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Abstract. We show how to prove in honest verifier zero-knowledge the
correctness of a shuffle of homomorphic encryptions (or homomorphic
commitments.) A shuffle consists in a rearrangement of the input cipher-
texts and a reencryption of them so that the permutation is not revealed.
Our scheme is more efficient than previous schemes both in terms of
communication complexity and computational complexity. Indeed, in the
case of shuffling ElGamal encryptions, the proof of correctness is smaller
than the encryptions themselves.

1 Introduction

A shuffle of ciphertexts E1, . . . , En is a new set of ciphertexts E′
1, . . . , E

′
n

so that both sets of ciphertexts have the same plaintexts. If we are work-
ing with a homomorphic cryptosystem with encryption algorithm Epk(·), we
may shuffle E1, . . . , En by selecting a permutation π ∈ Σn and letting E′

1 =
Eπ(1)Epk(0), . . . , E′

n = Eπ(n)Epk(0). If the cryptosystem is semantically secure
it is not possible for somebody else to see which permutation we used in the
shuffle. On the other hand this also means that somebody else cannot check
directly if we did make a correct shuffle. Our goal in this paper is to construct
a proof system that enables us to prove that indeed we have made a correct
shuffle.

Shuffling encrypted elements and proving the correctness of the shuffle play
an important part in mix-nets. A mix-net is a multi-party protocol to shuffle
elements so that neither of the parties knows the permutation linking the input
and output. To shuffle ciphertexts we may let the parties one after another make
a shuffle with a random permutation and prove correctness of it. The proofs of
correctness allow us to catch any cheater, and if at least one party is honest, it is
impossible to link the input and output. In this indirect fashion, shuffling plays
an important role in anonymization protocols and voting schemes.

Currently the two most efficient proof systems, both public coin honest veri-
fier zero-knowledge, for proving the correctness of a shuffle of ElGamal encryp-
tions are the schemes by Furukawa and Sako [4] and Neff [6]. The proof system
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in [4], the most efficient scheme of the two, requires the prover to make 8n ex-
ponentiations and the verifier to make 10n exponentiations. In the case where
the ElGamal cryptosystem is based on a 1024-bit prime p with the operations
taking place in a group of order q, where q is a 160-bit prime so that q|p−1, their
proofs require the prover to send 5280n bits. Jakobsson, Juels and Rivest take
a different approach in [5] and provide a global structure for creating an efficient
mix-net. In their scheme, however, a cheating prover does have non-negligible
chance of succeeding, the scheme only ensures that only a very small fraction of
the ciphertexts may be substituted for something else. Furthermore, it does not
hide the permutation completely.

Our scheme, unlike those of [4] and [6], is not restricted to proving shuffles
of ElGamal ciphertexts but can be used with any homomorphic cryptosystem.
However, for the sake of comparison with the previous schemes we consider
what happens when we use our scheme on an ElGamal cryptosystem with the
primes p, q chosen as above. The prover uses around 6n exponentiations to make
a proof, the verifier uses roughly 6n exponentiations to verify a proof, and the
proofs themselves are of size around 1184n bits. In some cases, for instance
in connection with electronic voting, the encrypted data may have to remain
uncompromised several years into the future and then a key length of 1024 bits
cannot be considered adequate. We gain an additional advantage in comparison
with [4] and [6] when the key size increases since the groups in which we do
the exponentiations may be smaller than the groups used in the cryptosystem.
Our proof system uses 7 rounds just as that of [6], whereas that of [4] only
uses 3 rounds. The proof system we construct is public coin honest verifier zero-
knowledge,1 just as [4] and [6].

The main ideas in our proof system are quite general and, while we only
consider homomorphic encryptions in this paper, can be used for proving the
correctness of shuffles of both homomorphic encryptions and homomorphic com-
mitments. When considering homomorphic commitments, where we may have
only computational binding, the proof takes on the nature of a proof of knowl-
edge of the permutation and the modifications done to the commitments, with
knowledge error that can be the inverse of any polynomial in the security param-
eter. Indeed, also when working with encryptions, the proof system we present
proves knowledge of the shuffle being correct. This does have some interest in
its own right for achieving non-malleability of the secret shuffle. Consider for in-
stance a party doing one of the shuffles in a mix-net. Surely, the global properties
of the mix-net are unsatisfactory if a corrupt party can shuffle all the elements
back again right after this shuffle! Some degree of non-malleability is therefore
needed.

Let us give a brief introduction to our proof system and the tools we use.
The shuffle can be done by selecting a permutation π at random, selecting
randomizers r′1, . . . , r

′
n at random, and setting E′

1 = Eπ(1)Epk(0; r′1), . . . , E′
n =

1 Actually it is special honest verifier zero-knowledge, see [1]. Special honest verifier
knowledge says that given any challenges it is possible to simulate a proof with those
challenges.
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Eπ(n)Epk(0; r′n). The task for the prover is now to prove that some permutation
π exists so that the plaintexts of E′

1, . . . , E
′
n and Eπ(1), . . . , Eπ(n) are identical.

As a first step, we think of the following näıve proof system. The prover
informs the verifier of the permutation π. The verifier picks at random t1, . . . , tn,
computes Et1

1 · · ·Etn
n and (E′

1)tπ(1) · · · (E′
n)tπ(n) . Finally, the prover proves that

the two resulting ciphertexts have the same plaintext in common. Unless π really
corresponds to a pairing of ciphertexts with identical plaintexts the prover will
be caught with overwhelming probability.

