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Abstract. Commercially available routers typically have a monolithic
operating system that cannot be easily tailored and upgraded and support new
network protocols. PromethOS is a modular router architecture based on Linux
2.4 which can be dynamically extended by plugin modules that are installed in
the networking kernel. To install and configure plugins we present a novel
signaling protocol that establishes explicitly routed paths transiting selected
nodes in a predefined order. Such paths can be non-simple, where a given node
is being visited more than once.

Keywords: Active networking, extensible router architecture, explicit path
routing, service deployment

1 Introduction

In the past, the functionality of routers was very limited, namely forwarding packets
based on the destination address. Recently, new network protocols and extensions to
existing protocols have been proposed and are being deployed, requiring new
functionality in modern routers at an increasingly rapid pace. However, present day
commercially available routers typically employ a monolithic architecture which is
not easily upgradable and extensible to keep up with new innovations.
This paper presents the design and implementation of PromethOS1, an innovative
router architecture with a modular design that can be extended to support new and
dynamically deployed protocols. The specific objectives of this architecture are as
follows:

•  Modularity. The router architecture is designed in a modular fashion with
components coming in form of plugins which are modules that are dynamically
loaded into the kernel and have full kernel access without crossing address
spaces.

                                                          
1PromethOS originates from Prometheus who was the wisest Titan according to the
Greek mythology. His name means �forethought� and he was able to foretell the
future. The project was initially codenamed COBRA.
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•  Flexibility. For each plugin class, multiple plugin instances can be created.
Different configurations of the same plugin can co-exist simultaneously in the
kernel, with plugin instances sharing the same code but operating on their own
data.

•  Packet classification. By defining filters, incoming data packets are classified
to belong to a data flow and by binding a plugin instance to such a flow, all
matching packets will be processed by the corresponding plugin instance.

•  Performance. An efficient data path is guaranteed by implementing the
complete data path in kernel, preventing costly context switches.

•  Code Deployment. Efficient mechanisms exist to retrieve plugins from remote
code servers, install and configure them, and to setup network wide paths such
that traffic transits these plugins as desired by the application.

•  Integration in Linux. The implementation needs only minimal changes to the
existing Linux source code and can easily be integrated into newer releases.

We have implemented our framework based on the Linux 2.4 kernel. We have
selected this platform because of its portability, freely available source code,
extensive documentation, and wide-spread use as a state-of-the-art experimental
platform by other research groups. Due to its modularity and extensibility, we are
convinced that our proposed framework makes it a useful tool for researchers in the
field of programmable router architectures and protocol design. All our code is
released in the public domain and can be retrieved from our website [19].
The main contributions of this paper are as follows:

•  Design and implementation of a modular and extensible node architecture that
allows code modules to be dynamically loaded into the networking subsystem
at runtime.

•  Design and implementation of a novel signaling protocol to establish explicitly
routed paths through the network and the installation and configuration of
plugins along such paths.

In the remainder of this paper, we discuss the design and implementation of our
framework. In Section 2, we first focus on a single node, describe the architecture,
and consider how it can be extended by installing plugins into the networking
subsystem. We demonstrate an example use of the PromethOS plugin framework to
give the reader a feel of how the architecture can be used. Section 3 then focuses at
the network scope, discusses how explicitly routed paths can be setup, how plugins
are retrieved from remote code repositories and installed on selected nodes. Section 4
reviews related work and Section 5 concludes this paper.

2 PromethOS Node Architecture

2.1 Architectural Overview

The main objective of our proposed architecture is to build a modular and extensible
networking subsystem that enables to deploy and configure packet processing
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components for specific flows. Figure1 illustrates our dynamically extensible router
architecture.

Figure 1 PromethOS modular and extensible router architecture

The most important components are as follows:
•  Network device drivers implement hardware-specific send and receive

functions. Packets correctly received from an interface enter the IP stack.
•  Netfilter classifies packets according to filter rules at various hooks. Packets

matching a filter are passed to registered kernel modules for further processing.
•  The plugin framework provides an environment for the dynamic loading of

plugin classes, the creation of plugin instances as well as their configuration and
execution.

•  The plugin loader is responsible for requesting plugins from remote code
servers which store plugin classes in a distributed plugin database.

•  The path-based routing protocol is used to setup explicitly routed paths and to
install plugins on selected nodes.

•  Other routing and signaling protocols compute the routing table and provide
resource reservation mechanisms.

