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Abstract. The Mist exponentiation algorithm is intended for use in
embedded crypto-systems to provide protection against power analysis
and other side channel attacks. It generates randomly different addition
chains for performing a particular exponentiation. This means that side
channel attacks on RSA decryption or signing which require averaging
over a number of exponentiation power traces become impossible.
However, averaging over digit-by-digit multiplication traces may allow
the detection of operand re-use. Although this provides a handle for
an attacker by which the exponent search space might be considerably
reduced, the number of possible exponents is shown to be still well
outside the range of feasible computation in the foreseeable future.
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1 Introduction

Because smartcards have very limited scope for the inclusion of physical secu-
rity measures, the prevalence of side channel leakage from embedded crypto-
graphic systems creates the need for new algorithms which can be implemented
in more secure ways than those currently in use. This is particularly true for
exponentiation, which is a major process in many crypto-systems such as RSA,
Diffie-Hellman and ECC. Initial power attacks required averaging over a num-
ber of exponentiations in order to reduce the effects of noise and dependence
on uninteresting data [3], [4]. Although the necessary alignment of power traces
can be made more difficult by the insertion of obfuscating, random, non-data-
dependent operations, the data transfers between operations usually reveal the
commencement of every long integer or elliptic curve operation very clearly in
each individual trace. So it is usually possible to perform the averaging process
and mount an attack to extract meaningful secret data. Fortunately, attacks
which require such averaging can be defeated by modifying the exponent d to
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d+rg where r is a random number and g is the order of the (multiplicative) semi-
group in which the exponentiation is performed [3]. This results in a different
exponentiation procedure being performed every time.

However, the author showed recently [9] that there were strong theoretical
grounds for believing that, given the right monitoring equipment [6,7,1], it would
be possible to break the normal m-ary exponentiation method [2] and related
sliding windows techniques using a single exponentiation. This method averages
over digit-by-digit products instead and relies on being able to use such aver-
aged traces to recognise the same operands being re-used over and over. These
operands are pre-computed powers of the initial text, and their use reveals the
secret exponent digit. Such an attack requires no knowledge of the modulus,
the input text or the output text. It would render useless the choice of d+rg
as a counter-measure, even for the case of m = 2, namely the standard binary
“square-and-multiply” algorithm.

Random modifications have been proposed for the algorithm as well as the
arguments of exponentiation in order to overcome these problems. The main
suggestions are suitable where the multiplicative (additive) inverse is easily com-
puted, such as in elliptic curve systems. Oswald and Aigner [5] have given one
such example. For integer RSA, a novel exponentiation algorithm1 called “Mist”
was presented at RSA 2002 [11]. This seems to avoid all of the above-mentioned
pitfalls and inverses are not required. It is more time efficient than the standard
binary method when squares and multiplies have equal computational cost and
it is comparable in space usage to 4-ary exponentiation. It can also be combined
with any counter-measures which modify the arguments. The algorithm relies
on the generation of random addition chains [2] which determine the operations
to be performed, and it is based on previous work by the author [8] for finding
efficient exponentiation schemes using division chains.

The Mist algorithm was created to defeat power analysis attacks which are
able to detect the re-use of arguments. [11] considered only efficiency issues for
the algorithm. The main aim here is to look at security issues, and, in particular,
to establish that knowledge of operand re-use does not significantly reduce the
effectiveness of the algorithm against power analysis or other similar attacks.
Although information about operand re-use provides a handle which prunes
a search tree for exponents considerably, it is still computationally infeasible
to recover a secret RSA key in this way unless very significant secret data is
obtained from other sources. A more likely scenario is that the attacker can only
distinguish squares from multiplies. Then the search space is vastly larger, and
so the algorithm appears to provide even more security.

2 The MIST Algorithm

For notation, let us assume that plaintext P = CD has to be computed from
ciphertext C and secret key D. m will always represent a “divisor” in the sense

1 Comodo Research Lab has filed a patent application is respect of this [10].
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of [8], and d a residue modulo m, but here these are viewed as base and digit
values respectively in a representation of D. A set of allowable bases m is chosen
in advance (it will be {2, 3, 5} here), and an associated table of addition chains
for raising to the power m is stored in memory. Several variables are used: there
are at least three for long integers which contain powers of C, namely Q, TempC
and P. Of these, TempC is for temporary storage when Q is being raised to the
power m, and so does not occur explicitly in the following code, and P contains
the accumulating required output. D is updated to contain the power to which
Q still has to be raised before the exponentiation is complete.

