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Abstract. This paper discusses representations for computation on
non-supersingular elliptic curves over binary fields, where computations
are performed on the x-coordinates only. We discuss existing methods
and present a new one, giving rise to a faster addition routine than
previous Montgomery-representations. As a result a double exponen-
tiation routine is described that requires 8.5 field multiplications per
exponent bit, but that does not allow easy y-coordinate recovery. For
comparison, we also give a brief update of the survey by Hankerson et
al. and conclude that, for non-constrained devices, using a Montgomery-
representation is slower for both single and double exponentiation than
projective methods with y-coordinate.

Keywords: ECC, Montgomery, point multiplication, Lucas chains

1 Introduction

Since the introduction of elliptic curve cryptography in the mid 1980s, many
proposals have been made to speed up the group arithmetic. There are essentially
three ways to achieve this: speed up the arithmetic in the underlying field (e.g.,
binary, prime, optimal extension fields [3]), pick a convenient representation of
the group elements (e.g., affine, projective, Chudnovsky, ‘mixed coordinates’ [7]),
or choose a short addition chain (e.g., non-adjacent form, Frobenius-expansions).

The effects of the three possible choices are certainly not independent as
demonstrated by for instance [3, 7, 11]. This is in particular the case if the
so-called Montgomery representation is used [21]. This representation was intro-
duced in 1987 to speed up implementation of the elliptic curve integer factoring
method, but has been relatively uncommon in cryptographic applications. For
the Montgomery representation the general elliptic curve equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6
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over any finite field is replaced by

EM : BY 2 = X3 +AX2 +X

over finite fields of odd characteristic. Because of its intended application in
the elliptic curve integer factoring method, the Montgomery representation was
specifically designed to speed up the calculation of the x-coordinate of nP , for
large integers n and points P on the curve EM . Montgomery’s representation
is characterized not so much by the particular form of the curve-equation, but
mostly by the facts that to add two points their difference must be known and
that the y-coordinate is absent. Furthermore, the order of the elliptic curve
group must be divisible by 4 [24]. These facts have to be taken into account
when one tries to take advantage of the fast Montgomery representation based
computation of nP in a cryptographic context. For instance, the divisibility by
4 rules out the so-called NIST curves [23].

It is well known that for most cryptographic protocols a y-coordinate is
not really needed; for instance, in Diffie-Hellman it adds only a single bit and
ECDSA [10] can be run with just x-coordinates. Nevertheless, if the y-coordinate
of some point P is needed, it can be computed if P ’s x-coordinate is known
along with the x-coordinate of some other point Q and both the x and y co-
ordinates of P − Q. Whether or not these data are available depends on the
way P is computed. In the Montgomery representation, and assuming P is the
result of a scalar multiplication, P is computed using a second order recurrence
in the x-coordinate known as a Lucas chain, because to add two points their
difference must be known. If a binary Lucas chain is used the difference is fixed
(and known), so that the y-coordinate can be recovered [21, 25]; it has the ad-
ditional benefit that the addition cost can be reduced by choosing some of the
denominators as one.

The difference is not fixed (and in general not known) if a continued frac-
tion based Lucas chain is used. As a result it is no longer possible to recover
the y-coordinate in an efficient manner, but such chains give rise to a very fast
double exponentiation algorithm [20, 27]. Slower double exponentiation with y-
coordinate recovery can be achieved using an algorithm due to Akishita [2].

For elliptic curves over fields of characteristic two, the traditional Mont-
gomery representation based on the curve equation EM does not work, because
the curve isomorphism requires a division by 2. Adaptation of Montgomery’s
representation to fields of characteristic two based on the ordinary shortened
Weierstrass form for non-supersingular curves is considered in [1, 17, 30], result-
ing in a reasonably fast single exponentiation routine without precomputation.