2.2 Netfilter Framework

The netfilter framework [21] provides flexible packet filtering mechanisms which are
performed at various hooks inside the network stack. Kernel modules register
callback functions that get invoked every time a packet passes the respective hook.
The user space tool iptables allows to define rules that are evaluated at each hook. A
packet that matches these rules is handed to the target kernel module for further
processing. The netfilter framework together with the iptables tool provide the
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minimum mechanisms required to load modules into the kernel, specifying packet
matching rules evaluated at hooks, and the invocation of the matching target module.
However, netfilter has a serious restriction since all loadable modules must be known
at compile time to guarantee proper kernel symbol resolution for the linking process.
Thus, only kernel modules that have been statically configured can be loaded into the
networking subsystem. This is a significant limitation since we envision a router
architecture that allows to load arbitrary new components at runtime.

2.3 Plugin Framework and Execution Environment

To overcome this limitation, we are extending the netfilter framework with a plugin
framework. The plugin framework manages all loadable plugins and dispatches
incoming packets to plugins according to matching filters. When a plugin initially
gets loaded into the kernel, it registers its virtual functions with the plugin
framework. Once a packet arrives and needs to be processed by a plugin, the
framework invokes the previously registered plugin-specific callback function. Since
plugins register their entry-points, the entry functions do not need to be known at
compile time, and for this reason the plugin framework can load and link any plugin
into the kernel.
Every PromethOS plugin offers an input and output channel (in accordance with [7])
representing a control and reporting port. The control port is used for managing the
PromethOS plugin (such as configuration); the reporting port is read-only to collect
status information from the plugin.

2.4 Plugin Classes and Instances

For the design of plugins, we follow an object-oriented approach. A plugin class is a
dynamically loadable Linux kernel module that specifies the general behavior by
defining how it is initialized, configured, and how packets need to be processed. A
plugin instance is a runtime configuration of a plugin class bound to a specific flow.
An instance is identified by a node unique instance identifier. In general, it is
desirable to have multiple configurations of a plugin, each having its own data
segment for internal state. Multiple plugin instances can be bound to one flow, and
multiple flows can be bound to a single instance. Through a virtual function table,
each plugin class responds to a standardized set of methods to initialize, configure,
reconfigure itself, and for processing packets. All code is encapsulated in the plugin
itself, thus the plugin framework is not required to know anything about a plugin's
internal details. Once a packet is associated with a plugin, the plugin framework
invokes the processing method of the corresponding plugin, passing it the current
instance (data segment) and a pointer to the kernel structure representing the packet
(struct sk_buff).

2.5 Control from User Space

PromethOS and its plugins are managed at load-time by providing configuration
parameters and at run-time through the control interfaces via the procfs. When the
PromethOS plugin framework initially gets loaded, it creates the entry
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/proc/promethos. Below this entry, the control and reporting ports of individual
plugins are registered. PromethOS plugins are loaded by iptables which we extended
with semantics required for the PromethOS plugin framework. The communication to
control plugins and report messages between user space and plugins follows a
request-reply approach. A control message is addressed to the appropriate plugin by
passing the plugin instance identifier as a parameter and the plugin then responds
with a reply.

2.6 Example Use of PromethOS Plugin Framework

To give the reader a feel for the simplicity and elegance with which plugins can be
put into operation, we illustrate the commands necessary to load and configure a
WaveVideo [15] plugin performing video scaling. Note that these commands can be
executed at any time, even when network traffic is transiting through the system. As
mentioned above, we use a PromethOS-enhanced iptables program that interacts with
the iptables framework. In the extension of iptables, we implement calls to the
insmod program, which serves as the primary tool to install Linux kernel modules.

•  Loading and registering plugin:
# iptables -t promethos -A PREROUTING -p UDP -s 129.132.66.115 -dport 6060
-j PROMETHOS --plugin WV --autoinstance --config "65536"
This command adds a filter specification to the PromethOS plugin framework,
requesting to install the WV plugin at the PREROUTING hook, and creating an
instance of this plugin to perform video scaling at 65536 Byte/s. If the plugin
framework is not yet loaded, the module dependency resolution of Linux
installs it on demand.

•  Upon successful completion of the plugin loading and instantiation, the plugin
framework reports the plugin instance number:
Router plugin instance is 1

•  By this instance number, the plugin control port can be accessed:
# echo '#1' 131072 > /proc/promethos/net/management
This reconfigures the WV plugin to scale the video to a maximum output of
131072 Byte/s.

•  The configuration of the PromethOS table can be retrieved with iptables:
# iptables -t promethos -L
Chain PREROUTING (policy ACCEPT)
target     prot opt source         destination
PROMETHOS udp -- 129.132.66.115 anywhere udp dpt:6060 WV#1

•  The plugin and the framework may be removed from the kernel by the standard
mechanisms provided by iptables and the Linux kernel module framework.

