
Strong Key-Insulated Signature Schemes

Yevgeniy Dodis1, Jonathan Katz2 �, Shouhuai Xu3, and Moti Yung4

1 Department of Computer Science, New York University, USA
dodis@cs.nyu.edu

2 Department of Computer Science, University of Maryland (College Park), USA
jkatz@cs.umd.edu

3 Department of Information and Computer Science
University of California at Irvine, USA

shxu@ics.uci.edu
4 Department of Computer Science, Columbia University, USA

moti@cs.columbia.edu

Abstract. Signature computation is frequently performed on insecure
devices — e.g., mobile phones — operating in an environment where
the private (signing) key is likely to be exposed. Strong key-insulated
signature schemes are one way to mitigate the damage done when this
occurs. In the key-insulated model [6], the secret key stored on an in-
secure device is refreshed at discrete time periods via interaction with
a physically-secure device which stores a “master key”. All signing is still
done by the insecure device, and the public key remains fixed throughout
the lifetime of the protocol. In a strong (t, N)-key-insulated scheme, an
adversary who compromises the insecure device and obtains secret keys
for up to t periods is unable to forge signatures for any of the remaining
N−t periods. Furthermore, the physically-secure device (or an adversary
who compromises only this device) is unable to forge signatures for any
time period.
We present here constructions of strong key-insulated signature schemes
based on a variety of assumptions. First, we demonstrate a generic con-
struction of a strong (N − 1, N)-key-insulated signature scheme using
any standard signature scheme. We then give a construction of a strong
(t, N)-signature scheme whose security may be based on the discrete
logarithm assumption in the random oracle model. This construction of-
fers faster signing and verification than the generic construction, at the
expense of O(t) key update time and key length. Finally, we construct
strong (N − 1, N)-key-insulated schemes based on any “trapdoor signa-
ture scheme” (a notion we introduce here); our resulting construction in
fact serves as an identity-based signature scheme as well. This leads to
very efficient solutions based on, e.g., the RSA assumption in the random
oracle model.

1 Introduction

Security of cryptographic primitives typically relies on the assumption that se-
cret keys are kept “perfectly secure”; standard cryptosystems provide no secu-
� Work done in part while at DIMACS.

Y.G. Desmedt (Ed.): PKC 2003, LNCS 2567, pp. 130–144, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Strong Key-Insulated Signature Schemes 131

rity guarantees in case secret keys are ever exposed. In practice, however, the
assumption that keys are never exposed is often unwarranted. In many cases, it
is easier to obtain a secret key from a stolen device (or by otherwise tricking an
unsuspecting user) than to break the computational assumption on which the
security of the system is based. Clearly, methods of effectively dealing with key
exposure are needed.

A recently-proposed method of minimizing the damage caused by secret key
exposures is that of key-insulated cryptography [6]. In this model, physical se-
curity (and hence secrecy of stored data) is guaranteed for a single device that
holds a “master” secret key SK∗ corresponding to a fixed public key PK. Day-
to-day cryptographic operations, however, are performed by an insecure device
which “refreshes” its key periodically by interacting with the secure device. In
a (t,N)-key-insulated cryptosystem (informally) an adversary who compromises
the insecure device and obtains keys for up to t time periods is unable to violate
the security of the cryptosystem for any of the remaining N− t periods; we elab-
orate for the specific case of digital signatures below. In a strong key-insulated
scheme, security is additionally guaranteed with respect to the secure device
itself or compromises thereof; this is vital when the secure device may be un-
trusted. Strong key-insulated public-key encryption schemes have been defined
and constructed recently [6]; here, we provide definitions and constructions for
strong key-insulated signature schemes.

Overview of the model. We review the informal description of the key-
insulated model as given in [6], adapted here for the case of digital signatures.
As in a standard signature scheme, the user begins by registering a single public
key PK; this key will remain fixed for the lifetime of the protocol. A master secret
key SK∗, generated along with PK, is stored on a device which is physically
secure and hence resistant to compromise. All signing, however, is done by the
user on an insecure device for which key exposures may occur. The lifetime of the
protocol is divided into distinct periods 1, . . . , N ; at the beginning of period i,
the user interacts with the secure device to derive a temporary secret key SKi

which will be used by the insecure device to sign messages during that period.
Signatures are labeled with the time period during which they were generated;
thus, signing message M during period i results in signature 〈i, s〉.

As mentioned above, the user’s insecure device is assumed to be vulnerable to
repeated key exposures; specifically, we assume that up to t < N periods can be
compromised. Our goal is to minimize the effect such compromises will have. Of
course, when a key SKi is exposed an adversary will be able to sign messages of
his choice for period i. Our notion of security is that this is the best an adversary
can do. In particular, the adversary will be unable to forge a signature on a new
message for any of the remaining N − t periods. We call a scheme satisfying this
notion (t,N)-key-insulated.

If the physically-secure device is completely trusted, it may generate
(PK,SK∗) itself, keep SK∗, and publish PK on behalf of the user. When the
user requests a key for period i, the device may compute SKi and send it. More
involved methods are needed when the physically-secure device is not trusted



132 Yevgeniy Dodis et al.

by the user. In this, more difficult case (which we consider here), a solution is to
have the user generate (PK,SK), publish PK, and then derive keys SK∗, SK0.
The user then sends SK∗ to the device and stores SK0 himself on the insecure
device. When the user wants to update his key to that of period j (and the user
currently holds the key for period i) the physically-secure device computes and
sends “partial” key SK ′

i,j to the user, who may then compute the “actual” key
SKj using SKi and SK ′

i,j. If designed appropriately, the user’s security may
be guaranteed during all time periods with respect to the device itself. Schemes
meeting this level of security are termed strong. As noted previously [6], strong
key-insulation is essential when a single device serves many different users. Here,
users may trust the device to update their keys but may not want the device to
be able to sign on their behalf.