The Mist Exponentiation Algorithm [11]

{ Pre-condition: D ≥ 0 }
Q ← C ;
P ← 1 ;
While D > 0 do
Begin

Choose a random “base” m ;
d ← D mod m ;
If d �= 0 then P ← Qd×P ;
Q ← Qm ;
D ← D div m ;
{ Loop invariant: CD.Init = QD×P }

End ;
{ Post-condition: P = CD.Init }

Example. For D=235, m=3 yields d = (235 mod 3) = 1 and reduces D to
(235 div 3) = 78. Then m=2 would give d=0 and D=39. Next, m=5 produces
d=4 and D=7; m=2 gives d=1 and D=3; m=3 generates d=0 and D=1. Then,
finally, m=2 yields d=1 and so D becomes 0. The pairs (m, d) are:

(3,1), (2,0), (5,4), (2,1), (3,0) and (2,1).
The corresponding powers of C contained in the variables (Q, P ) are then:
(C1, C0); (C3, C1); (C6, C1); ({C6}5, {C6}4C1) = (C30, C25);
({C30}2, {C30}1C25) = (C60, C55); ({C60}3, {C60}0C55) = (C180, C55);
({C180}2, {C180}1C55) = (C360, C235). ��

When the base set consists of the single base 2, the method simplifies to the
binary square-and-multiply algorithm in which the least significant exponent
bit is processed first. In general, for fixed m, the algorithm simplifies to m-ary
exponentiation but performed from right to left rather than from left to right.
Since the base m is varied randomly here, the process might reasonably be called
“random-ary exponentiation”. Space and time efficiency were shown in [11] to
be comparable with 4-ary exponentiation. For application to integer RSA, the
multiplication is the operation in the multiplicative group of residues for the
chosen modulus. Explicit mention of the modulus is not necessary. Termination
is guaranteed because only base choices greater than 1 are allowed, and so D
decreases on every iteration. Correctness is easily established using the loop
invariant in terms of the initial value D.Init of D.
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The choices of base set and associated addition chains for each base/digit pair
(m, d) are made with security and efficiency in mind. In particular, for efficiency
the choice of addition chain for raising to the power m always includes d so that
the computation of Qm provides Qd en route at little or no extra cost. Thus, these
two power computations are not performed independently and consecutively, as
might be implied by the code. They are to be implemented so that Qm uses all
the work done already to compute Qd. So, in the case of RSA, the main cost
of a loop iteration is only the cost of computing Qm plus the conditional extra
multiplication involving P.

The random choice of base values from a pre-chosen fixed set achieves dif-
ferent exponentiation schemes on successive runs and so makes impossible the
usual averaging process required for differential power or electro-magnetic anal-
ysis (DPA/DEMA) [4,6].

Unlike the case for m-ary exponentiation, by reversing the direction of pro-
cessing the exponent, both arguments in the conditional product are changed for
every multiplication. In general, because the powers of C are always increasing,
no power of C is repeatedly re-used during the exponentiation. So the attack
described in [9] on a single exponentiation is inapplicable in its current form.

For convenience, the processing of the exponent D is presented as being
performed within the main loop. For security reasons, it should probably be
scheduled differently. The illustrated processing order may be less secure from
the point of DPA or DEMA because it can reveal the random choice of the
local base m, which should remain secret. Instead, the selection of the base and
associated addition chain instructions can be performed by the CPU on-the-fly
while the exponentiation is performed in parallel by a crypto co-processor, or it
can be done in advance and stored when there is no co-processor. At any rate,
these computations should be scheduled so as not to reveal the end points of
each iteration of the main loop. Otherwise, the number and type of long integer
operations during the loop iteration may leak enough information about the
values of m and d, enabling D to be reconstructed. This paper shows how such
data might be used to determine possible values for D.

