
A Reconfigurable System on Chip
Implementation for Elliptic Curve Cryptography

over GF(2n)

M. Ernst1, M. Jung1, F. Madlener1, S. Huss1, and R. Blümel2

1 Integrated Circuits and Systems Lab., Computer Science Department,
Darmstadt University of Technology, Germany

{ernst|mjung|madlener|huss}@iss.tu-darmstadt.de
2 cv cryptovision GmbH, Gelsenkirchen, Germany

rainer.bluemel@cryptovision.com

Abstract. The performance of elliptic curve based public key cryp-
tosystems is mainly appointed by the efficiency of the underlying finite
field arithmetic. This work describes two generic and scalable archi-
tectures of finite field coprocessors, which are implemented within the
latest family of Field Programmable System Level Integrated Circuits
FPSLIC from Atmel, Inc. The HW architectures are adapted from
Karatsuba’s divide and conquer algorithm and allow for a reasonable
speedup of the top-level elliptic curve algorithms. The VHDL hard-
ware models are automatically generated based on an eligible operand
size, which permits the optimal utilization of a particular FPSLIC device.

Keywords. Elliptic Curve cryptography, GF(2n) arithmetic, Karatsuba
multiplication, VHDL model generator, coprocessor synthesis, FPGA
hardware acceleration, Atmel FPSLIC platform.

1 Introduction

Today there is a wide range of distributed systems, which use communication re-
sources that can not be safeguarded against eavesdropping or unauthorized data
alteration. Thus cryptographic protocols are applied to these systems in order to
prevent information extraction or to detect data manipulation by unauthorized
parties. Besides the widely-used RSA method [1], public-key schemes based on
elliptic curves (EC) have gained more and more importance in this context. In
1985 elliptic curve cryptography (ECC) has been first proposed by V. Miller [2]
and N. Koblitz [3]. In the following a lot of research has been done and nowa-
days ECC is widely known and accepted. Because EC methods in general are
believed to give a higher security per key bit in comparison to RSA, one can
work with shorter keys in order to achieve the same level of security [4]. The
smaller key size permits more cost-efficient implementations, which is of special
interest for low-cost and high-volume systems. Because ECC scales well over the
whole security spectrum, especially low-security applications can benefit from
ECC.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 381–399, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

382 M. Ernst et al.

Each application has different demands on the utilized cryptosystem (e.g., in
terms of required bandwidth, level of security, incurred cost per node and number
of communicating partners). The major market share probably is occupied by
the low-bandwidth, low-cost and high-volume applications, most of which are
based on SmartCards or similar low complexity systems. Examples are given by
the mobile phone SIM cards, electronic payment and access control systems. In
case of access control systems, ECC allows to use one device and one key-pair
per person for the entire application. A very fine granular control is possible and
in contrast to present systems, which are mostly based on symmetric ciphers,
there is no problem regarding the key handling.

Depending on the application, the performance of genuine SW implementa-
tions of ECC is not sufficient. In this paper two generic and scalable architectures
of Finite Field coprocessors for the acceleration of ECC are presented. The first
one, which is mainly composed of a single combinational Karatsuba multiplier
(CKM), allows for a significant speed-up of the finite field multiplication while
spending only a small amount of HW resources. The second one is a finite field
coprocessor (FFCP), implementing field multiplication, addition and squaring
completely within HW. The proposed multi-segment Karatsuba multiplication
together with a cleverly selected sequence of intermediate result computations
permits high-speed ECC even on devices offering only approx. 40K system gates
of HW resources. A variety of fast EC cryptosystems can be built by disposing
the proposed system partitioning. Running the EC level algorithms in SW al-
lows for algorithmic flexibility while the HW accelerated finite field arithmetic
contributes the required performance.

Recently, Atmel, Inc. introduced their new AT94K family of FPSLIC devices
(Field Programmable System Level Integrated Circuits). This architecture inte-
grates FPGA resources, an AVR microcontroller core, several peripherals and
SRAM within a single chip. Based on HW/SW co-design methodologies, this
architecture is perfectly suited for System on Chip (SoC) implementations of
ECC.

The mathematical background of elliptic curves and finite fields is briefly de-
scribed in the following section. In Sec. 3 the architectures of the proposed finite
field coprocessors are detailed. Sec. 4 introduces the FPSLIC hardware platform.
Finally, we report on our implementation results give some performance numbers
and conclusions.

2 Mathematical Background

There are several cryptographic schemes based on elliptic curves, which work on a
subgroup of points of an EC over a finite field. Arbitrary finite fields are approved
to be suitable for ECC. In this paper we will concentrate on elliptic curves over
the finite field GF(2n)1 and their arithmetics only. For further information we
refer to [5] and [6].
1 In the context of cryptographic applications n should be prime, in order to be safe-

guarded against Weil decent attacks [7].

A Reconfigurable System on Chip Implementation 383

EC-Double EC-Add

FF-AddFF-Mult FF-Square

k P

Fig. 1. EC arithmetic hierarchy

2.1 Elliptic Curve Arithmetic

An elliptic curve over GF(2n) is defined as the cubic equation

E : y2 + xy = x3 + ax2 + b (1)

with a, b, x, y ∈ GF(2n) and b �= 0. The set of solutions {(x, y) | y2 + xy =
x3+ax2+b} is called the points of the elliptic curve E. By defining an appropriate
addition operation and an extra point O, called the point at infinity, these points
become an additive, abelian group with O the neutral element. The EC point
multiplication is computed by repeated point additions such as

P + P + . . . + P + P
︸ ︷︷ ︸

k times

= k · P = R

with k ∈ N and P, R ∈ E.
The hierarchy of arithmetics for EC point multiplication is depicted in Fig. 1.