Clearly, some form of authentication between the user and the physically-
secure device is necessary. Note that if a key K used for this authentication
is stored on the insecure device, an adversary who exposes keys even once ob-
tains K and can then impersonate the user during subsequent key updates (thus
obtaining signing keys for subsequent time periods). As in previous work, how-
ever, we assume that authentication is handled by an underlying protocol (out-
side the scope of this work) which is immune to such attacks. As one possible
example, K might never be stored on the insecure device but will instead be
obtained directly from the user each time authentication is needed (e.g., K may
be a password or a key derived from biometric information).

Our contributions. The initial work on key-insulated cryptosystems [6] fo-
cused primarily on the case of public-key encryption; here, we focus on the com-
plementary case of digital signatures. Adapting a “folklore” result (see [1]), we
first show a generic construction of a strong (N − 1, N)-key-insulated signature
scheme from any standard signature scheme. We then give a more efficient strong
(t,N)-key-insulated signature scheme whose security may be reduced to the dis-
crete logarithm assumption in the random oracle model. This construction offers
faster signing and verification than the generic construction, at the expense of
O(t) key update time and key length. Finally, we construct strong (N − 1, N)-
key-insulated signature schemes based on any “trapdoor signature scheme” (a
term we introduce here); this results in very efficient solutions based on, e.g., the
RSA assumption in the random oracle model. Our construction (which may be
viewed as a generalization of recent independent work [4, 14, 24, 25]) may also
be used as an identity-based signature scheme; we believe this is of independent
interest since no rigorous proofs of security for ID-based signature schemes were
previously known.

Related work. Girault [10] investigates a notion similar to key-insulated dig-
ital signatures in the context of smart-card research. However, this preliminary
work contained no formal model or proofs of security. Key-insulated public-
key encryption was considered by Tzeng and Tzeng [30] and also by Lu and
Shieh [19], but these works only consider security against a weak, non-adaptive
adversary. Key-insulated public-key encryption was first formally defined in [6],
and schemes with rigorous proofs of security are given there.



Strong Key-Insulated Signature Schemes 133

Somewhat related to key insulation is the problem of signature delega-
tion [11]. In this model, a user wants to delegate use of a signing key in a par-
ticular way. For example (to place it in our setting), a user may delegate the
right to sign messages for a single day. Here, one seeks to prevent exposure of
the “master” signing key when a small number of delegated keys are exposed.
On the other hand, to prevent excessive delegation it is required that exposure
of many delegated keys completely reveals the master key. The key-insulated
model makes no such requirement, and this allows for greater efficiency and flex-
ibility. We also note that the existing practical delegation schemes [11] are not
provably-secure against an adaptive adversary who chooses which keys to ex-
pose at any point during its execution. Finally, our strong schemes also protect
against forgeries by the physically-secure device itself; this has no counterpart
in the context of signature delegation.

Besides the key-insulated model, many alternate approaches have been pro-
posed to address the risks associated with key exposure. The first such example
is that of forward security [2, 3]. In this model no external device is present, and
the entire secret key is stored on — and updated by — the insecure device itself.
Clearly, any exposure now compromises all future time periods; forward-secure
signature schemes, however, prevent compromise of prior time periods. A con-
sequence of this model (which is not present in our model) is that even the valid
user is unable to recover keys for prior time periods once the appropriate secret
key has been erased.

More recently — and subsequent to the present work — the key-insulated
model has been extended and strengthened to yield the notion of intrusion-
resilience [16]. This model adds to our notion a proactive refresh capability which
may be performed more frequently than key updates; hence, intrusion-resilient
schemes can tolerate multiple corruptions of both the user and the physically
secure device (called the “home base”) while maintaining security of the scheme
for all time periods during which the user’s device remained uncorrupted. Fur-
thermore, if both user and home base are corrupted simultaneously, the scheme
remains secure for all prior time periods (as in forward-secure schemes).

Each of these models may be appropriate for use in different contexts.
Forward-secure schemes are advantageous in that the user need not interact
with any other device. On the other hand, when interaction with such a device
may be assumed, key-insulated and intrusion-resilient schemes provide a stronger
level of security. Finally, although intrusion-resilience represents a stronger level
of security than key-insulation, the assumption of physically-secure storage con-
fers other benefits in the key-insulated model. For example, the key-insulated
model enables the honest user to request “old” keys thereby allowing, e.g., the
signing of documents for prior time periods when needed. This is impossible in
the forward-secure or intrusion-resilient settings. Also, known intrusion-resilient
schemes [16, 15] are (thus far) less efficient than the key-insulated schemes pre-
sented here, suggesting that one use the latter when physical security of the
“home base” can be guaranteed.



