexity is

Tb2 = 216 × 14 (30)
Ts < 3 × 2K2 × Tb2 < 2126 (31)

S-Box operations, which is equal to T = Ts/(8 × 8) = 2120 encryptions.
The necessary number of plaintexts and complexity for +4R,+5R elimination

technique can also be calculated similarly(see Table.1).

7 Expansion of Attack (II)

Our attack can also be improved by eliminating the first n round. For Camellia,
this kind of technique was used by Yeom et. al.[15].
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7.1 Attack of 7 Round Camellia Using −1R Elimination Technique

In this section, we present an attack of 7 round Camellia, which needs to guess 2
bytes of first round keys. Although we can adopt any sub-block pairs in Table.3,
we choose pairs (1,2) as variables as an example.

Let’s review the attack of 6 round using +1R elimination technique. In that
attack, to determine the 6-th round key k66, we use the plaintext, which has
constant property except first and the second byte in PR, which has all property.
We express this condition as{

PL = (”c”, · · · , ”c”)
PR = (”v1”, ”v2”, ”c”, · · · , ”c”) (32)

where ”v1”, ”v2” denote a variable sub-block, and ”c” denote a constant sub-
block.

To apply −1R elimination technique, the input of the second round XL2, XR2

must satisfy the following condition.{
XL2 = (”c”, · · · , ”c”)
XR2 = (”v1”, ”v2”, ”c”, · · · , ”c”) (33)

Let v1, v2 be the actual values of ”v1”, ”v2”, respectively. Note that XR2 is
also an input for the first round F function. The output of the first round F
function can be expressed as follows by using k11, k12, which are the first and
second byte of the first round keys, and some constants ci(i = 0 ∼ 8).




y11 = s1(v1 ⊕ k11) ⊕ c1

y12 = s1(v1 ⊕ k11) ⊕ s2(v2 ⊕ k12) ⊕ c2

y13 = s1(v1 ⊕ k11) ⊕ s2(v2 ⊕ k12) ⊕ c3

y14 = s2(v2 ⊕ k12) ⊕ c4

y15 = s1(v1 ⊕ k11) ⊕ s2(v2 ⊕ k12) ⊕ c5

y16 = s2(v2 ⊕ k12) ⊕ c6

y17 = c7

y18 = s1(v1 ⊕ k11) ⊕ c8

(34)

In the above formula, independent variables are


α1 = s1(v1 ⊕ k11)
α2 = s2(v2 ⊕ k12)
α3 = s1(v1 ⊕ k11) ⊕ s2(v2 ⊕ k12).

(35)

From the guessed key k11, k12, the right half of the plaintext PR can be calculated
as follows.

PR = (α1, α3, α3, α2, α3, α2, c9, α1) (36)

If the guessed keys k11, k12 are true, the input of the second round satisfies the
condition(Eq.(33)) and the attack equation is

⊕
v1,v2

s3(cR6 ⊕ k76) =
⊕
v1,v2

{
P−1CL

}
6
, (37)

where
⊕

v1,v2
denote the sum over variables v1, v2.
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Fig. 6. −1R elimination technique

7.2 The Number of Plaintext and Complexity

Let K3 be the number of key bits to determine the chosen plaintext. In this at-
tack, we have to guess keys, k11, k12 in first round and k76 in the attack equation.
Therefore K1 = 24, K3 = 16, respectively. The number of 16-th order differential
pairs M have to satisfy (2−8)M ×2K1 � 1 from Eq.(24). Here, we choose M = 4.
We need 216 × M chosen plaintexts for each candidate keys in the first round.
So the necessary number of chosen plaintexts are m = 2K3 × 216 × M = 236.

Since it needs 2 S-Box operations to choose the plaintext, the complexity to
make the occurrence table is Tb = 216 × (8 × 7 + 2) < 222 S-Box operations.
At the beginning, we must determine a chosen plaintext by guessing first round
keys k11, k12. Since we have to conduct a brute-force search for those 2 byte keys,
the complexity for this attack is

Ts < 2K3 × (
M × Tb + 28 × 28 × 2

) 	 240 (38)

S-Box operations, and T = Ts/(8 × 7) < 234 encryptions. We conducted com-
puter experiments. It took about 1.5[h], which is an average value of 30 tri-
als(CPU:alpha 21264A 667MHz).