The top level k·P algorithm is performed by repeated EC-Add and EC-Double
operations. The EC operations in turn are composed of basic operations in the
underlying finite field (FF). The proposed FF coprocessor (see Sec. 3.2 and
Sec. 5.2) is capable to compute the FF-Add and FF-Square operations within
one clock cycle. The operation FF-Mult is more costly. The number of clock
cycles for its computation depends on the particular architecture of the FF mul-
tiplier. Compared to FF-Add, FF-Square and FF-Mult the FF inversion is a
very expensive operation and is therefore not implemented in the coprocessor as
a basic operation. In order to avoid computing inverses, projective coordinates
are used during the computation of the EC operations. By exploiting a projec-
tive coordinate representation only one FF inversion is required to perform a
complete EC point multiplication. This single FF inversion has to be done at
the end of the k·P algorithm for the conversion back to affine coordinates.

384 M. Ernst et al.

2.2 Finite Field Arithmetic

As previously mentioned, the EC arithmetic is based on a FF of characteristic
2 and extension degree n: GF(2n), which can be viewed as a vector space of di-
mension n over the field GF(2). There are several bases known for GF(2n). The
most common bases, which are also permitted by the leading standards concern-
ing ECC (IEEE 1363 [8] and ANSI X9.62 [9]) are polynomial bases and normal
bases. The representation treated in this paper is a polynomial basis, where
field elements are represented by binary polynomials modulo an irreducible bi-
nary polynomial (called reduction polynomial) of degree n. Given an irreducible
polynomial P (x) = xn +

∑n−1
i=0 pix

i, with pi ∈ GF(2); an element A ∈ GF(2n) is
represented by a bit string (an−1, . . . , a2, a1, a0), so that

A(x) =
n−1
∑

i=0

aix
i = an−1x

n−1 + . . . + a2x
2 + a1x + a0

is a polynomial in x of degree less than n with coefficients ai ∈ GF(2). By
exploiting a field of characteristic 2, the addition is reduced to just XOR-ing the
corresponding bits. The sum of two elements A, B ∈ GF(2n) is given by

C(x) = A(x) ⊕ B(x) =
n−1
∑

i=0

(ai ⊕ bi)xi (2)

and therefore takes a total of n binary XOR operations. The multiplication of
two elements A, B ∈ GF(2n) is equivalent to the product of the corresponding
polynomials:

C(x) = A(x) · B(x) =
2n−2
∑

i=0

cix
i denoting ck =

k
∑

i=0

aibk−i for 0 ≤ k ≤ 2n − 2,

(3)

with ai = 0 and bi = 0 for i ≥ n. At the bit level the multiplication in GF(2) is
performed with boolean AND operation. Squaring is a special case of multipli-
cation. For A∈ GF(2n) the square is given by:

A2(x) =
n−1
∑

i=0

aix
2i. (4)

In the case of multiplication and squaring a polynomial reduction step has to be
performed, which is detailed in Sec. 2.

Karatsuba Multiplication. In 1963 A. Karatsuba and Y. Ofman discovered
that multiplication of two n bit numbers can be done with a bit complexity of less
than O(n2) using an algorithm now known as Karatsuba multiplication [10]. For
multiplication in GF(2n) the Karatsuba multiplication scheme can be applied as

A Reconfigurable System on Chip Implementation 385

well. Therefore, a polynomial A ∈ GF(2n) is subdivided into two segments and
expressed as

A = A1x
n/2 ⊕ A0 .

For polynomials A, B ∈ GF(2n) the n-bit multiplication C = A ·B is subdivided
into n/2-bit multiplications as follows:

C = A · B

= (A1x
n/2 ⊕ A0) · (B1x

n/2 ⊕ B0)
= A1 · B1x

n ⊕ (A1 · B0 ⊕ A0 · B1)xn/2 ⊕ A0 · B0 .

By defining some additional polynomials

T1 = A1 · B1

T2 = (A1 ⊕ A0) · (B1 ⊕ B0) = A1B0 ⊕ A0B1 ⊕ A1B1 ⊕ A0B0

T3 = A0 · B0

one gets A · B = T1x
n ⊕ (T2 � T1 � T3)xn/2 ⊕ T3 and since � and ⊕ are equal

in GF(2n)

A · B = T1x
n ⊕ (T2 ⊕ T1 ⊕ T3)xn/2 ⊕ T3 . (5)

This results in a total of three n/2-bit multiplications and some extra additions
(XOR operations) to perform one n-bit multiplication.

Multi-segment Karatsuba Multiplication. The fundamental Karatsuba
multiplication for polynomials in GF(2n) is based on the idea of divide and
conquer, since the operands are divided into two segments. One may attempt
to generalize this idea by subdividing the operands into more than two seg-
ments. [11] reports on such an implementation with a fixed number of three seg-
ments denoted as Karatsuba-variant multiplication. The Multi-Segment Karat-
suba (MSK) multiplication scheme, which is detailed subsequently, is more gen-
eral because an arbitrary number of segments is supported. Disregarding some
slight arithmetic variations, the Karatsuba-variant multiplication is a special
case of the MSK approach.