134 Yevgeniy Dodis et al.

Independent of the present work, we have become aware of related work in
the context of re-keyed digital signatures [1]. Recasting this work in our model,
one may observe that they construct (N−1, N)-key-insulated signature schemes
based on either (1) generic signature schemes or (2) the factoring assumption.
Their generic construction is essentially identical to ours except that we addi-
tionally ensure that our scheme is strong key-insulated. Our discrete logarithm
scheme has no counterpart in [1]. Our scheme based on trapdoor signatures and
specialized for RSA may be viewed as the “Guillou-Quisquater” [13] analogue to
their “Ong-Schnorr” [23] factoring-based scheme, where again we additionally
ensure strong security of our construction. The notion of random access to keys
is unique to our treatment.

Finally, we mention that an identity-based signature scheme [28] immediately
gives an (N − 1, N)-key-insulated signature scheme (ensuring strong security
requires some additional work). However, we are not aware of any previous formal
definitions or proofs of security for identity-based signature schemes. Our proof
of security for the construction of Section 5 (which is based on earlier work [28])
may be easily adapted to show that this construction is in fact an identity-based
signature scheme as well.

2 The Model

For completeness, we provide a formal definition of key-insulated signature
schemes and their security (based on [6]). We begin with the definition of a key-
updating signature scheme, which generalizes the notion of a key-evolving signa-
ture scheme [3]. In a key-updating signature scheme there is some data (namely,
SK∗) that is never erased; this data will be stored on a physically-secure device
and hence is never exposed.

Definition 1. A key-updating signature scheme is a 5-tuple of poly-time algo-
rithms (Gen,Upd∗,Upd, Sign,Vrfy) such that:
– Gen, the key generation algorithm, is a probabilistic algorithm taking as input

a security parameter 1k and the total number of time periods N . It returns
a public key PK, a master key SK∗, and an initial key SK0.

– Upd∗, the device key-update algorithm, is a probabilistic algorithm taking as
input indices i, j for time periods (throughout, we assume 1 ≤ i, j ≤ N) and
the master key SK∗. It returns a partial secret key SK ′

i,j.
– Upd, the user key-update algorithm, is a deterministic algorithm taking as

input indices i, j, a secret key SKi, and a partial secret key SK ′
i,j. It returns

the secret key SKj for time period j.
– Sign, the signing algorithm, is a probabilistic algorithm taking as input an

index i of a time period, a message M , and a secret key SKi. SignSKi
(i,M)

returns a signature 〈i, s〉 consisting of the time period i and a signature s.
– Vrfy, the verification algorithm, is a deterministic algorithm taking as input

the public key PK, a message M , and a pair 〈i, s〉. VrfyPK(M, 〈i, s〉) returns
a bit b, where b = 1 means the signature is accepted.



Strong Key-Insulated Signature Schemes 135

If VrfyPK(M, 〈i, s〉) = 1, we say that 〈i, s〉 is a valid signature of M for period i.
We require that all signatures output by SignSKi

(i,M) are accepted as valid by
Vrfy.

In a key-updating signature scheme, a user begins by generating
(PK,SK∗, SK0) ← Gen(1k, N), registering PK in a central location (just as
he would for a standard public-key scheme), storing SK∗ on a physically-secure
device, and storing SK0 himself. When the user — who currently holds SKi —
wants to obtain SKj , the user requests SK ′

i,j ← Upd∗(i, j, SK∗) from the secure
device. Using SKi and SK ′

i,j, the user computes SKj = Upd(i, j, SKi, SK
′
i,j);

this key may be then used to sign messages during time period j without further
access to the device. After computation of SKj, the user erases SKi and SK ′

i,j .
Note that verification is always performed with respect to a fixed public key PK
which is never changed.
Remark 1. The above definition corresponds to schemes supporting random-
access key updates [6]; that is, schemes in which one can update SKi to SKj

in one “step” for any i, j. A weaker definition allows j = i+1 only. All schemes
presented in this paper support random-access key updates.

Basic key insulation. The adversary we consider is extremely powerful: (1) it
may request signatures on messages of its choice during time periods of its choice,
adaptively and in any order (i.e., we do not restrict the adversary to making its
queries in chronological order); (2) it may expose the secrets contained on the
insecure device for up to t adaptively-chosen time periods (alternately, it may
choose to expose the secrets stored on the physically-secure device); and (3) it
can compromise the insecure device during a key-update phase, thus obtaining
partial keys in addition to full-fledged secret keys. The adversary is considered
successful if it can forge a valid signature 〈i, s〉 on message M such that the
adversary never requested a signature on M for period i and furthermore the
adversary never exposed the insecure device at time period i.

We model each of these attacks by defining appropriate oracles to which the
adversary is given access. To model key exposures, we define a key exposure
oracle ExpSK∗,SK0

(·) that does the following on input i: (1) The oracle first
checks whether period i has been “activated”; if so, the oracle returns the value
already stored for SKi. Otherwise, (2) the oracle runs SK ′

i ← Upd∗(0, i, SK∗)
followed by SKi = Upd(0, i, SK0, SK

′
i), returns and stores the value SKi, and

labels period i as “activated”. We also give the adversary access to a signing
oracle SignSK∗,SK0

(·, ·) that does the following on input i,M : (1) The oracle
first checks whether period i has been “activated”; if so, the oracle returns
SignSKi

(i,M) (where a value for SKi is already stored). Otherwise, (2) the or-
acle runs SK ′

i ← Upd∗(0, i, SK∗) followed by SKi = Upd(0, i, SK0, SK
′
i), stores

SKi, returns SignSKi
(i,M), and labels period i as “activated”.