In this paper we further optimize the method from [17] by introducing an
alternative curve equation. We show that it saves a finite field multiplication
for general point addition.1 Compared to [17] this leads to a speedup of about
15% for double exponentiation. Furthermore, we investigate the consequences for
1 This situation is reminiscent of [6, 9] where Lucas chains are given for x-coordinates

of general Weierstrass curves (including the NIST curves). It leads to relatively slow
scalar multiplication. Optimization of those formulae leads to Montgomery’s results
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single exponentiation with precomputation, y-coordinate recovery, and two si-
multaneous exponentiations. Our methods apply to all non-supersingular curves
over F2k , irrespective of the group order.

The Montgomery representation is said to have three possible advantages: it
is fast, requires only few registers in memory and can serve as a hedge against
timing and power analysis attacks. From our results and comparison with other
work, we conclude that in the binary case the Montgomery representation is
not as fast as regular methods, both for single and double exponentiation. Fur-
thermore, the fastest Montgomery representation approach to either type of
exponentiation uses continued fraction based Lucas chains; as a consequence
the protection against timing and power analysis attacks is lost. So, despite the
fact that our results improve on previous results in this area, we conclude that
the use of Montgomery representations for elliptic curves over binary fields can
hardly be recommended, unless our results can be improved upon. Only if mem-
ory usage or timing and power analysis are of serious concern, the Montgomery
representations regain their attractiveness.

In Section 2 we review the traditional way of doing elliptic curve arithmetic
by means of projective coordinates. In Section 3 we review known Montgomery
representations and introduce a new one, that requires one field multiplication
fewer for a point addition. In Section 4 exponentiation routines suitable for the
Montgomery representation are analyzed and compared. In Section 5 we present
our conclusions.

2 Elliptic Curves over F2k

Before discussing curves over F2k , we briefly discuss field arithmetic of F2k itself.
The additive group can usually be implemented using the exclusive or of two
elements. The runtime of an algorithm is typically determined by the number
of multiplicative operations required. There are three important multiplicative
operations, namely squaring of an element, multiplication of two elements, and
inversion of an element. Squarings are so cheap that they are not counted and
inversions are so expensive that they are as much as possible avoided. The cost
is measured by the number of F2k -multiplications, and it is assumed that an
inversion costs the same as 10 multiplications to ease comparison with [8].

2.1 Curve Definition

An elliptic curve over F2k is the set of points (X,Y ) ∈ (F2k)2 satisfying the long
Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (1)

together with a point at infinity, denoted O. The coefficients ai, i ∈ {1, 2, 3, 4, 6},
are taken from F2k . An elliptic curve forms an abelian finite group under the

from [21] with the same restriction on the curve group order (but slightly more
freedom in the curve equation).
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addition operation also known as the chord-tangent process. The point at infin-
ity, O, serves as group identity and the negation of a point (X,Y ) is given by
(X,−Y − a1X − a3).

In the literature several constants related to the ai are defined; we recall the
following three:

b8 = a2
1a6 + a1a3a4 + a2a

2
3 + a2

4 ;

∆ = a4
1b8 + a4

3 + a3
1a

3
3 ;

j = a12
1 /∆ .

Here ∆ is called the discriminant and the j stands for j-invariant. A curve is sin-
gular iff ∆ = 0; henceforth we will assume ∆ �= 0. The j-invariant characterizes
isomorphism classes over F̄2k : Two curves are isomorphic over F̄2k if and only
if their j-invariants are the same. A curve is supersingular iff ∆ �= 0 and j = 0.

Often the long Weierstrass equation is replaced by the following short Weier-
strass equation for non-supersingular curves over fields of binary characteristic:

E : Y 2 +XY = X3 + a2X
2 + a6 . (2)

For every curve of the form (1) there is an isomorphic curve of the form (2).
Moreover, if the extension degree k is odd, a2 in (2) can be taken either 0 or 1.
Hence multiplications by a2 may be neglected. A curve of the form (2) has
discriminant a6 and j-invariant 1/a6.

We assume we are working in a cyclic subgroup of size q with generator P
and log2 q ≈ k. As customary we use additive notation for the group operation.