The obvious problem with the above scheme is the lack of zero-knowledge.
We remedy this in the following way:

1. The prover commits to the permutation π by choosing different ele-
ments s1, . . . , sn and setting cs,1 = commit(sπ(1)), . . . , cs,n = commit(sπ(n)).
He sends, in that order, s1, . . . , sn, cs,1, . . . , cs,n to the verifier. Additionally
he proves that indeed s1, . . . , sn are inside the commitments. This fixes a per-
mutation π.

2. The verifier selects at random t1, . . . , tn and the prover sends ct,1 =
commit(tπ(1)), . . . , ct,n = commit(tπ(n)) to the verifier. He proves that he
has committed to t1, . . . , tn, and he proves that the pairs (si, ti) match in
the commitments, i.e., for all i the pair (cs,i, ct,i) contains a pair (sj , tj),
where 1 ≤ j ≤ n. This ensures that t1, . . . , tn are committed to in the se-
quence specified by π.

3. Finally, the prover uses multiplication proofs and equivalence proofs to show
that the products Et1

1 · · ·Etn
n and (E′

1)tπ(1) · · · (E′
n)tπ(n) have equivalent con-

tents without revealing anything else. This last step corresponds to carrying
out the näıve proof system in zero-knowledge.

The remaining problem is to convince the verifier that cs,1, . . . , cs,n contain
a shuffle of s1, . . . , sn, that ct,1, . . . , ct,n contain a shuffle of t1, . . . , tn, and finally
that the two sequences of elements have been shuffled in the same way. It seems
like we have just traded one shuffle problem with another. The difference is that
the supposed contents of the commitments are known to both the prover and the
verifier, whereas we cannot expect either to know the contents of the ciphertexts
being shuffled. Following an idea from [6] we can prove efficiently a shuffle when
the contents are known and we are using a homomorphic commitment scheme.2

To see that the pairs match we let the verifier pick λ at random, and let the
prover demonstrate that cs,1c

λ
t,1, . . . , cs,nc

λ
t,n contain a shuffle of s1+λt1, . . . , sn+

λtn. If a pair (si, ti) is not contained in a pair of commitments as required, then
with high likelihood over the choice of λ the shuffle proof will be impossible. We
shall see later that we can combine the proofs associated with step 1 and 2 into
one combined proof.
2 See Section 3.
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2 Homomorphic Commitments and Encryption

2.1 Commitments

We start by specifying the type of commitments we are using. First there is the
key generation phase in which a public key, K, is generated. The key generation
procedure is not of concern in this article so we will just assume whenever we
use a key in the article that it has been appropriately generated and publicized.
In general, we use the letter K to signify such a key. With each key there is an
associated message space MK , a randomizer space RK , an opening space BK ⊃
RK , a commitment space CK , a commitment function comK(·, ·) : MK ×RK →
CK and a verification function verK(·, ·, ·) : MK × BK × CK → {0, 1}.

Given the key we can commit to an element m ∈ MK by selecting at random,
according to some distribution specified by the commitment scheme and the key,
r ∈ RK , and letting the commitment be c = comK(m; r) ∈ CK . This (m, r, c)-
triple satisfies verK(m, r, c) = 1.

To open a commitment we reveal m ∈ MK , r ∈ BK such that verK(m, r, c) =
1. Note that we do allow openings not corresponding to correctly formed com-
mitments since the opening space and the randomizer space do not need to be
identical.3 However, we still require the binding property to be satisfied, i.e., no-
body can find a commitment in CK and two correct openings of it with different
messages m1 and m2.

The spaces associated with the commitment scheme shall be abelian groups4.
We write the commitment space with multiplicative notation and the other
groups with additive notation, so we have groups (MK ,+), (RK ,+) ≤ (BK ,+)
and (CK , ·). In this paper the message space will be ZN for some suitable large
integer N , and the randomizer space will be some finite group where elements
are chosen uniformly at random. See, however, Section 5 for a possible use of
integer commitments.

Homomorphic property: The commitment schemes we look at must
be homomorphic, meaning that for all m1,m2 ∈ MK and all r1, r2 ∈ BK :

comK(m1; r1)comK(m2; r2) = comK(m1 + m2; r1 + r2) .

Root opening: We demand that if we can find c ∈ CK , e �= 0 with
gcd(e, |MK |) = 15 and m ∈ MK , z ∈ BK such that comK(m; z) = ce then we
can compute an opening of c.

3 See [2] for an example of an integer commitment scheme where the randomizer space
and the opening space are different.

4 Throughout the paper we assume that both the groups and the elements in the
groups we work with can be represented in a suitable manner, the binary operations
and inversions can be computed efficiently, and that we can recognize whether an
element belongs to a particular group.

5 If MK is infinite we define gcd(e, |MK |) = 1 for all e.
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Few polynomial roots: For any non-zero polynomial p(T ) ∈ MK [T ] of
low degree6, the probability that a randomly picked element from MK is a root
is negligible.

For future use, we note that the few polynomial roots assumption implies
that the order of MK , if finite, does not have small divisors. This in turn means
that when picking an integer at random from a sufficiently large interval it is
with overwhelming probability prime to |MK |, a useful fact to bear in mind in
connection with the root opening assumption.

We give the following example of a homomorphic commitment scheme. The
key is K = (p, q, g, h), where p, q are large primes, q|p− 1, g, h are generators of
a group G ≤ Z∗

p and logg h, logh g are both unknown. We have MK = Zq, CK =
<g> and BK = RK = Zq. Commitment to m is done by selecting r ∈ Zq at
random and letting comK(m; r) = grhm mod p. Verifying a commitment opening
(m, r) of c ∈ CK is done by letting verK(m, r, c) = 1 if and only if m, r ∈ Zq and
c = grhm mod p.