Remark 2. Storing the values of the secret keys for “activated” periods is
only necessary when Upd∗ is probabilistic; when it is deterministic, the ora-
cle may simply run Upd∗ “from scratch” whenever needed to answer an ora-
cle query. To be fully general, one could allow the adversary to access a “re-
issuing oracle” which on input i re-computes the secret key SKi via SKi ←



136 Yevgeniy Dodis et al.

Upd(0, i, SK0,Upd∗(0, i, SK∗)). The schemes presented here all remain secure
under a more complex definition of this form.

Definition 2. Let Π be a key-updating signature scheme and fix t. For any
adversary A, we may perform the following experiment:

(PK,SK∗, SK0)←Gen(1k, N); (M, 〈i, s〉)←ASignSK∗,SK0
(·,·),ExpSK∗,SK0

(·)(PK).

We say that A succeeds if VrfyPK(M, 〈i, s〉) = 1, (i,M) was never submitted to
the signing oracle, i was never submitted to the key exposure oracle, and A made
at most t calls to the key-exposure oracle. Denote the probability of A’s success by
SuccA,Π(k). We say that Π is (t,N)-key-insulated if for any ppt A, SuccA,Π(k)
is negligible. We say Π is perfectly key-insulated if Π is (N−1, N)-key-insulated.

We remark that we allow the adversary to interleave signing requests and key
exposure requests, and in particular the key exposure requests of the adver-
sary may be made adaptively (based on the entire transcript of the adversary’s
execution) and in any order.

Secure key updates. For the purposes of meeting Definition 2, we could let
SK ′

i,j = SK∗ for all i, j; the user could then run Upd∗ and Upd by himself to
derive SKi (and then erase SK∗). Of course, one reason for not doing so is
the realistic concern that an adversary who gains access to the insecure device
is likely to have access for several consecutive time periods (i.e., until the user
detects or re-boots) including the key update steps. In this case, an adversary
attacking the scheme above would obtain SK∗ and we would not be able to
achieve even (1, N)-key-insulated security.

To address this problem, we consider attacks in which an adversary com-
promises the user’s storage while a key is being updated from SKi to SKj; we
call this a key-update exposure at (i, j). When this occurs, the adversary receives
SKi, SK

′
i,j, and SKj (actually, the latter can be computed from the former).

We say a scheme has secure key updates if a key-update exposure at (i, j) is of
no more help to the adversary than key exposures at both periods i and j. More
formally:

Definition 3. A key-updating signature scheme Π has secure key updates if the
view of any adversary A making a key-update exposure at (i, j) can be perfectly
simulated by an adversary A′ making key exposure requests at periods i and j.

Strong key insulation. Finally, we address attacks that compromise the
physically-secure device (this includes attacks by the device itself, in case it is
untrusted). Our definition is similar to Definition 2 except that instead of having
access to the key exposure oracle, the adversary is simply given the master key
SK∗. Schemes which are secure in this sense — and also (t,N)-key-insulated —
are termed strong (t,N)-key-insulated. We do not protect against adversaries
who compromise both the physically-secure device and the user’s storage; in our
model, this is impossible to achieve. (Intrusion-resilient schemes [16] partially
protect against such attacks by allowing the insecure device to interact with the
secure device even when not updating its key.)



Strong Key-Insulated Signature Schemes 137

Definition 4. Let Π = (Gen,Upd,Upd∗, Sign,Vrfy) be a signature scheme which
is (t,N)-key-insulated. For adversary B, we perform the following experiment:

(PK,SK∗, SK0)← Gen(1k, N); (M, 〈i, s〉)← BSignSK∗,SK0
(·,·)(PK,SK∗).

We say that B succeeds if VrfyPK(M, 〈i, s〉) = 1 and (i,M) was never submitted
to the signing oracle. Denote the probability of B’s success by SuccB,Π(k). We say
that Π is strong (t,N)-key-insulated if for any ppt B, SuccB,Π(k) is negligible.

3 Generic, Perfectly Key-Insulated Signature Scheme

We demonstrate a perfectly key-insulated signature scheme that can be con-
structed from any existentially unforgable (standard) signature scheme Θ =
(G,S, V ). Rather than repeating the standard definition of security, we may
view Θ as as (0, 1)-key-insulated scheme in the natural way. Thus, our construc-
tion can be viewed as amplifying a (0, 1)-key-insulated scheme to a perfectly
key-insulated scheme for larger N . We later show how to achieve strong key
insulation with minimal additional cost.

The basic construction achieving perfect (N−1, N)-key-insulation is folklore.
Gen generates a pair of keys (PK,SK∗) ← G(1k), sets the public key to PK,
sets SK0 =⊥, and stores SK∗ on the physically-secure device. At the beginning
of time period i, the device generates a fresh pair of keys (pki, ski)← G(1k) and
certifies pki for time period i by signing it as follows: certi = (pki, SSK∗(pki‖i)).
It then sets SKi = 〈ski, certi〉 and sends SKi to the user, who erases the previous
key. The user signs a message M at time period i by using the “temporary” key
ski and appending the certificate certi; that is, SignSKi

(i,M) = 〈i, σ, certi〉,
where σ ← Sski(M). To verify, one first verifies correctness of the cerificate and
then uses the period verification key pki to verify the signature σ, accepting only
if both are valid. We remark that it is crucial to sign the time period i along
with pki since this prevents an adversary from re-using the same certificate at
a different time.