2.2 Curve Arithmetic

Throughout this article, we let Pi for 0 < i ≤ 5 be points on the curve and
assume that P3 = P1 + P2, P4 = P1 − P2, and P5 = 2P1. Moreover, we assume
that O is not among the Pi. This allows us to write Pi = (Xi, Yi) in affine
coordinates or Pi = (xi, yi, zi) in projective coordinates, usually with Xi = xi/zi
and Yi = yi/zi. Note that upper case characters are used for affine coordinates,
and lower case ones for projective coordinates. The following relations hold (see
e.g., [4]):

X3 = (
Y1 + Y2

X1 +X2
)2 + a1(

Y1 + Y2

X1 +X2
) +X1 +X2 + a2 (3)

X4 = (
Y1 + Y2 + a1X2 + a3

X1 +X2
)2 + a1(

Y1 + Y2 + a1X2 + a3

X1 +X2
) +X1 +X2 + a2 (4)

X5 =
X4

1 + a1a3X
2
1 + b8

(a1X1 + a3)2
. (5)

Fast arithmetic on elliptic curves has been well studied. A nice overview can
be found in [8]. Skewed projective coordinates (x/z, y/z2) are the most efficient
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Table 1. Expected number of field multiplications for point multiplication given
a k-bit exponent

Type Method Given in [8] Improvement

single windowed NAF, w = 4 5.8k + 60 5.6k + 60
fixed single fixed base comb, w = 4 3.11k + 8 2.88k + 9
semi-fixed double comb+Montgomery 9.11k + 40 n.a.
semi-fixed double Möller, w = 4 n.a. 7.24k + 60
double Möller, w = 4 n.a. 7.24k + 108
double Solinas n.a. 8k + 36

representation known [16, 11]. Using skewed projective coordinates, a general
additions costs 14 field multiplications. However, if one of the points is given in
affine coordinates, this drops to 9 field multiplications. Doubling a point costs 4
field multiplications. King [11] notes that, if the resulting point of an addition
is subsequently doubled, a multiplication can be saved at the cost of a squaring.
For a large class of popular exponentiation routines, this effectively reduces the
cost of an addition to 8 field multiplications.

2.3 Exponentiation (or Scalar Multiplication)

The survey [8] contains several exponentiation routines. Three different settings
are examined: single exponentiation with a fixed base; single exponentiation with
an arbitrary base and double exponentiation with one base fixed and the other
arbitrary. This choice seems motivated by the facts that signature generation is
a fixed base exponentiation and signature verification is a double exponentia-
tion with one base fixed. However, with the introduction of fast point counting
algorithms it becomes more realistic to deviate from the NIST curves, which is
why we also consider double exponentiations with both bases arbitrary. Having
a fixed base can ease computation by precomputing certain values.

For single exponentiation [8] proposes a windowed NAF with window size 4
(note that using Montgomery representation is reported to be faster). This re-
sults in approximately 1 point doubling and 1

5 point additions per exponent bit.
Moreover, 3 points have to be precomputed, namely 3P, 5P , and 7P . This has
to be done affinely and costs 8 multiplications and 4 inversions. If the base is
fixed, [8] proposes a fixed base comb of size 4. An exponentiation will cost 1

4
point doublings and 15

64 point additions per exponent bit on average. The num-
ber of precomputed points is 14. Note that this method does not exploit cheap
point negation. The double exponentiation routine presented assumes one base
is fixed and simply consists of two separate single exponentiation routines and
multiplying the result (using a fixed base comb and Montgomery respectively).

A double exponentiation without any fixed bases is not addressed in [8]. How-
ever, using Solinas’ trick, it will require 1 point doubling and 1

2 point additions
per bit of the longest exponent. Interestingly, this method already outperforms
the double exponentiation routine with fixed base given in [8]. Möller [19] pro-
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poses to interleave two windowed NAF routines thereby saving one set of point
doublings. For window size 4 this results in 8 points to be precomputed affinely
and 1 point doubling and 2

5 point additions per exponent bit.2 Note that King’s
improvement does not apply in approximately 1

25 of the additions. Of the 8
points to be precomputed, half can be done in advance if the base is fixed.