Two polynomials in GF(2n) are multiplied by a k-segment Karatsuba mul-
tiplication (MSKk)2 in the following way: It is assumed that n mod k = 0; if
not, the polynomials are padded with the necessary number of zero coefficients.
A polynomial A ∈ GF(2n) is divided into k segments such that A =

⊕k−1
i=0 Ai ·x̂i,

with x̂ = xn/k. With Eqn. 6 holds C = A·B = MSKk(A, B) for any polynomials
A, B ∈ GF(2n):

MSKk(A, B) =

(

k
⊕

i=1

Si,0(A, B) · x̂i−1

)

⊕
(

k−1
⊕

i=1

Sk−i,i(A, B) · x̂i−1+k

)

(6)

with
2 A k-segment Karatsuba multiplication is subsequently termed as MSKk.

386 M. Ernst et al.

Sm,l(A, B) =

(

m−1
⊕

i=1

Si,l(A, B)

)

⊕
(

m−1
⊕

i=1

Si,l+m−i(A, B)

)

⊕ Mm,l(A, B) , (7)

S1,l(A, B) = M1,l(A, B) and Mm,l(A, B) =

(

l+m−1
⊕

i=l

Ai

)

·
(

l+m−1
⊕

i=l

Bi

)

According to Eqn. 6 the entire product C = A · B = MSKk(A, B) is composed
of the partial sums Sm,l(A, B). Each partial sum consists of partial products
Mm,l(A, B) according to Eqn. 7. The total number N(k) of required n/k-bit
multiplications in order to perform one n-bit multiplication using the MSKk

scheme is given by

N(k) =
k
∑

i=1

i =
(k + 1) · k

2
. (8)

The application of the above equations for a MSK3 multiplication, made up of
six n/3-bit multiplications, is illustrated in the appendix of this paper.

Polynomial Reduction. For A, B ∈ GF(2n), the maximum degree of the
resulting polynomial C(x) = A(x) ·B(x) is 2n− 2. Therefore, in order to fit into
a bit string of size n, C(x) has to be reduced. The polynomial reduction process
modulo P (x) is based on the equivalence

xn ≡
n−1
∑

i=0

pix
i mod P (x). (9)

Implementations of the reduction can especially benefit from hard-coded re-
duction polynomials with low Hamming weight such as trinomials, which are
typically used in cryptographic applications. Given such a trinomial as prime
polynomial P (x) = xn + xb + 1 the reduction process can be performed effi-
ciently by using the identities:

xn ≡ xb + 1 mod P (x)
xn+1 ≡ xb+1 + x mod P (x)

...
x2n ≡ xb+n + xn mod P (x)

This leads to

C(x) =
2n−2∑

i=0

cix
i

≡
n−1∑

i=0

cix
i +

2n−2∑

i=n

ci(xb+i−n + xi−n) mod P (x)

A Reconfigurable System on Chip Implementation 387

=
n−1∑

i=0

cix
i +

n−1−b∑

i=0

ci+nxb+i +
n−1∑

i=n−b

ci+nxb+i +
n−1∑

i=0

ci+nxi

≡
n−1∑

i=0

cix
i +

n−1−b∑

i=0

cn+ix
b+i +

n−1∑

i=n−b

cn+i(x2b+i−n + xb+i−n) +
n−1∑

i=0

ci+nxi mod P (x)

=
n−1∑

i=0

cix
i

︸ ︷︷ ︸
(1)

+
n−1−b∑

i=0

ci+nxb+i

︸ ︷︷ ︸
(2)

+
b−1∑

i=0

c2n−b+ix
b+i

︸ ︷︷ ︸
(3)

+
b−1∑

i=0

c2n−b+ix
i

︸ ︷︷ ︸
(4)

+
n−1∑

i=0

cn+ix
i

︸ ︷︷ ︸
(5)

(10)

which results in a total of 2n+b binary XOR operations for one polynomial reduc-
tion. The particular terms (1...5) of the final equation are structured according
to Fig. 2 in order to perform the reduction. With respect to the implementation
in Sec. 3 a single n-bit register is sufficient to store the resulting bit string.

Result Register (n bit)

2n1 2nb

2nb1 n 2n1 2nb

n2n1

n1 0
(1)

(5)

(2) (4)

(3)

Fig. 2. Structure of the polynomial reduction

3 Hardware Architecture

An ideal HW/SW partitioning targeting a reconfigurable HW platform for an
EC based cryptosystem depends on several parameters. As stated before, the
FF arithmetic is the most time critical part of an EC cryptosystem. Depend-
ing on the utilized key size and the amount of available FPGA resources the
FF operations can not inevitably be performed completely within HW. There-
fore, flexibility within the HW design flow is essential, in order to achieve the
maximum performance from a specific FPGA device. In order to ensure this flex-
ibility, the HW design flow is based on the hardware description language VHDL,
which is the de-facto standard for abstract modeling of digital circuits. A VHDL
generator approach (similar to that one documented in [12]) was exploited to
derive VHDL models for both of the subsequently described FF coprocessors.
In Sec. 3.1 the combinational Karatsuba multiplier (CKM) is illustrated and
Sec. 3.2 details the architecture of the entire finite field coprocessor (FFCP).

388 M. Ernst et al.

3.1 Combinational Karatsuba Multiplier (CKM)

As stated in Sec. 2.2 and shown in Fig. 3a the multiplication over GF(2) is com-
puted by a single AND operation. According to Eqn. 5 the multiplication of two
polynomials of degree m can be computed with three m/2-bit multiplications and
some XOR operations to determine interim results and to accumulate the final
result. This leads immediately to a recursive construction process, which builds
CKMs of width m = 2i for arbitrary i ∈ N (see Fig. 3). With slight modifica-
tions this scheme can be generalized to support arbitrary bit widths. Exploiting
the VHDL generator, CKM models for arbitrary m ∈ N can be automatically
generated.