3 The Base Choice and Addition Sub-chains

A typical safe set of allowable bases is {2,3,5}. The full list of minimal addition
sub-chains for these bases is given in Table 1. For example, the third case there
corresponds to computing C5 using the three multiplications C1×C1 = C2,
C1×C2 = C3 and C2×C3 = C5. The first three addition chains provide Cd

when digit d is 0, 1, 2 or 3: for 0 < d < m the chain already contains the value
of d, while the case d = 0 requires no multiplication and so 0 does not need to
appear. The last addition chain can be used when d = 4. Minimal here means
that any other addition chains which give a power equal to the base are longer.
The subchains in Table 1 are minimal. To achieve the fastest exponentiation,
longer chains are usually excluded, but they might improve security.
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Table 1. The Minimal Sub-chains.

1+1=2 for base 2 with any digit d
1+1=2, 1+2=3 for base 3 with any digit d
1+1=2, 1+2=3, 2+3=5 for base 5 with any digit except 4
1+1=2, 2+2=4, 1+4=5 for base 5 with any digit except 3

Table 2. A Choice for the Digit Sub-chains.

(m, d) Multiplication Instructions

(2, 0) (111)
(2, 1) (112, 133)
(3, 0) (112, 121)
(3, 1) (112, 133, 121)
(3, 2) (112, 233, 121)
(5, 0) (112, 121, 121)
(5, 1) (112, 133, 121, 121)
(5, 2) (112, 233, 121, 121)
(5, 3) (112, 121, 133, 121)
(5, 4) (112, 222, 233, 121)

Table 3. ([11], Tables 6.2 and 6.3.) The limit probabilities pm,d of the base/digit pairs
(m, d) and pm for each base m.

(m, d) 0 1 2 3 4 pm

2 0.3537 0.2757 - - - p2 = 0.6294
3 0.1826 0.0212 0.0244 - - p3 = 0.2283
5 0.0936 0.0124 0.0110 0.0127 0.0126 p5 = 0.1423

There is no instruction which updates the value of P in these addition sub-
chains, but it can be represented explicitly using the following notation. Suppose
the registers are numbered 1 for Q, 2 for TempC and 3 for P. Then the subchains
can be stored as sequences of triples (ijk) ∈ {1, 2, 3}3, where (ijk) means read
the contents of registers i and j, multiply them together, and write the product
into register k. In particular, P will always be updated using a triple of the form
(i33) and 3 will not appear in triples otherwise. Now, adding in the instruction
for updating P yields the list of subchains given in Table 2 as one possibility.
It contains one representative for each base/digit pair (m, d). Other choices are
possible. Such a table requires only a few bytes of storage.

The way in which the base is chosen from the allowable set has efficiency and
security implications. In [11] it was shown that the following choice provided
efficiency better than the binary method and nearly as good as the 4-ary method:
(Here the function Random returns a fresh, random real in the range [0,1].)
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m ← 0 ;
If Random < 7/8 then

If D mod 2 = 0 then m ← 2 else
If D mod 5 = 0 then m ← 5 else
If D mod 3 = 0 then m ← 3 ;

If m = 0 then
Begin

p ← Random ;
If p < 6/8 then m ← 2 else
If p < 7/8 then m ← 5 else

m ← 3 ;
End ;

The resulting probabilities pm of each base m and pm,d of each base/digit pair
(m, d) occurring in the representation of D are given in Table 32. They will be
used later to assess whether certain attacks are feasible. From them it is possible
to work out the average number of bases used in a Mist exponentiation scheme:

Theorem 1. ([11], Thm. 7.2) With the choices above, the average number of
digits in a Mist representation for D is approximately2 0.7566× log2 D.

4 The Sequence of Addition Chain Values

We now turn away from the powers of C generated during an exponentiation
and concentrate on the integers contained in the corresponding addition chain.
The individual addition sub-chains for each base can be formed easily into an
addition chain which describes a complete exponentiation scheme for D. In terms
of the triples in Table 2, the sub-chain lists just need to be concatenated. Each
value is associated with one of the variables Q, TempC or P according to the
register in which the corresponding power of C is to be written. We will work
with addition chains containing this extra detail. If S is the final value associated
with Q at the end of one subchain, then, by applying the instructions listed in
Table 2, the values computed in the next subchain are those listed in Table 1
multiplied by S, together with any which occurs for P.