Signing requires computation equivalent to the original (basic) signature
scheme, while the cost of signature verification is increased by a factor of two. In
practice, verifying the validity of certi need only be done once per period when
multiple signatures are verified. Security of the scheme is given by the following
lemma.

Lemma 1. If Θ is existentially unforgeable under a chosen message attack, then
Π as described is (N − 1, N)-key-insulated. Furthermore, Π has secure key up-
dates.

Proof. That Π has secure key updates is trivial. We therefore focus on the proof
of perfect key insulation. Let A attack Π . A forgery occurs when the adversary
forges a valid signature 〈i, σ, (pk, τ)〉 of some message M at time period i such
that: (1) τ is a vaild signature of (pk‖i) w.r.t. PK; (2) σ is a valid signature
of M w.r.t. pk; (3) period i was not exposed; and (4) (i,M) was not submitted
to the signing oracle.



138 Yevgeniy Dodis et al.

Denote the event of a forgery by F. Wlog, we assume that the period i is
“activated” (cf. Section 2), so that the value of pki is well defined. We let Eq be
the event that pk = pki. Clearly, Pr(F) = Pr(F ∧ Eq) + Pr(F ∧ Eq).

Case 1: In case events F and Eq both occur then pk = pki. Assume that A makes
at most q(k) = poly(k) queries to the signing oracle overall. We construct A′

attacking Θ as follows: A′ has as input a verification key pk′ for which it does not
know the corresponding secret key sk′, and also has oracle access to the signing
oracle Ssk′(·). A′ chooses a random index r ∈ {1, . . . , q(k)}, generates a random
key pair (PK,SK∗) ← G(1k), and runs A on input PK. Let i∗ be the period
for which the rth signing query of A was made. If a previous signing query was
made for that same period i∗, the experiment is aborted. Otherwise, adversaryA′

implicitly uses (pk′, sk′) to respond to the query by making use of its signing
oracle Ssk′(·). For signature queries r + 1, . . . , q(k), if A requests a signature
for period i∗ the signature is computed using Ssk′(·). Additionally, if A ever
makes a key exposure query for period i∗, the experiment is aborted. All other
oracle queries are answered by A′ in the expected manner; namely, by generating
fresh temporary keys and using the corresponding secret keys to answer signing
and key exposure requests. If the final output of A is (M, 〈i, σ, (pk, τ)〉) and the
experiment was never aborted, then A′ simply outputs (M,σ).

With probability at least 1/q(k), the experiment is not aborted and i∗ = i
(recall, i is the period for which a forgery is made). The success probability of A′

in forging a signature for Θ is thus at least Pr[F ∧ Eq]/q(k). By the assumed
security of Θ, this quantity must be negligible. Since q(k) is polynomial in k, it
must be that Pr[F ∧ Eq] is negligible as well.

Case 2: In case events F and Eq both occur, then either period i is not “acti-
vated” or else pk = pki. We construct A′ attacking Θ as follows: A′ has as input
a verification key pk′ for which it does not know the corresponding secret key
sk′, and has access to a signing oracle Ssk′(·). A′ sets PK = pk′ and implic-
itly sets the master key SK∗ = sk′. A′ then simulates the entire run of A by
generating (on its own) all the temporary keys as needed, and using its sign-
ing oracle Ssk′(·) to produce the needed certificates. If the final output of A is
(M, 〈i, σ, (pk, τ)〉) then A′ simply outputs (pk‖i, τ). The success probability of A′

in forging a signature for Θ is then exactly Pr[F ∧ Eq]. By the assumed security
of Θ, this quantity is negligible. ��

Achieving strong key insulation. The above construction is extensively
used in practice. However, the scheme assumes a fully-trusted device on which
to store SK∗ since, as described, the device can sign messages without the user’s
consent. We now present a simple method to achieve strong security for any key-
insulated scheme (i.e., not just the folklore scheme above).

Let Π = (Gen,Upd∗,Upd, Sign,Vrfy) be a (t,N)-key-insulated signature
scheme and let Θ = (G,S, V ) be a standard signature scheme. We construct
a scheme Π ′ as follows. Gen′(1k) runs (PK,SK∗, SK0) ← Gen(1k, N) fol-
lowed by (pk, sk) ← G(1k). It sets PK ′ = (PK, pk), SK∗′ = SK∗ and
SK ′

0 = (SK0, sk). In other words, the user get “his own” signing key sk. The



Strong Key-Insulated Signature Schemes 139

key updating algorithms are modified in the expected way, so that at all times
the user stores a key of the form (SKi, sk). When signing, the user computes
both the signature of M w.r.t. Π and the signature of (M‖i) w.r.t. S. For-
mally, Sign′(SKi,sk)(i,M) = 〈SignSKi

(i,M), Ssk(M‖i)〉. To verify, simply check
the validity of both signatures.

The modified scheme is obviously (t,N)-key-insulated as before (a formal
proof is immediate). Strong security also follows as long as Θ is secure, since
an adversary who has only the master key SK∗ can never forge a signature on
a “new” message (M‖i) with respect to Θ. We remark that it is crucial that the
period i be signed along with M using sk. To summarize:

Lemma 2. If Π is (t,N)-key-insulated and Θ is existentially unforgeable, then
Π ′ as described is strong (t,N)-key-insulated.