To determine the number of gates that constitute an m-bit CKM, we take
a look at Fig. 4. In addition to the resources of the three m/2-bit multipliers,
2(m/2)=m 2-input XOR’s are needed to compute the sub-terms (A1 ⊕A0) and
(B1 ⊕B0) of T2. As can be seen from Fig. 4, 2(m/2−1)=(m−2) 4-input XOR’s
(light gray) and one 3-input XOR (dark gray) are in addition necessary to sum
up the product. Thus, we can calculate the number of gates of an m-bit CKM
with the following recurrences:

XOR2(m)=
{

0 m = 1
m + 3 · XOR2(m/2) m > 1 XOR3(m)=

{
0 m = 1
1 + 3 · XOR3(m/2) m > 1

AND2(m)=
{

1 m = 1
3 · AND2(m/2) m > 1 XOR4(m)=

{
0 m = 1
m − 2 + 3 · XOR4(m/2) m > 1

With the master method [13] it can easily be shown that all of these recur-
rences belong to the complexity class Θ(mlog2 3). Explicit gate counts for CKM
of various bit widths are summarized in the Tab. 1.

a 3 a 2 3b 2b

6
c

5c 4c 3c c
2

c
2

a 1 a 0 b1 b 0

1 0
ccc

0

a 0 b0

CKM2

CKM2

CKM2

a 1 a 0 b1 b0

c 1 c
0

CKM1 CKM1

CKM1

c) 4bit CKMb) 2bit CKMa) 1bit CKM

Fig. 3. Recursive construction process for CKM

A Reconfigurable System on Chip Implementation 389

.A B

T1

T1

T2

T3

T3

0

T =A B
T =(A +A)(B +B)
T =A B

1

2

3

1 1

1 0 1

0 0

1m/21 m/21 m/2m/2

1

1

m/2

2m1

m/2B=B x + B
A=A x + A0

0

Fig. 4. Karatsuba multiplication

Table 1. CKM gate counts

Bit Width 1 2 4 8 16 32 64
AND2 1 3 9 27 81 243 729
XOR2 0 2 10 38 130 422 1330
XOR3 0 1 4 13 40 121 364
XOR4 0 0 2 12 50 180 602
SUM 1 6 25 90 301 966 3025

3.2 Finite Field Coprocessor (FFCP)

This section presents a generic and scalable FFCP architecture, which accel-
erates field multiplication, addition and squaring. Addition and squaring are
operations, which require only a few logical resources and hence can be imple-
mented by combinational logic. In contrast, the multiplication can not reasonably
be implemented by combinational logic only. By the use of the proposed MSK
multiplication scheme (see Sec. 2.2) and a cleverly selected sequence of interme-
diate result computations, the resulting datapath has only modest requirements
on logic resources and at the same time a low cycle count for a complete field
multiplication.

The datapath is build around a low complexity m-bit CKM as detailed in
Sec. 3.1, but of course any other multiplier design would also do. By application
of the sequential MSKk multiplication algorithm, k · m bit wide operands can
be processed. With respect to the implementation in Sec. 5.2 and for reasons of
easy illustration we assume k = 5 in the following, but the scheme applies and
scales in a nice way for arbitrary k > 1.

Eqn. 6 evaluated for k = 5 (MSK5) is illustrated in Fig. 5a. Each rectangle
denotes the result of an m-bit multiplication. As one would expect, these prod-
ucts are as wide as two segments. The labels in the rectangles determine the
indices of the segments, whose sums have been multiplied. E.g., the label “234”
represents the term (A2 ⊕A3 ⊕A4) ·(B2 ⊕B3 ⊕B4), which is denoted M3,2(A, B)

390 M. Ernst et al.

in Eqn. 7. The horizontal position of a rectangle denotes the exponent i of the
associated factor x̂i. E.g., the rectangle in the lower left edge labeled “4” together
with its position denotes the term (A4 � B4) · x̂8. The result A � B is computed
by summing up (XORing) all the terms according to their horizontal position.
This product is 2k segments wide, as one would expect. The partial products
can be reordered as shown in Fig. 5b. This order was achieved in consideration
of three optimization criteria.

First, most partial products are added two times in order to compute the
final result. They can be grouped together and placed in one of three patterns,
which are indicated in Fig. 5b. This is true for all instances of the multi-segment
Karatsuba algorithm. In the datapath, these patterns are computed by some
additional combinational logic, which is connected to the output signals of the
CKM (see part (c) of Fig. 6).

Second, the resulting patterns are ordered by descending i of their factor x̂i.
In this way, the product can be accumulated easily in a shift register.

As the third optimization criterion the remaining degree of freedom is taken
advantage of in the following way: The patterns are once more partially re-
ordered, such that when iterating over them from top to bottom, one of the two
following conditions holds: Either the current pattern is constructed out of a
single segment product (e.g. A4 � B4), or the set of indices of the patterns seg-
ments differs only by one index from its predecessor (as in the partial products
(A0 ⊕ A1) · (B0 ⊕ B1) and (A0 ⊕ A1 ⊕ A2) � (B0 ⊕ B1 ⊕ B2)). In Fig. 5b this
criterion is met for all but one iteration step (namely it is not met for the step
from “23” to “1234”). Thus, based on the datapath in Fig. 6 the computation of
the partial product “1234” takes a total of two clock cycles, which is one more
compared to all other iteration steps. The number of additional clock cycles due
to the fact that this third criterion can not be met increases slowly with the
number of segments k.