Reconstruction of the sequence of digits and hence determination of the se-
cret exponent is investigated using knowledge of which of these addition chain
elements are equal, and which share equal summands. The following theorems
will be used to show that, for the most part, we only need to look locally in
the chain for such equality or sharing. With fairly minimal and reasonable re-
strictions on the choices of base set and associated addition sub-chains, these
theorems hold much more generally.

Theorem 2. The integers (i.e. exponents) associated with Q and P at the start
of successive subchains form monotonically increasing sequences. That for Q is
2 The figures here are corrected after a minor bug in the software for [11].
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strictly increasing and strictly dominates that for P. At the start of each subchain,
Q is associated with the largest integer in the addition chain up to that point.

Proof. Initially Q is associated with 1 and the other registers with 0. So the
domination property holds for the first values. Thereafter, suppose Q, TempC
and P contain the S, T and Uth powers of C respectively at the start of a
subchain for (m, d). Assume T < S and U < S. The next values associated with
Q and P are m×S and U+d×S. Then d < m means U+d×S < S+(m−1)×S =
m×S. So the next value for Q is larger than the next for P. Hence the sequence
for Q dominates that for P. Since 1 < m, S < m×S and the next Q is larger than
it was at the beginning of the subchain. So that sequence is strictly increasing.
Moreover, as U ≤ U+d×S the sequence for P is also increasing monotonically.

The exponents associated with TempC are multiples of S since the initial
value T for TempC is unused, and the value U of P is only used to update P. So,
as there are no other operations, these exponents only involve integers obtained
en route from S to the next Q value, and are strictly smaller than it. Thus,
at the start of each subchain, Q does indeed contain the largest power so far
calculated. ��

Theorem 3. Except for initialisation and the calculation of the first non-trivial
value for P, the addition chain contains no sum result more than once.

Proof. There are two cases to consider. First, suppose some integer is recom-
puted in two different subchains. Assume the second of these subchains initially
has integers S and U in Q and P respectively. Any updating operation in this
subchain or any future subchain gives an integer which is a linear combination
σS+πU for integers σ > 0 and π ∈ {0, 1}. This only creates integers ≥ S. Pick
σ and π to give the duplicated value. By the previous theorem, updating op-
erations in previous subchains only created integers at most S. Hence S is the
recomputed value and so σS+πU = S. Since S > 0 and U ≥ 0, this can only
hold if σ ≤ 1. Multiplications have at least two arguments, so σ+π ≥ 2. Hence
σ = π = 1, from which U = 0. This solution occurs only when the digit d is 1
and P is updated to its first non-trivial value. So the value recomputed in the
second subchain is uniquely determined. Moreover, since by the previous theo-
rem the values in Q are strictly increasing and represent the largest integers so
far calculated, the first computation of S is only in the immediately preceding
subchain. S exceeds the initial value U = 1 in P. So S is calculated just once in
the first of these two subchains.

Now consider the case where a value is recomputed within a single chain.
Such recomputation must involve an updating of P because the operations which
write to Q and TempC generate a strictly increasing sequence. We use the same
notation again. The value of the updated P is U+dS where d > 0 is the digit.
All other subchain additions output an integer of the form σS for some integer
σ > 1. So, choosing σ from another equal value gives σS = U+dS and hence
U = (σ−d)S where 0 ≤ U < S. This is impossible in integers unless U = 0 and
σ = d. So P is being given its first non-trivial value, and dS is recomputed. We
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have d > 1 in this case since the computation of dS is done in the same subchain
as P is updated. ��

In fact, the re-computation of the same power of C should never occur: a
good implementation should avoid the useless multiplication by 1, and should
also avoid the apparent need to write the initial non-trivial value to P by using
the value written to Q or TempC and renaming that register as P. The corre-
sponding entries in the addition chain can then be omitted.

Example. Continuing with the example from Section 2, the sequences of expo-
nents for Q and P are 1, 3, 6, 30, 60, 180, 360 and 0, 1, 25, 55, 235 respectively.
The first non-zero value of P, namely 1, appears already in the sequence for Q,
but there are no other repetitions.