2.2 Multicommitments

In the commitment scheme described above the elements in the message space
have a natural description as integers. However, there are circumstances where
we do not really need this property but we just need the message space to have
a structure as an abelian group. Potentially, having fewer restrictions on the
commitment scheme allows for faster generation of commitments.

In our case, what we will need is a way to commit to a tuple of elements. We
therefore describe what we in the paper shall call multicommitments. A multi-
commitment scheme works just as a commitment scheme, except we may commit
to a k-tuple from the message space MMK , where k is specified in the key MK.

An example of a multicommitment scheme is the following variant of the
commitment scheme mentioned previously. The key consists of large primes
p, q so that q|p − 1, and randomly chosen generators g, h1, . . . , hk of a group
G ≤ Z∗

p of order q. The sender of the commitment does not have knowl-
edge about the generation of the keys, in particular, he does not know dis-
crete logarithms of the generators with respect to other generators. The mes-
sage space is M(p,q,g,h1,...,hk) = Zq, the randomizer and opening spaces
are R(p,q,g,h1,...,hk) = B(p,q,g,h1,...,hk) = Zq and the commitment space is
C(p,q,g,h1,...,hk) = < g >. The commitment function is defined as follows:
mcom(p,q,g,h1,...,hk)(m1, . . . ,mk; r) = grhm1

1 · · ·hmk

k mod p. Opening of the com-
mitment is done by revealing m1, . . . ,mk, r.

2.3 Encryptions

In this paper, we use pk to denote a public key for a semantically secure ho-
momorphic public key cryptosystem. Associated with such a key is a message
6 More precisely of degree less than n, the number of elements we want to shuffle.
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space Mpk, a randomizer space Rpk and a ciphertext space Cpk. Furthermore,
we have an encryption function Epk(·; ·) : Mpk × Rpk → Cpk. We restrict our-
selves to cryptosystems with errorless decryption, i.e., it is infeasible to find
m ∈ Mpk, r ∈ Rpk so that Epk(m; r) does not decrypt to m. We also require
that we have stable decryption in the sense that we cannot find an element
E ∈ Cpk that decrypts to anything but a message in the message space or can
decrypt to two different messages with significant7 probability.

We require that the message space, the randomizer space and the ciphertext
space are large finite groups. In other words we have groups (Mpk,+), (Rpk,+)
and (Cpk, ·). We will also assume a couple of properties that correspond to those
of the commitments:

Homomorphic properties: The cryptosystem is homomorphic, meaning
that for all m1,m2 ∈ Mpk and for all r1, r2 ∈ Rpk:

Epk(m1; r1)Epk(m2; r2) = Epk(m1 + m2; r1 + r2) .

In addition, if E1, E2 ∈ Cpk are two ciphertexts decrypting to m1,m2 respec-
tively then E1E2 decrypts to m1 + m2.

When dealing with a shuffle of ciphertexts E1, . . . , En and E′
1, . . . , E

′
n we will

typically not be interested in whether they have been formed correctly, i.e., there
exists a permutation π and r′1, . . . , r′n so that E′

1 = Eπ(1)Epk(0; r′1), . . . , E′
n =

Eπ(n)Epk(0; r′n). What we really want to know is whether they decrypt correctly,
i.e., there exists a permutation π so that for all i we have that E′

i and Eπ(i)

decrypt to the same.
This difference means that when dealing with commitments we typically

want to prove knowledge of openings of commitments satisfying some property.
When dealing with ciphertexts we typically want to prove knowledge that
their contents satisfy some property. Accordingly, we modify the root opening
assumption to something that will be more suitable when talking about
ciphertexts later in the article.

Root decryption: We demand that if we can find E ∈ Cpk, e �= 0 so
that gcd(e, |Mpk|) = 1 and m ∈ Mpk, z ∈ Rpk so that Epk(m; z) = Ee, then m
can be written uniquely as em′, where m′ ∈ Mpk, and E decrypts to m′.

We mention two examples of cryptosystems that satisfy our requirements.
The ElGamal cryptosystem may be set up with the same kind of key as in the
commitment scheme example. This time the message space is M(p,q,g,h) =<g>.
We encrypt by letting E(p,q,g,h)(m; r) = (gr mod p, hrm mod p). Decryption can
be done if the secret exponent x so that h = gx mod p is known. The ciphertext
(u, v) decrypts to m = vu−x mod p.

Another example of a homomorphic cryptosystem is the generalization of
Paillier’s cryptosystem [7] invented by Damg̊ard and Jurik [3]. Here the pub-
7 By significant we mean not negligible.
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lic key is an RSA-modulus N together with a small integer s. The encryption
function takes a message m ∈ ZNs and a randomizer r ∈ Z∗

N as input and
sets E(N,s)(m; r) = (1 + n)mrNs

mod Ns+1.

2.4 Compatibility of Commitments, Multicommitments and
Encryptions

From now on, we will simply assume that we have some commitment scheme
with key K, some multicommitment scheme with key MK and a cryptosystem
with key pk. The keys may or may not overlap so that elements from one key are
also included in another key. For instance, we could imagine the cryptosystem
were an ElGamal scheme with primes p, q|p− 1 and generators g, h and that the
commitment scheme used the exact same elements.

We require that the keys be selected so that the message spaces are compa-
tible in the following way. The message spaces of the commitment scheme and
the multicommitment scheme are identical, i.e., MK = MMK . Furthermore,
the message space for the cryptosystem, Mpk is a module over MK .

3 Proof of a Shuffle of Known Contents

Before going into the general protocol for proving a correct shuffle let us build
some intuition by presenting, without proof, a proof system for a shuffle where
the contents are known.