Table 1 summarizes these results. We give the number of field multiplications
for a k-bit exponent, according to [8] and with inclusion of the known speedups
just described. We use the same ratio, that one inversion costs the same as 10
multiplications. The extra costs needed at the end to convert back to affine
coordinates are also included. For k = 163, compare with [8, Table 6].

3 The Montgomery Representation

The Montgomery representation was introduced as part of a speedup of the
elliptic curve factoring method. Hence it was specifically tailored for curves over
large prime fields. (Actually, over large rings Z∗

n, where failure to invert would
constitute a factoring success.) The connection with elliptic curve cryptography
was made later.

We first review known methods of computing without y-coordinates for
curves over binary fields. Interestingly, these methods are all based on a rela-
tionship for X3 +X4, hence the name additive Montgomery formulae. Next, we
analyse methods based on a relationship for X3X4, called multiplicative Mont-
gomery formulae. The terminology additive and multiplicative method is also
used in [9] for curves over large prime fields. We conclude with a small word on
recovering the y-coordinate based on [17].

3.1 Additive Montgomery Formulae

Agnew et al. [1] mention computing with x-coordinates only for non-
supersingular curves over large extension fields of characteristic two. By using
the curve equation (1) it is possible to rewrite (3) as

X3 =
Y1(a1X2 + a3) + Y2(a1X1 + a3) + (X1 +X2)(a4 +X1X2)

(X1 +X2)2
. (6)

For X4 a similar formula can be obtained by replacing Y2 in (6) with Y2 +a1X2+
a3, the y-coordinate of −P2. This shows that

X3 +X4 =
(a1X1 + a3)(a1X2 + a3)

(X1 +X2)2
. (7)

For the shortened Weierstrass form the above is simplified by setting a1 = 1
and a3 = 0. The projective version presented in [1] based on these formulae is
incorrect.
2 Apparently [8] and [19] use different definitions for window sizes. We adhere to the

first.
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In 1999 correct projective versions for non-supersingular curves appeared
in [17] and [30], both using the short Weierstrass form. In both works the fol-
lowing formulae are given, easily verified by (7) and (5):

x3

z3
=
x4(x1z2 + x2z1)2 + z4(x1z2)(x2z1)

z4(x1z2 + x2z1)2
; (8)

x5

z5
=
x4

1 + a6z
4
1

x2
1z

2
1

.

Both [17] and [30] emphasize on an addition where the difference P4 is fixed,
and hence z4 in (8) is set to 1. Such a fixed difference addition takes 4 field
multiplications and 1 squaring.3 It seems that for an ordinary addition one needs
6 field multiplications and 1 squaring. A point doubling takes 2 multiplications
and, if a1/4

6 is precomputed, 3 squarings.4 It is also noted that having a small a1/4
6

can reduce the cost of multiplication with a
1/4
6 considerably, and therefore of

a point doubling. A similar argument holds for fixed difference addition if x4 is
small.

Affine versions are also presented, but not worked out in full since the in-
versions seem to deter. It is said that a point addition takes 2 multiplications,
a squaring and an inversion, whereas a doubling takes one multiplication less.

3.2 Multiplicative Montgomery Formulae

Originally, Montgomery derived his formula for curves over large prime charac-
teristic by multiplying X3 and X4, not by considering their difference. Not sur-
prisingly, a multiplicative version of Montgomery’s trick also proves possible for
curves over binary characteristic. For a non-supersingular curve, taking a3 = 0,
one obtains:

x3x4

z3z4
=
x2

1x
2
2 + b8z

2
1z

2
2

(x1z2 + x2z1)2
;

x5

z5
=
x4

1 + b8z
4
1

(a1x1z1)2
.