5 Re-use of Summands

Our main assumption in the first threat model is that the attacker can recognise
the re-use of operands. Such re-use occurs when members of the addition chain
share summands. So we need to know when this can happen, i.e. when two sums
in the addition chain share a common input.

Theorem 4. i) No integer different from the first non-zero value for P is used as
a summand in more than three addition chain members. Addition chain elements
which share such common summands all belong to the same digit subchain. They
all lie within a sequence of at most four consecutive operations, and at most one
of those with the shared summand is a doubling. If three sequential operations
share such a common summand, then the digit associated with the subchain to
which they all belong is non-zero.

ii) The first non-zero value for P may be used as a summand in up to four
different addition chain operations. All but the last of the sums which use this
value of P belong to the same subchain, while the last (which updates P to its
second non-trivial value) belongs to a different subchain and may be arbitrarily
many operations after the initial case.

Proof. First consider the summands used in the sums on either side of a digit
sub-chain boundary where the Q value is S. All operands below the boundary
are less than S because S is the largest value computed up to that point, and it
has not been used as an operand yet. Above the boundary, all operands are S
or a multiple thereof with the single exception of the previous value for P when
it is next updated. So, if there are two equal summands belonging to different
digit sub-chains, they must be equal to a value of P.

However, from Theorem 3 we know that, apart from the first non-zero value,
values of P are distinct from each other and from values in Q or TempC. So, as Q
and TempC are computed from previous values of Q and TempC, their arguments
cannot have values equal to those acquired by P unless those arguments are equal
to the first non-zero value of P. Thus, with only that possible exception, each
value of P is used at most once as a summand, namely in the next sum which
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updates its value. Consequently, two equal summands belonging to different digit
sub-chains must actually be equal to the first non-zero value of P.

Hence, in case (i) for arguments different from the first non-zero value of P,
equal summands appear within the same digit sub-chain. Thus they lie within
a sequence equal to the longest such sub-chain, which is 4 here. Each doubling
involves different operands (otherwise there would be no point in performing
the subsequent doublings) and so the set of sums with a shared summand will
contain at most one doubling. Checking through all the subchains given in Table
1, no operand is used in more than two operations. Moreover, such operations
are adjacent and at most one of them is a square. So, when the sum which
updates P is included in the middle of the sub-chain, at most three operations
can occur using the same operand and, for our choice of insertion points, they
are sequential. Of course, this only occurs when d �= 0.

Now take case (ii) where the first non-trivial value for P is the operand under
consideration. As with the other case, this operand value is used in at most two
additions for updating Q and TempC. It is also used in at most two additions
which update P. The first of these may have been optimised out, replacing the
multiplication by 1 with an initialisation. This addition and those involving Q
and TempC all occur in the same digit sub-chain, as before. The last use, namely
the second to update P, occurs for a subsequent sub-chain after arbitrarily many
bases for each of which the digit is 0. ��
Example. Continuing with the example from Section 2, the first three pairs
(m, d) = (3, 1), (2,0) and (5,4) generate the instructions 112, 133, 121, 111, 112,
222, 233, 121. These produce:

TempC = C1×C1 = C2 ; P = C1×C0 = C1 ;
Q = C1×C2 = C3 ; Q = C3×C3 = C6 ;
TempC = C6×C6 = C12 ; TempC = C12×C12 = C24 ;
P = C24×C1 = C25 ; Q = C6×C24 = C30 .

Operand C1 is the first non-trivial value of P and it is used 4 times: the first
three lie in the subchain for (m, d) = (3, 1) and the last occurs in the subchain
for (m, d) = (5, 4). The intermediate subchain has d = 0.

6 Identifying the Digit Sub-chains

In order to describe detailed operand sharing in a sequence of operations some
further notation is needed. Let (123)(34) mean that in a list of exactly 4 op-
erations, the first three share a common operand, the third and fourth share a
different common operand, and no other operations in that list share a common
operand. So the numbers in the cycles represent positions in the sequence of
operations, starting at 1, and two operations will share a common operand if,
and only if, their position numbers both belong to a common cycle in the list.
Since a square or a doubling shares an operand with itself, the number of each
square or doubling appears twice in its cycle, as in (112). Also, an operation
which does not share operands with any other operation (or itself) will appear
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in a cycle on its own, as in (2). However, there are no cases of this here. With
this notation, the subchains listed in Table 2 share operands as in Table 4.