Say we have commitments c1, . . . , cn and want to prove that they con-
tain m1, . . . ,mn without revealing which commitment contains what. If the
message space is an integral domain, we can, following [6], use the fact that
an n’th degree non-zero polynomial has at most n roots. Let x be any element
in the message space and set cx = comK(x; 0). In case c1, . . . , cn do not contain
a shuffle of m1, . . . ,mn there can at most be n challenges x where the product
of the contents of c1c−1

x , . . . , cnc
−1
x is the same as

∏n
i=1(mi − x). By choosing x

at random, the verifier can therefore give the cheating prover a challenge he
only has negligible chance to answer.

Proof of commitments containing a shuffle of known contents
Common input: c1, . . . , cn ∈ CK and m1, . . . ,mn ∈ MK .
Prover’s input: A permutation π ∈ Σn and r1, . . . , rn ∈ RK so
that c1 = comK(mπ(1); r1), . . . , cn = comK(mπ(n); rn).

Initial challenge: Prover receives x chosen at random from MK .
Multiplication Proof: Make a 3-move proof using a multiplication proof of

knowledge8 that the product of the contents of c1c−1
x , . . . , cnc

−1
x equals the

content in comK(
∏n

i=1(mi − x); 0).

8 Such 3-move proofs are standard tools in cryptography. See for instance [3] for an
example of such proofs.
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Theorem 1. The scheme is a public coin 4-move proof system for proving
that the prover knows π and r1, . . . , rn so that c1 = comK(mπ(1); r1), . . . , cn =
comK(mπ(n); rn). The proof system is special honest verifier zero-knowledge.

The condition that the message space is an integral domain can be relaxed.
In the assumptions on the commitment scheme, we only required that given
some polynomial it should be unlikely that a randomly chosen element in MK

is a root, unless the polynomial is the zero-polynomial.

4 Proof of a Shuffle

Let us go back to the idea in the introduction for proving a shuffle this time hav-
ing firmer grasp of the concepts. There are ciphertexts E1, . . . , En, E

′
1, . . . , E

′
n,

and the prover knows a permutation π and randomizers r′1, . . . , r
′
n so that E′

1 =
Eπ(1)Epk(0; r′1), . . . , E′

n = Eπ(n)Epk(0; r′n). His aim is to convince the verifier
that a permutation π exists so that for each i = 1, . . . , n the ciphertexts E′

i

and Eπ(i) decrypt to the same.
The prover selects different elements s1, . . . , sn and creates commit-

ments cs,1 = comK(sπ(1)), . . . , cs,n = comK(sπ(n)). He sends all of this to the
verifier.

The verifier responds with t1, . . . , tn chosen at random in the message space.
The prover sends ct,1 = comK(tπ(1)), . . . , ct,n = comK(tπ(n)) back.

The verifier sends a random λ to the prover. The prover demonstrates by
using a shuffle proof of known contents that he knows that cs,1c

λ
t,1, . . . , cs,nc

λ
t,n

contain a shuffle of s1 + λt1, . . . , sn + λtn.
Unless indeed (cs,1, ct,1), . . . , (cs,n, ct,n) contain a shuffle of the pairs

(s1, t1), . . . , (sn, tn) there is overwhelming probability over the choices of λ that
this proof will fail. In other words, we get three pieces of information from
this proof: The commitments cs,1, . . . , cs,n sent in the first round did con-
tain s1, . . . , sn. The commitments ct,1, . . . , ct,n sent in the third round did con-
tain t1, . . . , tn. The si’s and ti’s were shuffled using the same permutation.

What we have so far is that we can get the prover to commit to a permutation
through the choices of cs,1, . . . , cs,n, and subsequently we can ensure that he
commits to t1, . . . , tn permuted in the same way. Let us call this permutation π.

The prover can conclude his proof by computing E′′
1 = (E′

1)tπ(1)Epk(0), . . . ,
E′′

n = (E′
n)tπ(n)Epk(0). Using basic multiplication proofs, he can demonstrate

to the verifier that this set of ciphertexts has been correctly formed. Finally,
he can show through an equality proof that E′′

1 · · ·E′′
n has the same content

as Et1
1 · · ·Etn

n .
From the verifier’s point of view, this demonstrates that (E′

1)tπ(1) · · · (E′
n)tπ(n)

has the same content as Et1
1 · · ·Etn

n . With overwhelming probability
over the choice of t1, . . . , tn this is only possible if each of the pairs
(E′

1, Eπ(1)), . . . , (E′
n, Eπ(n)) are pairs of ciphertexts with the same plaintext. We

have thus proven the shuffle without revealing π.
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To optimize the proof we note the following. First, we only use E′′
1 , . . . , E

′′
n

temporarily. We may as well prove that (E′
1)tπ(1) · · · (E′

n)tπ(n) has the same con-
tent as Et1

1 · · ·Etn
n directly if possible, and indeed this is possible. This way we

save n encryptions.
Another optimization comes from the use of multicommitments. When

making a shuffle proof for cs,1c
λ
t,1, . . . , cs,nc

λ
t,n containing a shuffle of s1 +

λt1, . . . , sn + λtn we need to make multiplications and prove them done cor-
rectly. However, up to this point we only use additions. Therefore we can in-
stead make multicommitments to s1, . . . , sn and t1, . . . , tn and from this create
multicommitments to s1 + λt1 − x, . . . , sn + λtn − x, where x is the randomly
chosen challenge to be used in the shuffle proof with known contents. First now
do we begin to prove that the product of the contents in the multicommitments
matches the product

∏n
i=1(si + λti − x).