In the short Weierstrass form a1 will be 1, but b8 can be any field element.
Hence, computing x3 and z3 will take 6 field multiplications,5 one less if P4 is
fixed and z4 = 1. Setting b8 = 1 will reduce these costs to 5 respectively 4 field
multiplications, while at the same time keeping the costs for a point doubling the
same. As an alternative, one could consider using the representation (x, z, xz).
This requires the same number of multiplications though, so should therefore
not be recommended.
3 For some reason [30] report 2 squarings.
4 And here [17] use 5 squarings, which is more than needed even without precompu-

tation of a
1/4
6 .

5 Compute (x1z2 + x2z1) as (x1 + z1)(x2 + z2) − x1x2 − z1z2.
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If a3 = 0, then b8 = a2
1a6+a2

4. Hence, b8 = 1 can be achieved by setting a4 = 0
and a6 = 1/a2

1. We therefore propose working on elliptic curves of the form

E : Y 2 + a1XY = X3 + a2X
2 + 1/a2

1 , (9)

where a1 and a2 are in F2k . To ensure we do not exclude any interesting curves
we present the following lemma.

Lemma 1 Any non-supersingular curve over F2k is isomorphic to a curve over
F2k of the form (9).

Proof. Recall that all non-supersingular curves have a representation of the
form (2), having j-invariant 1/a6. A curve of the form (9) has j-invariant equal
to a8

1. Squaring is a permutation on F2k whence all elements have a unique eighth
root in F2k . Set a1 = a

−1/8
6 and let s ∈ F2k . Consider the admissible change of

variables given by

x = X/a2
1,

y = sX/a2
1 + Y/a3

1 .

This gives an isomorphism over F2k of the curve given by (2) and

1/a2
1 + a2

1(a2 + s+ s2)x2 + x3 = a1xy + y2 . (10)

It is easily verified that (10) is of the form (9).

3.3 Recovery of the y-Coordinate

The curve equation provides a way to determine the y-coordinate of a given point
using a square root computation. This method is relatively expensive and one still
needs to address the square root ambiguity. An alternative is presented in [17].
If two points P1 and P2 are given by x-coordinate only and their difference P4 is
fully specified, either unknown y-coordinate can be retrieved in a small number
of field multiplications. Moreover, there is no square root ambiguity. The method
from [17] to recover the y-coordinate is described in more detail below (slightly
generalized).

Given X1, X2, X4 and Y4, it is possible to determine Y2 efficiently. From
formula (3) it follows how to determine Y1 if X1, X2, X3 and Y2 are given, by
using the curve equation (1) to get rid of the quadratic term Y 2

1 . However, since
the values (P,Q, P − Q) have the same additive relation to each other as the
values (P +Q,P,Q), the desired result follows from a suitable re-indexing:

Y1 =
(X2 +X4)(a4 +X2X4 +X1X2 +X1X4) + (a3 + a1X2)Y4

a3 + a1X4
.

Note that a3 + a1X4 = 0 iff P4 = O, which we assumed not to be the case.
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For a3 = 0 and a4 = 0 and projective coordinates, the formula in [17] can be
generalized to

X1 =
a1z4x4z2x1

a1z4x4z2z1
; (11a)

Y1 = y4 +
(x2z4 + x4z2)((x1z4 + x4z1)(x2z4 + x4z2) + z1z2x

2
4 + a1z1z2z4y4)

a1z1z2x4z4
.

(11b)

Simultaneous recovery ofX1 and Y1 will therefore cost at most 15 multiplications
and 1 inversion. If z4 = 1, this reduces to 11 multiplications and 1 inversion.
A further reduction to 10 multiplications and 1 inversion is achieved if a1 = 1,
which is the case for the shortened Weierstrass form.