Table 4. Operand Sharing within each Digit Sub-Chain.

(m, d) Operand Sharing

(2, 0) (11)
(2, 1) (112)
(3, 0) (112)
(3, 1) (1123)
(3, 2) (113)(23)
(5, 0) (112)(23)
(5, 1) (1123)(34)
(5, 2) (113)(234)
(5, 3) (112)(24)(34)
(5, 4) (114)(22)(34)

Now assume that the operand sharing pattern is known for the complete
addition chain. By Theorem 3, except for the use of the first non-trivial value of
P, operands which are equal in the addition chain are equal because they were
explicitly selected equal in the sub-chain construction. By Theorem 4, we know
that the last use of the exceptional value of P as an operand is to update P, and
so it is not a square. Hence the squares in the addition chain are exactly those
expected from the structure of the component sub-chains.

It is now mostly straightforward to deduce what the individual subchains
are, and hence the sequence of bases and digits: each square (doubling) denotes
the start of a new sub-chain with the exception of those which are the second
operation in a subchain for (m, d) = (5, 4). When this case occurs, there is
operand sharing between the first and fourth operations of the sub-chain. This
is expressed in the pattern (114). According to Theorem 4, there is normally no
sharing of operands between different sub-chains. Hence, when the pattern (114)
is not observed, we know that normally both squares mark the start of different
sub-chains.

The only possible exception is if the shared operand in (114) is the first
non-zero value taken by P. Then the sharing pattern (114)(22)(34) for (5,4)
must ambiguously represent two division sub-chains which have lengths 1 and
3 respectively. The second subchain has pattern (11)(23) (when the operations
are re-numbered from 1 to 3). However, that pattern does not correspond to any
occurring in Table 4. So this case cannot arise. Hence:
Theorem 5. The pattern of operand re-use in an addition chain determines the
boundaries of each digit sub-chain uniquely.

In practice, this partitioning is performed by identifying the doublings first
and then writing down the patterns for operand sharing between the operations
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within each partition. If the pattern (11)(23) emerges, then its partition needs
to be merged with the previous one.

Example. In the same example as before, the operand sharing pattern is
(11237) (44)(558)(66)(78)(9 9 10)(11 11 12)(13 13 14). Partitioning this before
each square yields (11237); (44); (558); (66)(78); (9 9 10); (11 11 12); (13 13 14).
Re-numbering to make each sub-chain start with instruction 1 gives
(11237); (11); (114); (11)(23); (112); (112); (112). As 7 exceeds the length of the
longest sub-chain, it must represent the updating of P to its second non-trivial
value. So we delete it to obtain sharing only within sub-chains. Also, we must
merge (114) and (11)(23) since the latter is not a pattern in Table 4. This pro-
duces (1123); (11); (114)(22) (34); (112); (112); (112) from which we can extract
possible choices for the pairs (m, d): first (3,1); (2,0); (5,4) and then three oc-
currences of (2, 1) or (3, 0).

It is evident from Table 4 that every (m, d) has a distinct pattern of operand
sharing except for two: (2, 1) and (3, 0) have identical patterns (112). Thus
operand sharing almost determines the sequence of pairs (m, d):

Theorem 6. The pattern of operand re-use in an addition chain determines the
sequence of pairs (m, d) up to an ambiguity between (2, 1) and (3, 0).

Theorem 7. The average number of exponents with addition chains that have
the same operand sharing pattern as one for D is at least D1/3.