When starting to make this proof we use the fact that we can combine the
multiplication proof used in the shuffle proof of known contents and the mul-
tiplication proofs used with the encryptions. Instead of raising the ciphertexts
to t1, . . . , tn we can raise them to s1 +λt1−x, . . . , sn +λtn−x. Since t1, . . . , tn, λ
and x are all chosen by the verifier these values have the same random distri-
bution as the original t1, . . . , tn. But in the basic multiplication proofs used on
the ciphertexts we create the values f1 = e(sπ(1) + λtπ(1) − x) + d1, . . . , fn =
e(sπ(n) + λtπ(n) − x) + dn and reveal them. Having those values helps us create
an efficient proof of the shuffle of known contents. The idea here is that we can
compute en

∏n
i=1(si + λti − x) as f1 · · · fn − d1f2 · · · fn − (f1 − d1)d2f3 · · · fn −

· · · − (f1 − d1) · · · (fn1 − dn−1)dn.
Let us now write down the proof system for proving a shuffle that we

have been aiming for throughout the paper. For simplicity and without loss of
generality we assume k|n.

Proof of shuffle of ciphertexts
Common input: E1, . . . , En, E

′
1, . . . , E

′
n ∈ Cpk.

Prover’s input: A permutation π ∈ Σn and randomizers r′1, . . . , r
′
n ∈ Rpk

satisfying E′
1 = Eπ(1)Epk(0; r′1), . . . , E′

n = Eπ(n)Epk(0; r′n).

Initial message: Select s1, . . . , sn as different elements from MK .
Select rs,1, . . . , rs, n

k
at random from RMK .

Let cs,1 = mcomMK(sπ(1), . . . , sπ(k); rs,1), . . . ,
cs, n

k
= mcomMK(sπ(n−k+1), . . . , sπ(n); rs, n

k
).

Send s1, . . . , sn, cs,1, . . . , cs, n
k

to the verifier.
First challenge: t1, . . . , tn chosen at random from MK .
First answer: Select rt,1, . . . , rt, n

k
at random from RMK .

Set ct,1 = mcomMK(tπ(1), . . . , tπ(k); rt,1), . . . ,
ct, n

k
= mcomMK(tπ(n−k+1), . . . , tπ(n); rt, n

k
).

Send ct,1, . . . , ct, n
k

to the verifier.
Second challenge: Choose λ, x at random from MK .
Second answer: For j = 1, . . . , n let aj =

∏j
i=1(sπ(i) + λtπ(i) − x).
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Select d1, . . . , dn at random from MMK . Select rd,1, . . . , rd, n
k

at ran-
dom from RMK . Set cd,1 = mcomMK(d1, . . . , dk; rd,1), . . . , cd, n

k
=

mcomMK(dn−k+1, . . . , dn; rd, n
k

).
Select r1, . . . , rn at random from RK . Select r at random from RK .
Set c1 = comK(d1; r1), c2 = comK(a1d2; r2), . . . , cn = comK(an−1dn; rn).
Set c = comK(0; r).9

Select r′ at random from Rpk. Set E′ = (E′
1)d1 · · · (E′

n)dnEpk(0; r′).
Send cd,1, . . . , cd, n

k
, c1, . . . , cn, c, E

′ to the verifier.
Third challenge: Select at random e ∈ MK .
Final answer: Set f1 = e(sπ(1) + λtπ(1) − x) + d1, . . . , fn = e(sπ(n) + λtπ(n) −

x) + dn. Set z1 = e(rs,1 + λrt,1) + rd,1, . . . , zn
k

= e(rs, n
k

+ λrt, n
k

) + rd, n
k

.
Set z = r − ef2 · · · fnr1 − · · · − enrn.
Set z′ = r′−(e(sπ(1)+λtπ(1)−x)+d1)r′1−· · ·−(e(sπ(n)+λtπ(n)−x)+dn)r′n.
Send f1, . . . , fn, z1, . . . , zn

k
, z, z′ to the verifier.

Verification: Check that f1 . . . , fn ∈ MK . Check
that cs,1, . . . , cs, n

k
, ct,1, . . . , ct, n

k
, cd,1, . . . , cd, n

k
∈ CMK . Check

that z1, . . . , zn
k

∈ RMK . Check that c1, . . . , cn, c ∈ CK . Check that
z ∈ RK . Check that E′ ∈ Cpk. Check that z′ ∈ Rpk.
Let cx = mcomMK(x, . . . , x; 0).
Check that mcomMK(f1, . . . , fk; z1) = (cs,1c

λ
t,1c

−1
x )ecd,1, . . . ,

mcomMK(fn−k+1, . . . , fn; zn
k

) = (cs, n
k
cλt, n

k
c−1
x )ecd, n

k
.

Check that comK(en+1an − ef1 · · · fn; z) = c−ef2···fn

1 · · · c−en

n c.
Check that (E′

1)f1 · · · (E′
n)fnEpk(0; z′) = (Es1+λt1−x

1 · · ·Esn+λtn−x
n )eE′.

Theorem 2. The scheme is a public coin 7-move proof system for a correct
shuffle. It is complete, sound and special honest verifier zero-knowledge. If the
commitments are statistically hiding, then the entire proof is statistical special
honest verifier zero-knowledge.

Proof. It is easy to see that we are dealing with a 7-move public coin protocol.
Completeness follows by straightforward verification. Soundness follows from
Lemma 1. Special honest verifier zero-knowledge follows from Lemma 2. ��
Lemma 1. The proof system is sound.