4 Exponentiation, Aka Scalar Multiplication

4.1 Lucas Chains

Suppose we are given a point P and we want to determine nP , where n is
a random element in Zq. Using a traditional curve representation this can effi-
ciently be done using short addition-subtraction chains. An addition-subtraction
chain for an integer n > 0 is a sequence a0, a1, . . . , al with a0 = 1, al = n and
for all 0 < k ≤ l there should exist 0 ≤ i, j < k such that ak = ai + aj

or ak = ai −aj. There is extensive literature concerning addition chains [12] and
addition-subtraction chains.

Using the Montgomery form allows us to add two points only if their dif-
ference is known. Let R1 and R2 be two points in the same cyclic subgroup
generated by P . Without loss of generality the points can be denoted R1 = κP
en R2 = λP , their difference is (κ−λ)P and their sum (κ+λ)P . The computation
of a scalar multiple nP of P requires as intermediate values a0P, a1P, . . . , alP
with a0 = 1, al = n, and for all 0 < k ≤ l there should be 0 ≤ i, j < k such
that ak = ai + aj and ai − aj occurs somewhere in the chain before ak. Such
a chain is known as a Lucas chain. Although Lucas chains are much less studied
than addition chains there is some literature concerning them [20, 5].

There are two types of Lucas chains, those based on a binary algorithm and
those based on the extended Euclidean algorithm.

4.2 The Binary Algorithm

Single Exponentiation For ordinary exponentiation the square-and-multiply
algorithm (here double-and-add) is very well known. Let n =

∑k−1
i=0 ni2i be an

exponent and let a =
∑k−1

i=j ni2i−j and A = aP be invariant. Initialization with
j = k, a = 0, and A = O poses no problems and if j = 0 we also have a = n and
hence A = nP as required. Decreasing j by 1 requires replacing a by 2a+nj−1 to
maintain the invariant. For A this constitutes a point doubling and, depending
on whether the bit nj−1 is set or not, addition by P .
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The binary algorithm for addition chains can easily be adapted6 for Lucas
chains if the invariant is strengthened with b = a+ 1 and B = bP . Decreasing j
by 1 requires replacing (a, b) by (2a+ 1, 2a+ 2) = (a+ b, 2b) if the bit nj−1 is set
and by (2a, 2 + 1) = (2a, a+ b) otherwise. Note that A and B have P as known
fixed difference and hence can be added.

Contrary to the binary algorithm for addition chains, in this algorithm the
operations performed per step do not depend on the value of the exponent bit.
This property can serve as a hedge against timing and power analysis [6, 9].
It also implies that the algorithm always requires one doubling and one fixed
difference addition on the curve. In both the old and the new representation this
adds up to 6 multiplications in F2k per exponent bit.

The binary algorithm produces not only nP , but also (n+1)P . Assuming that
the y-coordinate of P was also known, it is easy to reconstruct the y-coordinate
of nP as well, according to (11).

Double Exponentiation For ordinary addition chains there is a generalization
of the binary method to multi-exponentiation due to Straus [28]. For double
exponentiation, i.e., the problem of determining nP +mQ given n,m, P, and Q,
this method is known as Shamir’s trick. Basically, one starts with A = O and
reads both exponents from left to right simultaneously. In a single step first
compute 2A and depending on the two bits being read, add in either nothing,
P,Q, or P +Q.

This technique can also be exploited for Lucas-chains, as shown by Schoen-
makers [26]. In this case, not only A has to be recorded, but also A + P and
A +Q (not A + P +Q, since then any efficiency gain is lost). Unless both bits
are set, a step will cost one point doubling and two fixed difference additions. If
both bits are set a step will cost three fixed difference additions and two ordinary
additions. Using the new curve representation, a double exponentiation will on
average cost 13 field multiplications per exponent bit. The relatively expensive
ordinary additions make this method more expensive than the straightforward
method of using two single exponentiations, recovering the y-coordinates and
adding the two, costing 12 field multiplications per exponent bit.

Nevertheless, an improvement to the above is possible, due to Akishita [2].
By doing some lookahead, the cost of the most expensive step is reduced to three
fixed difference additions. As a result, one step takes on average 2 1

4 fixed differ-
ence additions and 3

4 doublings. A double exponentiation will then cost 10.5 field
multiplications per bit exponent for both the old and the new representation.