x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂1 x̂02345678910

x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂1 x̂02345678910

b) A*BA*Ba)

1234

3

2

234

234

123

34

23

34

4

3

4

23

1234

0123

12

01234

1

0123

2

123

012

0

012

12

01

01

1

0

4

34

234

1234

0123

01

012

0

01234

4

34

234

3

23

1234

0123

123

12

012

01

0

1 1

2 2

3

23

123

12

Fig. 5. 5-Segment Karatsuba multiplication and operand reordering

A Reconfigurable System on Chip Implementation 391

SQUARE

00

REDUCE

c)

ROL n

nbit CKM

a)

b)

d)

e)

f)

Fig. 6. Generic datapath architecture

By applying the third optimization criterion to the pattern sequence, the
partial product computations can be performed as follows: By placing m-bit
accumulator registers at the inputs of the CKM, the terms Mm,l(A, B) can be
computed iteratively. This results in a two stage pipelined design for the complete
datapath and yields a total of 17 clock cycles to perform one field multiplication
utilizing the MSK5.

The complete datapath is depicted in Fig. 6. In part a) the two operand reg-
isters of width l = k ·m are shown as well as their partitioning into five segments.
Both are implemented as shift-registers in order to allow data exchange with the
external controller. The multiplexors in part b) select one from the five segments
of the operands. They can both be controlled by the same set of signals, since
they are always operating synchronously. Besides the combinational addition
and squaring blocks, part c) illustrates the two accumulator registers. Both can
either be loaded with a new segment, or they can accumulate intermediate seg-
ment sums. Section d) of Fig. 6 consists of the CKM. Part e) covers the pattern
generation stage, which is mainly composed of multiplexors. Finally, in part f)
the multiplication accumulator register is shown. It can either hold its value or
the current pattern can be added to it in each cycle. Each time the intermediate
result is shifted left by m bit, an interleaved reduction step according to Eqn. 10

392 M. Ernst et al.

Table 2. FFCP gate count

Datapath FF XOR2 AND2
3 MUX2:1 MUX3:1 MUX4:1

part a) 2l l

part b) 2m

2m + l+
part c) 2m 2n + b 2m

part e) m 2m 2m

part f) n 4m n

2m+ 7m + l+
SUM 2l + n 2n + b 2m 4m + n l 2m

n, b: according to
P (x)=xn+xb+1

m : CKM bit width
l : input Reg width

is performed. This way, the accumulator needs only to be n bits wide, where n
is the degree of the reduction polynomial. Furthermore, the necessary number of
logic elements for the reduction step is minimized and no additional clock cycle
is needed.

In order to reduce the amount of communication between the controller and
the FFCP, the result of the current computation is fed back to one of the operand
registers. Thus, interim results need not inevitably be transferred several times
between controller and FFCP.

Tab. 2 gives an overview of the amount of structural and logical components,
which are required to implement the proposed datapath (excluding the CKM
resources, please refer to Sec. 3.1 for the CKM implementation complexity).
The number of states of the finite state machine, which controls the datapath,
is in the order of Eqn. 8. Thus, logic resources for the FSM are negligibly small.

4 Atmel FPSLIC Hardware Platform

For the implementation of the previously detailed FF coprocessors the AT94K
FPSLIC hardware platform from Atmel, Inc. is used within this work [14]. This
product family integrates FPGA resources, an AVR 8-bit RISC microcontroller
core, several peripherals and up to 36K Bytes SRAM within a single chip. The
AVR microcontroller core is a common embedded processor, e.g., on SmartCards
and is also available as a stand-alone device. The AVR is capable of 129 instruc-
tions, most of which can be performed within a single clock cycle. This results
in a 20+ MIPS throughput at 25 MHz clock rate.

The FPGA resources within the FPSLIC devices are based on Atmel’s AT40K
FPGA architecture. A special feature of this architecture are FreeRam4 cells
which are located at the corners of each 4x4 cell sector. Using these cells results
in minimal impact on bus resources and by that in fast and compact FPGA
designs. The FPGA part is connected to the AVR over an 8-bit data bus. The
amount of available FPGA resources ranges from about 5K system gates within
the so-called µFPSLIC to about 40K system gates within the AT94K40.
3 MUX2:1 components with constant zero inputs have been optimized to AND2 gates.
4 Each FreeRam cell is organized as a 32x4 bit dual-ported RAM block.

A Reconfigurable System on Chip Implementation 393

Both, the AVR microcontroller core and the FPGA part are connected to
the embedded memory separately. Up to 36K Bytes SRAM are organized as
20K Bytes program memory, 4K Bytes data memory and 12K Bytes that can
dynamically be allocated as data or program memory.

Atmel provides a complete design environment for the FPSLIC including
tools for software development (C Compiler), tools for hardware development
(VHDL synthesis tools) and a HW/SW co-verification tool, which supports the
concurrent development of hardware and software.

For the implementations detailed subsequently the Atmel ATSTK94 FPSLIC
demonstration board is used. This board comes with a AT94K40 device and is
running at 12 MHz clock rate. The FPGA part consists of 2304 logic cells and
144 FreeRam cells, which is equivalent to approx. 40K system gates.

5 Implementation

Three different prototype implementations were built in order to evaluate the
architectures detailed in Sec. 3. Due to the restrictions in terms of available
FPGA resources these implementations support 113 bit EC point multiplication
only. This is certainly not sufficient for high-security applications, but can be
applied in low-security environments.