Proof. We will assume that the proof system is not sound and derive a contra-
diction with the assumptions made on the commitment schemes and the cryp-
tosystem that we use. Therefore, let us assume there is some adversary A that
has a significant probability of succeeding in the following game. Public keys
for the schemes are generated and given to the adversary. It then produces two
sets of encryptions E1, . . . , En and E′

1, . . . , E
′
n and engages in a proof with the

verifier. It is succesful if the verifier accepts the proof. By the definition of sig-
nificant this means that there is some inverse polynomial, ε(l), in the security
parameter l where A is succesful with probability ε(l) for an infinite number of
possible security parameters.
9 The aj ’s can be computed recursively using the formula aj = aj−1(sπ(j)+λtπ(j)−x).
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From the adversary A we will construct an algorithm B that is capable of
violating the assumptions made on the schemes we use. Basically B will run A
to get two sets of ciphertexts E1, . . . , En and E′

1, . . . , E
′
n and then use rewinding

techniques to find witnesses for these decrypting to the same plaintexts. If they
do not decrypt to the same plaintexts then the root decryption assumption has
been violated.
Sampling of proofs
B works in the following way. It runs A to get ciphertexts E1, . . . , En

and E′
1, . . . , E

′
n. By the assumption we have ε(l) probability for these cipher-

texts not decrypting to the same families of plaintexts, yet A being succesful in
the proof. Let p(l) be an easily computable polynomial in the security parameter
that is sufficiently larger10 than timeA(l)/ε(l). B lets A send the initial message
of the proof, and then selects at random p(l) first challenges t1, . . . , tn. On each
such challenge t1, . . . , tn it runs the adversary p(l) times to receive p(l) answers
to the first challenge. For each such answer it selects at random p(l) second
challenges λ, x. It splits A further into p(l) copies and lets each copy produce an
answer to one of the second challenges λ, x. For each of these answers it selects
p(l) final challenges e. It runs A to the end to see if it gets acceptable final
answers to some of these final challenges.

All in all B runs p(l)3 copies of A. We hope to find n sets of chal-
lenges t1, . . . , tn so that for each of those sets we have 2 sets of challenges λ, x,
where we in turn have n + 2 sets of challenges e with acceptable answers. All
in all, we hope to end up with 2n(n + 2) related proofs. With overwhelming
probability this happens if we have set p(l) to be a large enough polynomial and
the probability of A for succeeding after having sent the initial message is larger
than ε(l).

With overwhelming probability these acceptable proofs include n linearly in-
dependent vectors (s1 +λt1−x, . . . , sn +λtn−x). We also have with overwhelm-
ing probability that the two second challenges λ, x have different λ’s. Finally, we
have with overwhelming probability that the vectors e = (1, e, . . . , en+1) are lin-
early independent. To see the latter note that vectors of such a form can be seen
as rows in a Vandermonde matrix and with high probability the Vandermonde
matrix has determinant different from 0.

We now go backwards through the conversations that constitute the accept-
able proofs we have found and see what we can conclude. First we look at a con-
versation that has been completed up to the point where the verifier is about to
pick the final challenge e and give it to the prover. We see what can be deduced
from the n + 2 answers to this challenge. Next we take a step back and look
at a conversation where the verifier is about to pick the second challenge λ, x.
Again we see what we can conclude from the 2(n + 2) acceptable continuations
of a proof from this point. Finally, we step back to the point where the verifier is
picking the first challenge, consisting of t1, . . . , tn, and see what we can conclude
10 We leave it to the reader to use Chernoff bounds to estimate exactly what sufficiently

larger means.
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from the n sets of initial challenges that are succesfully answered 2(n+ 2) times
each.

We start out by looking at the situation where a conversation has been con-
ducted up to the point where the verifier is selecting the final challenge.
The final challenge
Given acceptable answers f1, . . . , fn, z1, . . . , zn

k
, z, z′ and f̃1, . . . , f̃n,

z̃1, . . . , z̃n
k
, z̃, z̃′ to two different challenges e, ẽ, we have for i = 1, . . . , n

k :

mcomMK(fik−k+1, . . . , fik; zi) = (cs,ic
λ
t,ic

−1
x )ecd,i

∧mcomMK( ˜fik−k+1, . . . , f̃ik; z̃i) = (cs,ic
λ
t,ic

−1
x )ẽcd,i . (1)

This implies that

mcomMK(fik−k+1 − ˜fik−k+1, . . . , fik − f̃ik; zi − z̃i) = (cs,ic
λ
t,ic

−1
x )e−ẽ.

By the root opening assumption, this means that we can find an opening
of cs,ic

λ
t,ic

−1
x . The binding property of the multicommitment scheme implies that

this is the only way we can open the multicommitments. We call the contents
of cs,ic

λ
t,ic

−1
x for mki−k+1, . . . ,mki. We can now go back and find an opening

of cd,i too. We write dki−k+1, . . . , dki for the content of this commitment. We
have fi = emi + di, for i = 1, . . . , n.

Looking at the encryptions we get from the answers to two challenges e, ẽ
that

(E′
1)f1−f̃1 · · · (E′

n)fn−f̃nEpk(0; z′ − z̃′) = (Es1+λt1−x
1 · · ·Esn+λtn−x

n )e−ẽ.

Plugging in the fi’s and the corresponding mi’s we conclude that

Epk(0; z′ − z̃′) = (Es1+λt1−x
1 · · ·Esn+λtn−x

n (E′
1)−m1 · · · (E′

n)−mn)e−ẽ.

The root decryption assumption then tells us that Es1+λt1−x
1 · · ·Esn+λtn−x

n and
(E′

1)m1 · · · (E′
n)mn decrypt to the same.

A prover having significant chance of answering the last challenge can also
be used to to conclude that an = m1 · · ·mn, where an =

∏n
i=1(sπ(i) +λtπ(i)−x).