4 (t, N)-Key Insulation under the DLA

While the scheme of the previous section is asymptotically optimal in all pa-
rameters, in practice one might hope for more efficient solutions, especially for
strong security. In particular, one might hope to avoid the doubling (tripling) of
signature/verification time and also to reduce the length of a signature. In the
following sections, we provide schemes based on specific assumptions in which
signing and verifying require only a single application of the signing/verification
algorithm of the underlying scheme. The signature length will also be essentially
the same as that of the underlying scheme.

In this section, we present a (t,N)-key-insulated scheme which may be proven
secure under the discrete logarithm assumption. Unfortunately, the lengths of
the public key and the master key grow linearly with t (yet they are independent
of N). Thus, while practical for small values of t, it does not completely solve
the problem for t ≈ N . We defer such a solution to the following section.

Our scheme builds on the Okamoto-Schnorr signature scheme [22, 26] which
we review here. Let p, q be primes such that p = 2q + 1 and let G be the
subgroup of Z

∗
p of order q. Fix generators g, h ∈ G. A public key is generated by

choosing x, y ∈R Zq and setting v = gxhy. To sign message M , a user chooses
random r1, r2 ∈ Zq and computes w = gr1hr2 . Using a hash function H (modeled
as a random oracle), the user then computes t = H(M,w), where t is interpreted
as an element of Zq. The signature is: (w, r1 − tx, r2 − ty). A signature (w, a, b)
on message M is verified by computing t = H(M,w) and then checking that
w

?= gahbvt. It can be shown [22, 21] that signature forgery is equivalent to
computing logg h.

Our construction achieving strong (t,N)-key-insulated security appears in
Figure 1. We stress that the scheme achieves strong security without additional
modifications, yet the time required for signing and verifying is essentially the
same as in the basic Okamoto-Schnorr scheme. Furthermore, using two genera-
tors enables a proof of security for an adaptive adversary who can choose which
time periods to expose at any point during its execution. A proof of the following
theorem appears in the full version of this paper.



140 Yevgeniy Dodis et al.

Gen(1k, N):
x∗

0, y
∗
0 , . . . , x∗

t , y
∗
t ← Zq

v∗
i = gx∗

i hy∗
i , for i = 0, . . . , t

SK∗ = (x∗
1, y

∗
1 , . . . , x∗

� , y∗
� );SK0 = (x∗

0, y
∗
0)

PK = (g, h, v∗
0 , . . . , v∗

� )
return (PK, SK∗, SK0)

Upd∗(i, j, (x∗
1, y

∗
1 , . . . , x∗

� , y∗
� )) :

x′
i,j =

∑t
k=1 x∗

k(j
k − ik)

y′
i,j =

∑t
k=1 y∗

k(j
k − ik)

return SK′
i,j = (x′

i,j , y
′
i,j)

Upd(i, j, (xi, yi), (x
′
i,j , y

′
i,j)) :

xj = xi + x′
i,j

yj = yi + y′
i,j

return SKj = (xj, yj)

Sign(xi,yi)
(i, M) :

r1, r2 ← Zq

w = gr1hr2

τ = H(i,M, w)
a = r1 − τxi; b = r2 − τyi

return 〈i, (w, a, b)〉

Vrfy(v∗
0 ,...,v∗

�
)(M, 〈i, (w, a, b)〉) :

vi = Πt
k=0(v

∗
i )

ik

τ = H(i, M, w)
if w = gahbvτ

i return 1
else return 0

Fig. 1. A strong (t,N)-key-insulated signature scheme

Theorem 1. Under the discrete logarithm assumption, the scheme of Figure 1
is strong (t,N)-key-insulated and has secure key updates in the random oracle
model.

5 Perfectly Key-Insulated Signature Schemes

We now construct a strong, perfectly key-insulated scheme whose security (in the
random oracle model) is based on what we call trapdoor signatures. This scheme
is more efficient than the generic signature scheme presented in Section 3, and
results in a variety of specific perfectly key-insulated signatures; e.g., an efficient
perfectly key-insulated scheme based on ordinary RSA (in the random oracle
model).

Informally, we say that signature scheme Θ = (G,S, V ) is a trapdoor sig-
nature scheme if the following hold: (1) Key generation consists of selecting
a permutation (f, f−1) from some family of trapdoor permutations, choosing
random y, and computing x = f−1(y); and (2) the public key is 〈f, y〉 and the
private key is x. It is essential that it is not necessary to include f−1 as part of
the private key.

Given any trapdoor signature scheme, we construct a perfectly key-insulated
signature scheme Π as follows (methods for achieving strong security are dis-
cussed below): Gen chooses trapdoor permutation (f, f−1) and publishes PK =
〈f,H〉 for some hash function H (which will be treated as a random oracle in
our analysis). The long-term secret key is SK∗ = f−1. The key SKi for time
period i is computed as SKi = f−1(H(i)), and a signature on message M during
period i is computed (using the basic scheme) via σ ← SSKi(M). Verification of



Strong Key-Insulated Signature Schemes 141

signature 〈i,M〉 is done using the basic verification algorithm and “period public
key” PKi

def= 〈f,H(i)〉. The security of this scheme is given by the following:

Theorem 2. If Θ is a secure trapdoor signature scheme, then Π (as constructed
above) is perfectly key-insulated and has secure key updates.