The following sections present some implementation details and performance
numbers for a purely software based implementation, a design that is accelerated
with a 32-bit CKM and another one, which applies the FFCP. Furthermore an
extension to the FFCP design is proposed and performance numbers for this
extended version are estimated.

5.1 Pure Software without HW Acceleration

The software variant is entirely coded in assembler and has been optimized
regarding the following design criteria:

Table 3. SW performance values

Operation Bit Clock Cycles
Width Computation Overhead Total

FF-Mult 16 96 NA 96
FF-Mult 32 3 ∗ 96 = 288 131 419
FF-Mult 64 3 ∗ 419 = 1.257 383 1.640
FF-Mult 128 3 ∗ 1.640 = 4.920 489 5.409
FF-Square 128 340 NA 340
FF-Add 128 160 NA 160
FF-Reduce 113 420 NA 420
EC-Double 113 15.300 NA 15.300
EC-Add 113 25.200 NA 25.200
k·P 113 4.752.000 NA 4.752.000

394 M. Ernst et al.

– High performance.

– Resistance against side channel attacks.

– Easy SW/HW exchange of basic FF operations.

Concerning the performance, special effort has been spent at FF level in opti-
mizing the field multiplication and reduction, which is the performance critical
part of the entire k·P algorithm. At the EC level the so-called 2P Algorithm
documented in [15] is utilized to perform the EC point multiplication. This
algorithm takes only 4 multiplications, 1 squaring and 2 additions in the un-
derlying FF for one EC-Add computation. One EC-Double takes only 2 multi-
plications, 4 squaring and 1 addition. Summing up, this k·P implementation is
about 2 times faster compared to standard Double-and-Add implementations.
Furthermore, the 2P Algorithm is inherently resistent against pertinent timing
resp. power attacks, since in every iteration of its inner loop both operations (EC-
Add and EC-Double) have to be computed, regardless of the binary expansion
of k. Thus, besides some pre- and postprocessing overhead, one k·P computation
over GF(2n) takes exactly n EC-Add and n EC-Double operations. At the FF
level countermeasures against side-channel attacks based on randomization and
avoidance of conditional branches are applied as well [16].

Tab. 3 summarizes the performance of the implementation on FF level as
well as on EC level. The analysis of the k·P algorithm identifies the field multi-
plication as the most time consuming operation, which amounts to about 85%
of the overall cycle count.

5.2 Hardware Acceleration

The subsequently detailed FPGA designs have been implemented by using the
design tools which are packaged with the utilized demonstration board. For
hardware synthesis this is Leonardo v2000.1b from Mentor, Inc. The FPGA
mapping is done with Figaro IDS v7.5 from Atmel, Inc. Also from Atmel, Inc.
there is the top-level design environment called System Designer v2.1, which is
required to build up the entire design based on the AVR and the FPGA part.

Acceleration Based on CKM. The genuine SW implementation can be ac-
celerated by utilizing a CKM as presented in Sec. 3.1, which is implemented in
the FPGA part of the AT94K40 device. Matching to the particular bit width m
of the raw CKM, two m-bit input registers and a 2m-bit output register is added
on the HW side. In order to allow a reasonable communication over the fixed
8-bit interface, the input registers are designed as 8-bit shift-in and parallel-out
registers. Accordingly, the output register is parallel-in and 8-bit shift-out.

Tab. 4 summarizes the performance of the combined HW/SW implementa-
tion based on a 32-bit CKM. The 32-bit CKM takes about 53% of the FPGA
resources. At the FF level this results in a speed-up of about 3 and for the k·P al-
gorithm there is still a speed-up factor of about 2.2 compared to the values given
in Tab. 3.

A Reconfigurable System on Chip Implementation 395

Table 4. 32-bit CKM performance values

Operation Bit Clock Cycles
Width Computation Overhead Total

FF-Mult 32 1 16 17
FF-Mult 64 3 ∗ 17 = 51 383 434
FF-Mult 128 3 ∗ 434 = 1.302 489 1.791
EC-Double 113 8.100 NA 8.100
EC-Add 113 10.700 NA 10.700
k·P 113 2.201.000 NA 2.201.000

Table 5. FFCP performance values

Operation Bit FFCP Clock Cycles extended FFCP
Width best case worst case est. Clock Cycles

FF-Mult 113 32 152 19
FF-Add 113 16 136 3
FF-Square 113 1 91 3
EC-Double 113 493 53
EC-Add 113 615 85
k·P 113 130.200 16.380

The CKM architecture is of special interest for HW platforms offering only a
small amount of FPGA resources, such as the µFPSLIC (see Sec. 4). This device
is still sufficient for the implementation of an 8-bit CKM, which results in 3384
cycles for one 128-bit field multiplication. This is still a speed-up of about 1.6
compared to the genuine SW implementation.

Acceleration Based on FFCP. Utilizing the FFCP architecture detailed in
Sec. 3.2 instead of the stand-alone CKM design allows for a further significant
performance gain. For the implementation presented here, the particular de-
sign parameters are fixed to 113-bit operand width, 24-bit CKM and 5-segment
Karatsuba multiplication (MSK5). This results in a FPGA utilization of 96%
for the entire FFCP design.

Due to the fact that the result of each operation is fed back into one of the
operand registers, the cycle count of a particular operation (I/O overhead plus
actual computation) differs regarding to data dependencies. The corresponding
best- and worst-case value for each FF operation is denoted in Tab. 5.