By writing out the fi’s we see that an answer to a challenge e satisfies

comK(en+1(m1 · · ·mn − an) + en(d1m2 · · ·mn + · · · + m1 · · ·mn−1dn) + · · ·
+e(d1 · · · dn);−z)c = (cm2···mn

1 · · · c1n)en · · · (cd2...dn
1 )e.

From a linear combination of n+ 2 linearly independent vectors on the form
(1, . . . , en+1) we can get a vector on the form (0, . . . , 0, γ), where γ with over-
whelming probability is prime to |MK |. From answers to n+ 2 different e’s that
satisfy (1) this linear combination gives us an element zγ ∈ RK so that

comK(γ(m1 · · ·mn − an); zγ) = 1 .

This in turn shows that zγ = 0 and an = m1 · · ·mn.
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Going a step back in the proof we now look at a situation where the prover
is about to receive the two challenges λ and x.
The second challenge
We first look at the challenge x. For such challenges we have seen that the
contents m1, . . . ,mn of cs,1c

λ
t,1c

−1
x , . . . , cs, n

k
cλt, n

k
c−1
x satisfy

an =
n∏

i=1

(si + λti − x) = m1 . . .mn =
n∏

i=1

(m′
i − x) ,

where m′
1, . . . ,m

′
n are the contents of cs,1c

λ
t,1, . . . , cs, n

k
cλt, n

k
. We have an evalua-

tion of an n’th degree polynomial on both sides and by the few polynomial roots
assumption the two evaluations must be equal if the prover has to have a signifi-
cant chance of answering the challenges x and e. This in turn means that the two
polynomials we evaluate have identical roots. Therefore the elements m′

1, . . . ,m
′
n

are some permutation of s1 + λt1, . . . , sn + λtn.
We proceed to look at the challenge λ. Being able to answer two different

challenges λ and λ̃ gives us openings of cs,ic
λ
t,ic

−1
x and cs,ic

λ̃
t,ic

−1
x for i = 1, . . . , n

k .
By the homomorphic property of the multicommitment scheme this gives us
openings of cλ−λ̃

t,1 , . . . , cλ−λ̃
t, n

k
. By the root opening assumption we can therefore

open ct,1, . . . , ct, n
k

. We call the contents for t̂1, . . . , t̂n. We are now also able to
open cs,1, . . . , cs, n

k
. We call the contents for ŝ1, . . . , ŝn.

Let us look at s1 + λt1. With overwhelming probability over the choices
of s1, . . . , sn and t1, . . . , tn there are at most n different values of λ where it would
correspond to one of ŝ1 + λt̂1, . . . , ŝn + λt̂n, unless there exists i ∈ {1, . . . , n}
where ŝi = s1 and t̂i = t1. Arguing similarly for the pairs (s2, t2), . . . , (sn, tn) we
deduce that there is a unique permutation π so that ŝi = sπ(i) and t̂i = tπ(i) for
i = 1, . . . , n. Since the prover committed to s1, . . . , sn in the initial message the
permutation was fixed already then.

We take another step back in the conversation and see what we can conclude
from the answers following the first challenge.
The first challenge
Since s1 +λt1−x, . . . , sn +λtn −x are linearly indendent we can for i = 1, . . . , n
find linear combinations of the vectors (s1 + λt1 − x, . . . , sn + λtn − x) giving
us the vector (0, . . . , 0, γi, 0, . . . , 0), where γi is prime to |Mpk|. Returning to
the encryptions we can therefore for i = 1, . . . , n find z′γi

so that Epk(0; z′γi
) =

(E′
i)

γiE−γi

π(i) . This by the root decryption assumption implies that Eπ(i) and E′
i

decrypt to the same.
This means that we have in polynomial time found witnesses on the

form Epk(0; z′γi
) = (E′

iE
−1
π(i))

γi for the plaintexts of E1, . . . , En and E′
1, . . . , E

′
n

decrypting to the same. But this contradicts the root decryption assumption if
the ciphertexts are to decrypt to different plaintexts. We must therefore conclude
that the adversary has negligible chance of cheating with the proof. ��



158 Jens Groth

Lemma 2. The proof system is special honest verifier zero-knowledge. If the
commitments and multicommitments are statistically or perfectly hiding then
the proof system is statistical or perfect special honest verifier zero-knowledge.

Proof. We first describe the simulator. Afterwards, we argue that its output is
indistinguishable from a real proof.
The simulation
We are given t1, . . . , tn, λ, x, e as input, and wish to produce something that is
indistinguishable from a real proof.
We let cs1 = mcomMK(0, . . . , 0), . . . , cs, n

k
= mcomMK(0, . . . , 0).

We let ct,1 = mcomMK(0, . . . , 0), . . . , ct, n
k

= mcomMK(0, . . . , 0).
We let c1 = comK(0), . . . , cn = mcomK(0).
We select f1, . . . , fn at random from MMK , z1, . . . , zn

k
at random from RMK , z

at random from RK and z′ at random from Rpk.
We let cx = mcomMK(x, . . . , x; 0).
We set cd,1 = mcomMK(f1, . . . , fk; z1)(cs,1c

λ
t,1c

−1
x )−e, . . . ,

cd, n
k

= mcomMK(fn−k+1, . . . , fn; zn
k

)(cs, n
k
cλt, n

k
c−1
x )−e.

We set c = comK(en+1an − ef1 · · · fn; z)cef2···fn

1 · · · cen

n .
Finally we let E′ = Epk(0; z′)(E′

1)f1 · · · (E′
n)fn(Es1+λt1−x

1 · · ·Esn+λtn−x
n )−e.