Proof. That Π has secure key updates is obvious. Given an adversary A at-
tacking the security of Π , we construct an adversary B attacking the security
of Θ. Adversary B is given public key 〈f, y〉 for an instance of Θ as well as
access to a signing oracle Sx(·). Assume that A makes q(k) = poly(k) queries
to hash function H(·). Adversary B chooses a random index i ∈ {1, . . . , q(k)}
and runs A on input PK = f . We assume without loss of generality that for
any index I, A queries H(I) before querying Exp(I) or Sign(I, ∗) and also be-
fore outputting a forgery of the form (M, 〈I, σ〉); if not, we can have B perform
these queries on its own. To answer the jth query of A to H(·) for j = i, B
chooses a random xj , computes yj = f(xj), and returns yj. To answer the ith

query of A to H(·), B simply returns y. Let I1, . . . , Iq(k) represent the queries
of A to H(·). Note that B can answer honestly all oracle queries of the form
Sign(Ij , ∗) for 1 ≤ j ≤ q(k): when j = i then B has the necessary secret key and
when j = i then B can make use of its own signing oracle to answer the query.
Furthermore, B can answer honestly all oracle queries of the form Exp(Ij) as
long as j = i; on the other hand, B aborts the simulation if the query Exp(Ii)
is ever asked. When A outputs a forgery (M, 〈Ij , σ〉), if j = i then B aborts;
otherwise, B outputs forgery (M,σ). Note that the probability that B does not
abort is exactly 1/q(k) and therefore Pr[SuccB,Θ] = 1/q(k) · Pr[SuccA,Π ]. Since
this quantity must be negligible, the success probability of A must be negligible
as well. ��

This conversion of Θ to a perfectly key-insulated scheme is quite efficient.
The length of PK is roughly equal to the length of the public key in Θ, and
temporary keys SKi require as much storage as secret keys in the original scheme.
Signing and verifying times in Π are essentially identical to those in Θ. As
for concrete instantiations of Θ, the Guillou-Quisquater scheme [13] provides
a trapdoor signature scheme based on the RSA assumption (in the random
oracle model). However, a number of additional schemes satisfy this requirement
as well (e.g., [8, 20, 23, 29, 27]). Thus our technique is quite flexible and allows
for adaptation of a number of standard (and previously analyzed) schemes.

We also note that the loss of a factor q(k) = qhash (where this represents
the number of hash queries) in the concrete security reduction above can be
improved for schemes based on specific trapdoor permutations. In particular,
when the trapdoor permutation is induced by a claw-free permutation (see [7]
for a definition) and Θ is constructed via the Fiat-Shamir transform [8] (i.e.,
the signature corresponds to a proof of knowledge of f−1(y)), we can obtain
a security bound losing only a factor O(qexp), where qexp denotes the number of
key exposures. In particular, we can achieve this tighter security reduction for
the RSA-based Guillou-Quisquater scheme mentioned above.



142 Yevgeniy Dodis et al.

Achieving strong security. Strong security for any scheme following the
above construction can be achieved immediately using the “generic” conversion
outlined in Section 3 and proven secure in Lemma 2. This increases the cost of
signature computation and verification. For specific schemes, however, we can
often do better: in particular, when computation of f−1 can be done in a 2-
out-of-2 threshold manner by the user and the device. As an example, for the
RSA-based scheme in which fN,e(x)

def= xe mod N and f−1
N,d(y)

def= yd mod N (for
ed = 1 mod ϕ(N)), the user and the device can share d additively using standard
threshold techniques (e.g., [9]). Here, the user stores (at all times) d1 and the
physically-secure device stores d2 such that d1 + d2 = d mod ϕ(N). To compute
the key SKi for period i, the device sends xi,2 = H(i)d2 to the user who then
computes SKi = xi,2 ·H(i)d1 = H(i)d. We note that similar threshold techniques
are available for computing f−1 in 2t-root signature schemes [18], showing that
the scheme based on Ong-Schnorr signatures can be efficiently made strong as
well.

6 Relation to Identity-Based Signature Schemes

An ID-based signature scheme [28] allows a trusted center to publish a system-
wide public key PK while keeping secret a “master” key SK∗, and to then use
SK∗ to extract signing keys SKI corresponding to any identity I. The security
of ID-based signatures roughly states that no coalition of users can sign on behalf
of any other user. By identifying time periods with identities, we see that any
ID-based signature scheme yields a perfectly (but not necessarily strong) key-
insulated signature scheme. Although the converse does not necessarily hold, we
note that our construction of the previous section does yield an identity-based
signature scheme as well. Indeed, when our construction is instantiated with the
Guillou-Quisquater scheme, the resulting scheme is essentially equivalent to the
original ID-based signature scheme of Shamir [28]. We mention, however, that
prior to our work no formal proofs of security for any identity-based signature
scheme have appeared. We believe that it is extremely important to provide
such formal treatment due to the practical relevance of both ID-based and key-
insulated signatures.

We also remark that very recently (and independently from this work) several
proposals [25, 24, 4, 14] for ID-based signatures have been given. (Among these,
only [4] provides formal definitions and analysis; indeed, one of the schemes
of [14] was recently broken [5].) Interestingly, they all can be viewed as applying
our methodology above to various trapdoor signature schemes using the same
function f−1. Roughly, the corresponding function (considered in a “gap Diffie-
Hellman” group; see [17]) has the form f−1

g,ga(gb) = gab. This (inverse) function
can be efficiently computed given the trapdoor a. Even though f itself is not
efficiently computable given only g, ga, one can easily see that all we need in
Theorem 2 is to efficiently sample random pairs of the form (gb, gab) (in order
to respond to the random oracle queries), which is easy to do for the above f .