Proof. By Theorem 6, base/digit pairs can be derived in most cases. The
only ambiguities occur between the cases (2, 1) and (3, 0). Assuming succes-
sive base choices are independent, then the probability of an ambiguous case
is p2,1+p3,0 = 0.4583. Hence almost every other subchain has two possible
choices for the base/digit pair. By Theorem 1, an average exponent contains
0.7566× log2 D subchains. Hence the expected number of different matching ex-
ponents is about 20.7566× log2 D×0.4583 = D0.7566×0.4583 = D0.347 ��

Remarks. i) The choice of base is not constrained here. A deterministic selec-
tion of, for example, a base which exactly divides the current value of D would
place structural constraints which would further reduce the possible choices for
D.
ii) Successive base choices are not independent, but this makes only a marginal
difference to the exponent 0.347.
iii) We have assumed different choices of (m, d) lead to different values for D.
This is almost always true, and makes no practical difference to the number of
exponents that need to be considered in an attack.

Example. In the previous example, operand sharing gave 8 choices for the
division chain. The first three (m, d)s yield (Q, P ) = (C30, C25). The next (2,1)
or (3,0) produces (C60, C55) or (C90, C25). The following (2,1) or (3,0) doubles
the possibilities to (C120, C115), (C180, C115), (C180, C55) or (C270, C25). The last
alternative theoretically doubles this number, but (3,0) is impossible because the
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final (top) digit d must be non-zero. So, applying (2,1), the final output P is one
of C235, C295, C235 or C295. The example captures one of the few sources of
repeated values, which arises from the property 2+1 = 3+0.

7 The Operand Sharing Search Space

Let us assume that the Mist algorithm is being used because re-use of operands
can be detected, thereby making the standard algorithms unsuitable. So the
main assumption in the threat model here is that identical operands can be
detected, perhaps by averaging the power traces of digit-by-digit products using
the method given in [9], or by observing different addresses being sent along the
internal bus.

It is straightforward to show that, with a negligibly small number of ex-
ceptions, operand sharing in the addition chain occurs if, and only if, operand
sharing occurs in the exponentiation. This is because Ci = Cj ⇒ i = j holds
almost always. Since there are only some 0.7566 log2 D sub-chains in which to
check operand sharing, exceptions are unlikely to occur, even in a complete ad-
dition chain. Then Theorems 6 and 7 provide:

Theorem 8. If an attacker can determine operand re-use from side channel
leakage, then he can almost certainly deduce the sequence of pairs (m, d) used
in the Mist exponentiation scheme up to an ambiguity between (2, 1) and (3, 0).
This reduces the search space for the correct exponent to about D1/3.

The known ratio p3,0 : p2,1 = 0.1826 : 0.2757 enables the choices for D to be
ranked with those closest to this ratio being selected first. Then on average fewer
exponents would need to be investigated before the correct one is determined.
However, for a 384-bit exponent, say, the number of choices given by the theorem
is still around 2133 and that for a 512-bit exponent is around 2177. These are
reasonable minimum choices for when the Chinese Remainder Theorem is or is
not used. For RSA, both cases are computationally infeasible for the foreseeable
future. However, for ECC a typical 192-bit key would really be unsafe. Of course,
key lengths can still be increased for both of these if necessary.

In the case of the m-ary method, knowledge of operand sharing enables the
exponent to be deduced immediately without any further calculations [9]. So the
Mist algorithm is much stronger against such an attack.

8 S&M Chains

A much weaker threat model is that the attacker can distinguish between squares
(S) and multiplies (M). The first main task he has is to parse correctly the word
created from the alphabet {S, M} which is generated by the operations of the
exponentiation scheme. We will call the word an S&M chain. It must correspond
to a division chain [8]. The patterns of the S&M subchains corresponding to each
pair (m, d) are listed in Table 5 and their probabilities in Table 6.
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Table 5. The S&M Sub-chains for each Pair (m, d).

(2,0) S (5,0) SMM
(2,1) SM (5,1) SMMM
(3,0) SM (5,2) SMMM
(3,1) SMM (5,3) SMMM
(3,2) SMM (5,4) SSMM

Table 6. The S&M Sub-chain Probabilities.

pS = p2,0 = 0.3537
pSM = p2,1 + p3,0 = 0.4583
pSMM = p3,1 + p3,2 + p5,0 = 0.1393
pSMMM = p5,1 + p5,2 + p5,3 = 0.0361
pSSMM = p5,4 = 0.0126

Theorem 9. Suppose squares and multiplies can be distinguished, but not in-
dividual reuse of operands. Then the average number of exponents which can
generate the same sequence of squares and multiplications as a given one for D
is bounded below by D3/5.