7.3 −2R Elimination Technique

It is possible to expand the above technique to −2R elimination one. In this case,
we have to guess first round keys, k11, · · · , k16, k18 and first and second byte keys
k21, k22 in the second round, and control the plaintext so that the input of the
second round equals to the plaintext for +1R elimination technique(Fig.6). As
shown in Fig.7, let β1, · · · , β8 be sub-blocks, which are calculated from α1, α2, α3,
when we guess the first round keys, k11, · · · , k16, k18. The chosen plaintext can
be expressed as

{
PR = (α1, α3, α3, α2, α3, α2, c7, α1)
PR = (β1, · · · , β8).

(39)
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Fig. 7. −2R elimination technique

In this attack, K1 = 80, K3 = 72, because it needs to guess 9 byte keys in the
first and the second round, and 1 byte key in the 7-th round. Therefore M = 11,
because it must hold (2−8)M × 280 � 1. The necessary number of plaintexts are
m = 272 × 216 × M = 293. And the complexity for this attack is

Tb = 216 × (8 × 8 + 9) < 223 (40)
Ts < 2K3 × (M × Tb + 28 × 28 × 2) < 299 (41)

S-Box operations, and T = Ts/(8 × 8) = 293 encryptions.

7.4 +nR and −nR Elimination Technique

−nR technique can be used with +nR elimination technique simultaneously.
From Eq.(24), the number M of 16-th order differential to complete an attack
satisfies (2−8)M×2K1 and it needs m = 2K3×216×M chosen plaintexts. For each
supposed key in the first n round, we must conduct +nR elimination technique.
Thus the complexity to complete this attack is

Ts < 3 × 2K2+K3 × Tb2 (42)

S-Box operations.
Now, we estimate the attack of 11 round Camellia. When −2+4R elimination

technique is applied, it needs to guess 9 byte keys in the first 2 rounds and 22
byte keys in the last 4 rounds. Thus K1 = 248, K2 = 168, K3 = 72. From
Eq.(24), we choose M = 32 and m = 216 × 2K3 × M = 293 chosen plaintexts.
The complexity to calculate the left side of the attack equation from ciphertexts
is Tb2 = 216 × (8 × 2 + 5 + 1) = 216 × 22 S-Box operations. The complexity to
complete this attack is

Ts < 3 × 2K2+K3 × Tb2 	 2262.1 (43)
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Fig. 8. 9 round Camellia(From a ciphertext)

S-Box operations and so T = Ts/(8 × 11) = 2255.6 encryptions4. Therefore, 11
round Camellia under a 256 bit secret key can be attacked with less complexity
than brute-force search for a secret key.

8 Attack of Camellia with FL Function Using Chosen
Ciphertexts

In this section, we analyze Camellia with FL function using chosen ciphertexts.
Let KL11, KL12, KL21, and KL22 be keys, which are inputs to FL/FL−1 func-
tion as shown in Fig.3 and 8. XLi, XRi denote i-th round inputs, and YLi, YRi

denote these outputs.
Let’s consider +4R elimination technique. Then, FL function is inserted be-

tween the third and the fourth round since it is inserted every 6 round from the
plaintext.

4 If we adopt precise value for T2 in Eq.(28) as

T2 =

M−2∑
i=0

{
2K2 × |k6i| × Tb2 × 2−8i

}
,

this complexity is slightly less than 2255 encryptions.
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Table 4. Input variable sub-block bytes pair for ∆(16)z4i = 0
(With FL function)

(i1i2) observation byte ! !

(1, 6) z48

(1, 7) z45

(2, 7) z45

(2, 8) z46

(i1i2) observation byte ! !

(3, 5) z47

(3, 8) z46

(4, 5) z47

(4, 6) z48

As shown in Fig.8, the following equation holds.