Tab. 5 unveils that the major part of cycles is necessary to transfer 113-bit
operands over the fixed 8-bit interface between AVR and FPGA. These transfers
can be avoided almost completely with an additional register file on the FFCP
and an extended version of the finite state machine, which interprets commands
given by the software running on the AVR. Assuming a 2-byte command format
(4 bit opcode, 12 bit to specify the destination and the source registers) results

396 M. Ernst et al.

in cycle counts according to the right column of Tab. 5. With respect to the
FPSLIC architecture and their special FreeRAM feature, such a register file can
be implemented without demand on additional logic cells. The extended version
of the FFCP is currently under development on our site.

5.3 Performance Comparison

There are several FPGA based hardware implementations of EC point multipli-
cation documented in the literature [12] [17] [18] [19]. The performance values of
these state-of-the-art implementations are given in Tab. 6. Additionally, Tab. 6
comprises the particular figures of the previously described FPSLIC based im-
plementations.

A performance comparison of hardware implementations against each other
is in general not straight forward. This is mostly because of different key sizes
and due to the fact that different FPGA technologies are used for their imple-
mentation.

A basically scalable HW architecture is common to all implementations
referenced in Tab. 6. In contrast to our SoC approach, the implementations
in [12] [17] [18] and [19] are mainly focusing on high-security, server based ap-
plications. Their functionality is entirely implemented within a relatively large
FPGA and no arrangements against side-channel attacks are documented.

In [12] and [17] the underlying field representation is an optimal normal ba-
sis. Both implementations are based on FPGAs from Xilinx, Inc. Furthermore,
VHDL module generators are used in both cases to derive the particular HW
descriptions. The approach in [17] allows for a parameterization of the key size
only. Parallelization, which is essential in order to achieve maximum performance
from a specific FPGA, is additionally supported by the design in [12]. For the
implementation in [17] a XCV300 FPGA with a complexity of about 320K sys-
tem gates is used. The design in [12] is based on a XC4085XLA device with
approx. 180K system gates.

The implementations in [18] and [19] are both designed for polynomial bases
and the field multiplications are in principle composed of partial multiplications.
The design in [18] is based on an Altera Flex10k family device with a complexity
of about 310K system gates. The architecture is centered around a w1-bit×w2-
bit partial multiplier. Due to the flexibility in w1 and w2 it is shown, that the
architecture scales well, even for smaller FPGA platforms. The best performing
implementation, representing the current benchmark with respect to k·P per-
formance, is described in [19]. It is highly optimized, exploiting both pipelining
and concurrency. The field multiplication is performed with a digit-serial multi-
plier. A Xilinx XCV400E FPGA with a complexity of about 570K system gates,
running at 76.7 MHz is used for the implementation. Compared to our design
this signifies a factor of more than 10 in space and a factor of about 6 in speed.

A Reconfigurable System on Chip Implementation 397

Table 6. Performance comparison

Target Platform Bit Width k·P
FPGA (XCV300, 45 MHz) [17] 113 3.7 ms
FPGA (XC4085XLA, 37 MHz) [12] 155 1.3 ms
FPGA (EPF10K, 3 MHz) [18] 163 80.7 ms
FPGA (XCV400E, 76.7 MHz) [19] 167 210 µs
FPSLIC pure SW (AT94K40, 12 MHz) 113 396 ms
FPSLIC with 32-bit CKM (AT94K40, 12 MHz) 113 184 ms
FPSLIC with FFCP (AT94K40, 12 MHz) 113 10.9 ms
FPSLIC with ext. FFCP (AT94K40, 12 MHz) 113 1.4 ms (est.)

6 Conclusion

Speeding up the most time critical part of EC crypto schemes enables the use of
these methods within combined HW/SW systems with relatively low computing
power. Running the EC level algorithms in SW facilitates algorithmic flexibility
while the required performance is contributed by dedicated coprocessors.

Two generic and scalable architectures of FF coprocessors (CKM and FFCP)
which are qualified for SoC implementations have been illustrated in this pa-
per. While CKM supports only multiplication, the FFCP architecture imple-
ments multiplication, addition and squaring completely within HW. The pro-
posed multi-segment Karatsuba multiplication scheme, which is the core of the
FFCP architecture, permits fast and resource saving HW implementations. By
exploiting the presented coprocessor architectures a considerable speed-up of EC
cryptosystems can be achieved.

Acknowledgment. This work was sponsored by and has been done in cooper-
ation with cv cryptovison GmbH, Gelsenkirchen, Germany.

References

1. R. L. Rivest, A. Shamir and L. M. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM, Feb
1978.

2. V. Miller, “Use of elliptic curves in cryptography,” Advances in Cryptology, Proc.
CRYPTO’85, LNCS 218, H. C. Williams, Ed., Springer-Verlag, pp. 417–426, 1986.

3. N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, vol. 48,
pp. 203–209, 1987.

4. A. Lenstra and E. Verheul, “Selecting Cryptographic Key Sizes,” Proc. Work-
shop on Practice and Theory in Public Key Cryptography, Springer-Verlag, ISBN
3540669671, pp. 446–465, 2000.

5. A. J. Menezes, “Elliptic Curve Public Key Cryptosystems,” Kluwer Akademic
Publishers, 1993.

6. J. H. Silverman, “The Arithmetic of Elliptic Curves,” Graduate Texts in Mathe-
matics, Springer-Verlag, 1986.

398 M. Ernst et al.

7. S. Galbraith and N. Smart, “A cryptographic application of Weil descent,” Codes
and Cryptography, LNCS 1746, Springer-Verlag, pp. 191–200, 1999.