The simulated proof is (s1, . . . , sn, cs,1, . . . , cs, n
k
, t1, . . . , tn, ct,1, . . . , ct, n

k
, λ, x,

cd,1, . . . , cd, n
k
, c1, . . . , cn, c, E

′, e, f1, . . . , fn, z1, . . . , zn
k
, z, z′).

Proof that the simulation works
Let us argue that this simulated proof is indistinguishable from a real proof. We
define the following sequence of experiments:

Exp1: We carry out a real proof with challenges t1, . . . , tn, λ, x, e.
Exp2: First we pick d1, . . . , dn, rd,1, . . . , rd, n

k
, r, r′. Then we carry out a real proof

using these values.
Exp3: We pick f1, . . . , fn, z1, . . . , zn

k
, z, z′. We then carry out a real proof,

except when making the second answer. In that step the val-
ues d1, . . . , dn, rd,1, . . . , rd, n

k
, r, r′ are fitted to the uniquely determined values

that will make the entire proof acceptable.
Exp4: We pick as in Exp3 the elements f1, . . . , fn, z1, . . . , zn

k
, z, z′ first. After-

wards we fit cd,1, . . . , cd, n
k
, c, E′ to the other commitments and ciphertexts,

as we do in the simulation.
Exp5: We carry out Exp4 this time committing to zeros when mak-

ing cs,1, . . . , cs, n
k
, ct,1, . . . , ct, n

k
, c1, . . . , cn.

Exp6: We make a simulated proof.

Exp1 and Exp2 are the same experiments where we have only changed the
order in which we pick some elements. They are therefore perfectly indistinguish-
able.

Exp2 and Exp3 are perfectly indistinguishable since the elements we pick get
the same distribution either way.

Exp3 and Exp4 are perfectly indistinguishable since we get the
same cd,1, . . . , cd, n

k
, c, E′ no matter which method we use.
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Exp4 and Exp5 are indistinguishable due to the hiding property of the com-
mitment scheme. If the commitment scheme is statistically or perfectly hiding,
the two experiments are statistically respectively perfectly indistinguishable.

Exp5 and Exp6 are the same experiments except for the order in which we
pick some of the elements.

From this, we deduce that Exp1 and Exp6 are indistinguishable, in other
words real proofs and simulated proofs are indistinguishable. Furthermore, when
the commitment schemes are statistically or perfectly hiding, then the real proof
and the simulated proof are statistically, respectively perfectly, indistinguishable.

��
While this proof system is intended for proving correctness of a shuffle of

encryptions, we can use a virtually identical proof if we wish to prove a shuffle of
commitments c1, . . . , cn, c′1, . . . , c

′
n. When making the proof for commitments the

root opening property of commitment schemes allows us to extract in polynomial
time with high probability a witness for a shuffle consisting of a permutation π
and openers r1, . . . , rn so that the commitments satisfy c′i = cπ(i)comK(0; ri) for
i = 1, . . . , n.

5 Speed, Space and Tricks

We start by mentioning a speedup. As s1, . . . , sn we may as well use the values
0, . . . , n−1. With this convention, the prover does not need to send s1, . . . , sn to
the verifier. Furthermore, by choosing s1, . . . , sn as small as possible we may save
some computation when making the multicommitments to s1, . . . , sn. We use this
speedup in the following estimate of the computational and communicational
effort involved in making a proof of a shuffle.

We look at the special case of an ElGamal cryptosystem built over a 1024-bit
prime p and a 160-bit prime q as in the introduction, and using the commitment
scheme we have looked at before with these parameters as well as the suggested
generalization to a multicommitment scheme. The prover makes 6n + 3n

k + 3
exponentiations, the verifier makes 6n + 3n

k + 6 exponentiations. The prover
sends 1184n+ 3232n

k + 3392 bits during the proof. For optimal efficiency of the
shuffle we select k = n. However, in cases where n is not known in advance, or
where the public keys may need to be computed using a complicated multi-party
computation protocol, we may wish to use a smaller k.

When comparing our scheme with that of [4] we have achieved significant
improvements, in particular in the communication complexity. However, in many
settings 1024-bit ElGamal encryption is not sufficiently strong, in particular not
when long-term protection of data is needed. Here we may take advantage of the
fact that we can use any commitment and multicommitment schemes, as long as
the message spaces are compatible with the message space of the cryptosystem,
and get further improvements. Let us say for instance that we have set up an
ElGamal cryptosystem with a 3000-bit prime p and a 300-bit prime q|p− 1. We
may then use another 1500-bit prime p′ for the commitment schemes instead of p
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if q|p′−1. This speeds up the group operations considerably when computing the
commitments, and because the proof system is statistical zero-knowledge it does
not compromise the systems ability to hide the underlying permutation used in
the shuffle.

An approach along the same lines that can be used quite generally is to use
an integer commitment scheme as a virtual ZN commitment scheme, where N
is some appropriate integer in connection with the message space of the cryp-
tosystem. This works by simply computing with the contents of the commitment
schemes modulo N . However, some care must be taken not to accidentally leak
information.

In the proof above, we picked the challenges t1, . . . , tn, λ, x, e from the mes-
sage space MK . When the message space is small, such as Zq, where q is a 160-bit
prime this is reasonable enough. However, when the message space is large we
can make the protocol more efficient by picking the challenges from some suit-
able small subset of MK , say for instance {0, . . . , 2t − 1} where t is a secondary
security parameter of, say, 160 bits.

Finally, we mention that if we have several lists of ciphertexts that we need
to shuffle according to the same permutation π, then we do not have to pay much
extra for each additional π-shuffle. Almost all of the protocol can be reused.
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