4.3 Montgomery’s Euclidean Algorithm

Double Exponentiation The algorithm below first appeared as a single ex-
ponentiation routine in [20] under the name PRAC, the adaptation to double
exponentiation was pointed to in [22]. Let R1 and R2 be two points in the same

6 It is unclear who should receive credit for this adaptation, possibly Lehmer [15].
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Table 2. Substitution rules for Montgomery’s Euclidean Lucas algorithm

No. Condition Substitution(d, e) Costs Dual costs

M1 d ≤ 5
4
e, d ≡ −e mod 3 ((2d − e)/3, (2e − d)/3) 3α 3α

M2 d ≤ 5
4
e, d ≡ e mod 6 ((d − e)/2, e) α + δ 2α + δ

M3 d ≤ 4e (d − e, e) α α
M4 d ≡ e mod 2 ((d − e)/2, e) α + δ 2α + δ
M5 d ≡ 0 mod 2 (d/2, e) α + δ α + δ
M6 d ≡ 0 mod 3 (d/3 − e, e) 3α + δ 4α + δ
M7 d ≡ −e mod 3 ((d − 2e)/3, e) 3α + δ 4α
M8 d ≡ e mod 3 ((d − e)/3, e) 3α + δ 3α + δ
M9 e ≡ 0 mod 2 (d, e/2) α + δ α + δ

order q subgroup generated by P . There exist unique κ and λ in Zq satisfy-
ing R1 = κP and R2 = λP . Given two exponents n and m, one faces the task
of computing nR1 + mR2 = (nκ + mλ)P . Introduce auxiliary variables a, b, d
and e and auxiliary points A,B and C. The variables a and b are kept only for
explanatory purposes and should not be implemented (hence κ and λ need not
be known). Keep as invariant A = aP,B = bP , and C = A − B, as well as
0 < d ≤ e, ad + be = nκ + mλ and gcd(d, e) = gcd(n,m). This invariant can
be initialized with a = κ, b = λ, d = n, e = m, and accordingly A = κP and
B = λP . In the main body of the algorithm, the pair (d, e) is decreased step
by step, until eventually both d and e equal the greatest common divisor of n
and m. At this point d(A+B) = nR1 +mR2, so a single exponentiation routine
should be called to perform the scalar multiplication d(A+B).

Table 2 contains the list of substitutions for (d, e) proposed by Montgomery.
One is supposed to perform the first applicable rule from the table. The costs per
step are denoted in point additions (α) and point doublings (δ). As an alternative
the ternary steps (M1, M2, M6, M7, and M8) can be left out to simplify the
algorithm.

Simulation shows that a double exponentiation with two k-bit exponents
takes on average slightly less than 1.5 ordinary additions and 0.5 doublings
per exponent bit. Using the additive Montgomery version, this would yield 10
field multiplications per exponent bit for a double exponentiation. Using the
new multiplicative representation, a double exponentiation costs only 8.5 field
multiplications per exponent bit.

As always, single exponentiation can be sped up by precomputing 2k/2P ,
effectively transforming a k-bit single exponentiation into a k/2-bit double ex-
ponentiation. The result is a single exponentiation routine taking, on average,
4.2 field multiplications per exponent bit. A minor detail is that (2k/2 − 1)P is
also required, being the difference between 2k/2P and P . Fortunately, the binary
algorithm returns both. Variations with other values instead of 2k/2 are possible.