8. IEEE 1363, “Standard Specifications For Public Key Cryptography,”
http://grouper.ieee.org/groups/1363/, 2000.

9. ANSI X9.62, “Public key cryptography for the financial services industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA),” (available from the ANSI
X9 catalog), 1999.

10. A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,”
Sov. Phys.-Dokl (Engl. transl.), vol. 7, no. 7, pp. 595–596, 1963.

11. D. V. Bailey and C. Paar, “Efficient Arithmetic in Finie Field Extensions with
Application in Elliptic Curve Cryptography,” Journal of Cryptology, vol. 14, no. 3,
pp. 153–176, 2001.

12. M. Ernst, S. Klupsch, O. Hauck and S. A. Huss, “Rapid Prototyping for Hardware
Accelerated Elliptic Curve Public-Key Cryptosystems,” Proc. 12th IEEE Work-
shop on Rapid System Prototyping (RSP01), Monterey, CA, 2001.

13. J. L. Bentley, D. Haken and J. B. Saxe, “A general method for solving divide-and-
conquer recurrences,” SIGACT News, vol. 12(3), pp. 36–44, 1980.

14. Atmel, Inc. “Configurable Logic Data Book,” 2001.
15. J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over GF (2m) with-

out precomputation,” Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES 99), LNCS 1717, C.K. Koc and C. Paar Eds., Springer-Verlag, pp.
316–327, 1999.

16. J. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems,” Workshop on Cryptographic Hardware and Embedded Systems (CHES
99), LNCS 1717, C.K. Koc and C. Paar Eds., Springer-Verlag, pp. 292–302, 1999.

17. K.H. Leung, K.W. Ma, W.K. Wong and P.H.W. Leong, “FPGA Implementation of
a Microcoded Elliptic Curve Cryptographic Processor,” Proc. IEEE FCCM 2000,
pp. 68–76, Napa Valley, 2000.

18. S. Okada, N. Torii, K. Itoh and M. Takenaka, “Implementation of Elliptic Curve
Cryptographic Coprocessor over GF (2m) on an FPGA,” Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2000), LNCS 1965, C.K. Koc
and C. Paar Eds., Springer-Verlag, pp. 25–40, 2000.

19. G. Orlando and C. Paar, “A High-Performance Reconfigurable Elliptic Curve Pro-
cessor for GF (2m),” Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2000), LNCS 1965, C.K. Koc and C. Paar Eds., Springer-Verlag, pp. 41–56,
2000.

Appendix: 3-Segment Karatsuba Multiplication

For any polynomials A, B ∈ GF(2n) the product C = A · B = MSK3(A, B)
using the 3-segment Karatsuba multiplication is according to Eqn. 6 given by:

MSK3(A, B) =

(
3⊕

i=1

Si,0(A, B) · x̂i−1

)
⊕
(

2⊕

i=1

S3−i,i(A, B) · x̂i+2

)

A Reconfigurable System on Chip Implementation 399

= S1,0(A, B) x̂0⊕
S2,0(A, B) x̂1⊕
S3,0(A, B) x̂2⊕
S2,1(A, B) x̂3⊕
S1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(S1,0(A, B) ⊕ S1,1(A, B) ⊕ M2,0) x̂1⊕
(S1,0(A, B) ⊕ S2,0(A, B) ⊕ S1,2(A, B) ⊕ S2,1(A, B) ⊕ M3,0(A, B)) x̂2⊕
(S1,1(A, B) ⊕ S1,2(A, B) ⊕ M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B) ⊕ M1,1(A, B) ⊕ M2,0(A, B)) x̂1⊕
(M1,0(A, B) ⊕ S1,0(A, B) ⊕ S1,1(A, B) ⊕ M2,0(A, B) ⊕ M1,2(A, B)⊕
S1,1(A, B) ⊕ S1,2(A, B) ⊕ M2,1(A, B) ⊕ M3,0(A, B)) x̂2⊕
(M1,1(A, B) ⊕ M1,2(A, B) ⊕ M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B) ⊕ M1,1(A, B) ⊕ M2,0(A, B)) x̂1⊕
(M1,0(A, B) ⊕ M1,0(A, B) ⊕ M1,1(A, B) ⊕ M2,0(A, B) ⊕ M1,2(A, B)⊕
M1,1(A, B) ⊕ M1,2(A, B) ⊕ M2,1(A, B) ⊕ M3,0(A, B)) x̂2⊕
(M1,1(A, B) ⊕ M1,2(A, B) ⊕ M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B) ⊕ M1,1(A, B) ⊕ M2,0(A, B)) x̂1⊕
(M2,0(A, B) ⊕ M2,1(A, B) ⊕ M3,0(A, B)) x̂2⊕
(M1,1(A, B) ⊕ M1,2(A, B) ⊕ M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

with

M1,0(A, B) = A0 · B0

M1,1(A, B) = A1 · B1

M1,2(A, B) = A2 · B2

M2,0(A, B) = (A0 ⊕ A1) · (B0 ⊕ B1)
M2,1(A, B) = (A1 ⊕ A2) · (B1 ⊕ B2)
M3,0(A, B) = (A0 ⊕ A1 ⊕ A2) · (B0 ⊕ B1 ⊕ B2)

	Introduction
	Mathematical Background
	Elliptic Curve Arithmetic
	Finite Field Arithmetic

	Hardware Architecture
	Combinational Karatsuba Multiplier (CKM)
	Finite Field Coprocessor (FFCP)

	Atmel FPSLIC Hardware Platform
	Implementation
	Pure Software without HW Acceleration
	Hardware Acceleration
	Performance Comparison

	Conclusion