Proof. As before, the occurrences of S determine almost all of the subchain
boundaries exactly. The exception is the case (5, 4) for which SSMM may split
as S and SMM. Suppose we perform this split. Then the number of subchains
is increased by a factor of 1+pSSMM and the probabilities of the minimal such
S&M sequences are then:

p′
S = (pS+pSSMM )/(1+pSSMM ) = 0.3618

p′
SM = pSM/(1+pSSMM ) = 0.4526

p′
SMM = (pSMM+pSSMM )/(1+pSSMM ) = 0.1500

p′
SMMM = pSMMM/(1+pSSMM ) = 0.0356

Assume, for simplicity, that the successive choices of base are independent3.
Then the number of choices for the base/digit pair underlying SMMM is 3,
that for SM is 2, that for S is 1. If SMM is preceded by M, it corresponds to
a complete subchain and there are 3 choices for it. However, if SMM is pre-
ceded by S, the two can be merged to form SSMM, giving 4 choices. Taking into
account the proportion of SMMs derived from SSMM, p′

SMM breaks up into
p′

SSMM = p′
SMM (pSSMM+pSpSMM )/(pSMM+pSSMM ) = 0.0611 for the latter

case and p′
MSMM = p′

SMM−p′
SSMM = 0.0889 for the former. Then the average

number of ways of selecting a base/digit pair from an S&M subsequence (includ-
ing repartitioning SSMM) is 1p′

S × 2p′
SM × 3p′

SMMM+p′
MSMM × 4p′

SSMM = 1.7079.

3 Overall, SMM occurs with probability 0.1393, but after S its probability is 0.1410.
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An average exponent contains 0.7566 log2 D subchains, and 1+pSSMM times
more minimal S&M subsequences. Hence the expected number of different
matching exponents is about 1.7079(1+pSSMM )×0.7566 log2 D = Dk where k =
(1+pSSMM ) × 0.7566 log2(1.7079) ≈ 0.5916 ≈ 3

5 . ��
Even more so than in the case of known operand sharing, the above demon-

strates that recovery of D is well outside the reach of an attacker when only the
sequence of squares and multiplies leaks for individual exponentiations.

Clearly, different choices of bases and addition sub-chains will provide dif-
ferent probabilities and hence may increase or decrease the strength of a given
attack. Care is therefore necessary in these choices. For example, the present
choices have been consciously selected to make the probabilities p2,1 and p3,0
the highest after p2,0, which itself needs to be high to provide the requisite effi-
ciency. This decreases the effectiveness of the above attacks. Moreover, the choice
of sub-chains means there are no long S&M sequences with a unique base/digit
interpretation which would prune the search space for matching exponents down
to a computationally feasible proposition.

9 Conclusion

The “Mist” randomary exponentiation algorithm has a variety of features which
make it much more resilient to attack by differential power or electro-magnetic
analysis than the normal m-ary or sliding window methods. Mist uses randomly
different multiplication schemes on every run in order to avoid the averaging
which is normally required for such side channel attacks to succeed.

The algorithm also avoids wide re-use of multiplicands within a single ex-
ponentiation, thereby defeating some other potentially more powerful attacks.
Knowledge of such operand re-use reduces the search space to about D1/3 for
an exponent D, but this leaves an infeasible quantity of computing for standard
RSA applications. Furthermore, knowledge of only the sequence of squares and
multiplies reduces the search space to around D3/5. These search spaces might
be reduced if an effective way can be found to share data deduced from different
exponentiations. This is an open problem, but the possible danger should be
adequately protected against by standard exponent blinding.

In consequence, the algorithm appears to be much safer than the standard
binary, m-ary or sliding windows techniques against current state-of-the-art in
DPA and DEMA side channel attacks, yet it makes no greater use of either space
or time.

References

1. K. Gandolfi, C. Mourtel & F. Olivier, Electromagnetic Analysis: Concrete Results,
Cryptographic Hardware and Embedded Systems – CHES 2001, Ç. Koç, D. Nac-
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