Strong Key-Insulated Signature Schemes 143

Thus, our approach encompasses a variety of proposed schemes, and almost
immediately yields a simple proof of security in each case.

We note that these proposals for ID-based schemes in gap Diffie-Hellman
groups may be efficiently converted to strong key-insulated schemes. In partic-
ular, they can be made strong by randomly splitting a = a1 + a2 and noticing
that f−1

g,ga(H(i)) = (H(i))a = (H(i))a1(H(i))a2 , so that the device can compute
(H(i))a2 and the user can then multiply it by (H(i))a1 to get the key for the
current period.

References

[1] M. Abdalla and M. Bellare. Rekeyed Digital Signature Schemes: Damage-
Containment in the Face of Key Exposure. Manuscript. July, 2001. 132, 134

[2] R. Anderson. Invited lecture, CCCS ’97. 133
[3] M. Bellare and S.K. Miner. A Forward-Secure Digital Signature Scheme. Crypto

’99. 133, 134
[4] J. Cha and J. Cheon. An Identity-based Signature Scheme from Gap Diffie-

Hellman Groups. Available at http://eprint.iacr.org/2002/018/. 132, 142
[5] J. Cheon. A Universal Forgery of Hess’s Second ID-based Signature against the

Known-message Attack. Available at http://eprint.iacr.org/2002/028/. 142
[6] Y. Dodis, J. Katz, S. Xu and M. Yung. Key-Insulated Public-Key Cryptosystems.

Eurocrypt 2002. 130, 131, 132, 134, 135
[7] Y. Dodis and L. Reyzin. On the Power of Claw-Free Permutations. SCN 2002.

141
[8] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification

and Signature Problems. Crypto ’86. 141
[9] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and Efficient Sharing

of RSA Functions. J. Crypto 13(2): 273–300 (2000). 142
[10] M. Girault. Relaxing Tamper-Resistance Requirements for Smart Cards Using

(Auto)-Proxy Signatures. CARDIS ’98. 132
[11] O. Goldreich, B. Pfitzmann, and R. L. Rivest. Self-Delegation with Controlled

Propagation — or — What if You Lose Your Laptop? Crypto ’98. 133
[12] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure

Against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308
(1988).

[13] L.C. Guillou and J.-J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessors Minimizing Both Transmission and Memory. Eurocrypt
’88. 134, 141

[14] F. Hess. Exponent Group Signature Schemes and Efficient Identity Based Sig-
nature Schemes Based on Pairings. Available at http://eprint.iacr.org/

2002/012/. 132, 142
[15] G. Itkis. Intrusion-Resilient Signatures: Generic Constructions, or Defeating

Strong Adversary with Minimal Assumptions. SCN 2002. 133
[16] G. Itkis and L. Reyzin. SiBIR: Signer-Base Intrusion-Resilient Signatures. Crypto

2002. 133, 136
[17] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman

in Cryptographic Groups. Available at http://eprint.iacr.org/2001/003/. 142
[18] J. Katz and M. Yung. Threshold Crytptosystems Based on Factoring. Asiacrypt

2002. 142



144 Yevgeniy Dodis et al.

[19] C.-F. Lu and S.W. Shieh. Secure Key-Evolving Protocols for Discrete Logarithm
Schemes. RSA 2002. 132

[20] S. Micali. A Secure and Efficient Digital Signature Algorithm. Technical Report
MIT/LCS/TM-501, MIT, 1994. 141

[21] K. Ohta and T. Okamoto. On Concrete Security Treatment of Signatures Derived
from Identification. Crypto ’98. 139

[22] T. Okamoto. Provably Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes. Crypto ’92. 139

[23] H. Ong and C. Schnorr. Fast Signature Generation with a Fiat-Shamir-Like
Scheme. Eurocrypt ’90. 134, 141

[24] K. Paterson. ID-based Signatures from Pairings on Elliptic Curves. Available at
http://eprint.iacr.org/2002/004/. 132, 142

[25] R. Sakai, K. Ohgishi, M. Kasahara. Cryptosystems based on pairing. SCIC 2001.
132, 142

[26] C. P. Schnorr. Efficient Signature Generation by Smart Cards. J. Crypto 4(3):
161–174 (1991). 139

[27] C. P. Schnorr. Security of 2t-root Identification and Signatures. Crypto ’96. 141
[28] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. Crypto ’84.

134, 142
[29] V. Shoup. On the Security of a Practical Identification Scheme. J. Crypto 12(4):

247–160 (1999). 141
[30] W.-G. Tzeng and Z.-J. Tzeng. Robust Key-Evolving Public Key Encryption

Schemes. Available at http://eprint.iacr.org/2001/009/. 132


	Strong Key-Insulated Signature Schemes
	Introduction
	Overview of the model
	Our contributions
	Related work

	The Model
	Basic key insulation
	Secure key updates
	Strong key insulation

	Generic, Perfectly Key-Insulated Signature Scheme
	(t, N)-Key Insulation under the DLA
	Perfectly Key-Insulated Signature Schemes
	Relation to Identity-Based Signature Schemes
	References