Single Exponentiation without Precomputation Although the algorithm
in [20] actually describes a double exponentiation, it was only used there for sin-
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Table 3. Overview of asymptotic costs of scalar multiplication based on Mont-
gomery representation

Y General Old New

Single exponentiation

Binary Yes α̇ + δ 6 6
Montgomery No 1.5α + 0.25δ 9.5 8
Precomp. Montgomery No 0.75α + 0.25δ 5 4.3

Double exponentiation

Schoenmakers Yes 3
4
(2α̇ + δ) + 1

4
(3α̇ + 2α) 13.5 13

Akishita Yes 3
4
(2α̇ + δ) + 3

4
α̇ 10.5 10.5

Montgomery No 1.5α + 0.5δ 10 8.5

Twofold exponentiation

Montgomery No 1.5α + 0.5δ 10 8.5

gle exponentiations by computing nP as (n− r)P + rP . Montgomery proposed
setting (n − r)/r ≈ φ, where φ = 1+

√
5

2 is the golden ratio. This will result in
logφ

√
n Fibonacci steps (type M3) costing one ordinary addition each, which

will be followed by what looks like a random double exponentiation with expo-
nents of magnitude about

√
n [27]. Putting the pieces together, this results in

approximately 8 field multiplications per exponent bit using the new represen-
tation and 9.5 field multiplications using the old. This difference is completely
irrelevant, since both are outperformed by the binary algorithm (Section 4.2):
it is both faster and easier; moreover it allows easy recovery of the y-coordinate
and helps to thwart timing and power analysis.

Twofold Exponentiation Montgomery’s algorithm can also be used to com-
pute both nP and mP at the same time for relatively low costs by reversing the
order. More precisely, go through the entire algorithm, but only keeping track
of d and e. At the end, d = 1 and e = 1. Now work your way back up to d = n
and e = m by performing the inverse of each step, but also keeping as invariant
D = dP,E = eP, and C = D−E. Initialization is easy and when (d, e) = (n,m)
the pair (D,E) gives the desired powers. The only point of concern is whether
the steps can be performed backwards. Inspection of the 9 steps shows this is
indeed possible. In Table 2 the costs for performing a step backwards are listed
under ‘dual costs’, referring to the notion of duality for addition chains [14]. Note
that the costs for a step and its dual are not always the same.

Tsuruoka [29] gives a recursive version of the dual algorithm, but does not
seem to realize that his algorithm is actually Montgomery’s dual. Tsuruoka gives
a slightly different set of transformation rules (even when taking into account
duality), giving a negligible speedup (fine-tuning Montgomery’s algorithm is
a rather complicated business, as demonstrated by [27, Appendix A]).

Summary In Table 3 an overview is given of the various methods based on
Montgomery representation. Once again, α stands for a point addition and δ
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for a point doubling. The notation α̇ is used for a point addition with a fixed
difference, since these are cheaper. Old refers to [17] and [30]’s additive version,
new refers to the multiplicative version presented in this paper. The column Y
denotes whether easy y-coordinate recovery using (11) is possible or not.

5 Conclusion

Comparing Table 1 with Table 3 shows that the Montgomery representation
is considerably slower than traditional methods, both for single and for double
exponentiation. However, for single exponentiation using the Montgomery form
can still have two advantages. First of all, the uniformity of the steps in the binary
algorithm provides a hedge against timing and power analysis. Using ordinary
projective in conjunction with the Lucas binary algorithm is substantially slower.
Secondly, the Montgomery method requires less memory during a computation.

For double exponentiation timing and power analysis are seldom of any con-
cern, but if they were, the fast double exponentiation routines by Akishita and
Montgomery would not provide a hedge. Of course one could run two single
exponentiations, recover the y-coordinates and add the result. As for memory
requirements, here the Montgomery representation clearly stands out. During
computation three points have to be stored, each consisting of two F2k -elements.
Moreover d and e, elements in Zq, need to be stored. All in all 8k bits. On
the other hand, Solinas’ method precomputes four points of two F2k -elements
each (this includes the two bases). During computation, one point of three F2k -
elements is used. The exponents need to be recoded and stored as well. In total,
this costs 13k bits. The method based on interleaving two windowed NAFs re-
quires even more memory.
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[6] É. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. PKC’02,
LNCS 2274, pages 335–345. 241, 249

[7] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using
mixed coordinates. Asiacrypt’98, LNCS 1514, pages 51–65. 240
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