YL6 = Y6 ⊕ Y4 ⊕ FL−1(YL2; KL21, KL22)
⇐⇒ Z6 ⊕ Z4 = P−1{YL6 ⊕ FL−1(YL2; KL21, KL22)}
⇐⇒ z6i = z4i ⊕ {P−1YL6}i ⊕ {P−1FL−1(YL2; KL21, KL22)}i

(i = 1 ∼ 8) (44)

Since z6i = sj(x6i⊕k6i), when we choose pairs (i1, i2) as a variable sub-blocks
and calculate 16-th order differential of the above equation, it gives as

⊕
(i1,i2)

sj(x6i ⊕ k6i) =
⊕

(i1,i2)

{
P−1YL6

}
i
⊕ ∆(16)z4i ⊕

∆(16)
{
P−1{FL−1(YL2; KL21, KL22)}

}
i
, (45)

where

YL2 = Y2 ⊕ CL = PZ2 ⊕ CL. (46)

Let’s consider 8-th order differential for i-th byte in CR. Then each byte of Z2

has all or constant property and CL has constant property. Since P and FL
functions are linear functions, the third term in Eq.(45) become 0 for any 16-th
order differential. Thus if ∆(16)z4i = 0, we have

⊕
(i1,i2)

sj(x6i ⊕ k6i) =
⊕

(i1,i2)

{
P−1YL6

}
i
. (47)

This is the same attack equation as Eq.(19), which is the attack equation without
FL function.

We searched for variable sub-block pairs, which satisfy ∆(16)z4i = 0. Eight
pairs satisfy such condition, which are shown in Table.4. Therefore, with Eq.(47)
and +4R elimination technique, we can conduct the attack of 9 round Camellia
with FL function when we choose one of these pairs as a variable. The com-
plexity and the necessary number of chosen plaintexts are the same as that for
without FL function because Eq.(47) is the same attack equation for the case
of without FL function. Using −1,−2R elimination technique, 10 round and 11
round Camellia with FL function is attackable with the same complexity as the
attack of variant without FL function, respectively(see Table.1).
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9 Conclusion

In this paper, we present a new attack of Camellia using 16-th order differ-
ential. We have shown that 11 round Camellia without FL function can be
attacked. Moreover, we did computer experiments of attacks for 6 round and 7
round Camellia. They took about 0.2[sec] and 1.5[h], respectively. Using cho-
sen ciphertexts, we have shown that 11 round Camellia with FL function is
attackable with less complexity than a brute-force search for a 256-bit secret
key.
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A Proof of ∆z
(16)
4� = 0

The reason for ∆z
(16)
4i = 0 can be shown as follows.

Proof for pattern1
When we choose i1, i2-th byte in the plaintext PR as variable sub-blocks,

16-th order differential of z4i can be expressed as follows.

∆(16)z4i =
⊕

(i1,i2)

{sj1(sj2 (z2i1 ⊕ c1) ⊕ f(z2i1 ⊕ z2i2) ⊕ c2}, (48)

where

z2i1 = sj(pRi1 ⊕ c8), z2i2 = sj(pRi2 ⊕ c9).

Since S-Boxes of Camellia are bijective functions, the sum over i1, i2-th byte
in PR

⊕
(i1,i2) equals to the sum over z2i1 , z2i2 . Futhermore, let

α = z2i1 ⊕ c1, β = z2i1 ⊕ z2i2 . (49)

We can replace the sum over z2i1 and z2i2 with the sum over α and β.

∆(16)z4i =
⊕
α,β

{sj1(sj2(α) ⊕ f(β) ⊕ c2}

=
⊕

β

{⊕
α

sj1(sj2(α) ⊕ f(β) ⊕ c2)

}
(50)

Let’s estimate the value in parentheses{ }. For a constant β, this is the sum
over α for the function g(α, β) expressed as follows.

g(α, β) = sj1(sj2 (α) ⊕ f(β) ⊕ c2) (51)

From Eq.(49), α has all property as inputs sj2(). Thus the value equals to 8-th
order differential of g() with respect to α.

⊕
α

{sj1 (sj2(α) ⊕ f(β) ⊕ c2)} = ∆(8)g(α, β) (52)

Since β, c2 are constant values and S-Boxes of Camellia are bijective functions,
the output from g() has all property. From Property3, we have ∆(8)g(α, β) = 0.
Therefore, we have the following.

∆(16)z4i =
⊕

β

{
∆(8)g(α, β)

}

= 0 (53)

�

Due to the limited space, we omit the proof for pattern2 and pattern3. With
a similar procedure, they can also be easily proven.
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