This example demonstrates the seamless integration of the PromethOS plugin
framework in Linux, allowing to load arbitrary code at runtime.
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3 Code Deployment on Explicitly Routed Paths

In the previous section, we have presented our active node architecture that can be
dynamically extended with components coming in form of loadable kernel modules.
The mechanisms illustrated for installing and configuring plugins require local access
to the router which is a feasible approach for setting up routers with a static
configuration. However, the active networks paradigm envisions an infrastructure
that can be programmed by network administrators and end users in a more flexible
fashion. For active networks we need new routing mechanisms that take into account
that end-to-end paths include processing sites.
In this section we present a novel signaling protocol that allows to deploy plugins on
selected nodes and to establish paths transiting these nodes in a given order. In the
context of active networks conventional destination-based routing schemes cannot
satisfy the requirements demanded by active applications since traffic needs to transit
processing sites generally not located on the IP default path. In our opinion, the
introduction of new code into routers should be performed in a structured way, where
network service providers or end users explicitly configure the network with the
required functionality, enabling efficient allocation of network resources among
competing applications.
Finding an optimal routing and processing path can be seen in the context of
constraint-based routing, where processing constraints define requirements on the
order and location of processing functions. A suitable algorithm that finds an optimal
route through a sequence of processing sites has been proposed in [10].

Figure 2 Optimal solution with intermediate processing can produce non-simple path

Figure 2 depicts a sample network with various processing sites. Each site has an
associated cost (shown as the number in the node) that needs to be taken into account
if processing on that site occurs. In the example, we are looking for an end-to-end
path that includes two intermediate computations, with the constraints that the first
computation should be placed on one of the light grey nodes (R2 or R3), and the
second on one of the darker nodes (R6 or R8). An optimal solution for this constraint-
based routing problem (taking into account both link and processing costs) can
produce a non-simple path, also known as a walk, which is a sequence of consecutive
edges where a given vertex is being visited more than once. Since such solutions are
now possible when considering active processing, the signaling protocol must also
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support such paths. In the following we assume that such explicitly routed paths can
be computed according to [10] and focus on the signaling protocol required for
configuring such combined routing and processing paths.

3.1 Explicit Path Establishment

Our proposed Path-Based Routing (PBR) protocol supports per-flow based explicit
path establishment for one-way, unicast flows routed through a predefined list of
hops and the installation and configuration of plugin modules along such paths.

Figure 3  Explicit path setup using PBR protocol

As illustrated in Figure 3, the path establishment is based on a two-phase scheme: In
the first phase, the protocol verifies whether sufficient resources are available along
the downstream path. Beginning at the source, each node checks whether the required
resources are available locally and if granted, reserves (but does not allocate yet)
resources, and forwards the reservation request to the next node along the
downstream path. This process is repeated until the destination node is reached. Once
the first phase of the setup process has been completed, it is assured that sufficient
resources are available. In the second phase, the actual allocation of network
resources takes place. This happens along the reverse path, that is, on all routers from
the destination towards the source node. This includes the installation of flow-specific
filters such that packets matching the filter are forwarded on the corresponding
outgoing interface, and the installation and configuration of plugins and binding them
to the filter. Once all state has been established along the path, the application is
informed and can transmit traffic.
If during the first phase a request is refused due to limited resources, the path setup
process cannot continue and is aborted. The node then sends a reservation release
message along the reverse path so that nodes that have already reserved resources can
free them. Finally, the application is notified that the path could not be established.
The PBR protocol uses TCP as the transport mechanism between PBR peers (hop-by-
hop) to send control messages for path establishment, plugin deployment, and release
of resources. This guarantees reliable distribution of control messages. PBR uses soft-
state for both path and plugin information being stored on nodes to take into account
that network nodes and links are inherently unreliable and can fail. An application
that sets up a path is required to refresh the path (by sending the setup request
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periodically), otherwise nodes will purge path and plugin state once the time-out
expires. Path tear down works analogous to the path setup process, with a release
request used instead.

3.2 Plugin Deployment

In addition of setting up flow-specific routes, the PBR protocol allows to install and
configure plugin modules on selected nodes. To support this feature, the path
establishment message includes a list of nodes where plugins need to be installed. If
the requested target address for a plugin matches a node's own address, the node first
checks whether the referred plugin class has already been loaded into the kernel. If it
is not present, the plugin loader retrieves it from a remote code server and verifies the
consistency by checking the module's digital signature [9]. Then the module is loaded
into the kernel and linked against the current kernel image. Subsequently, the PBR
daemon creates a new instance of the plugin, invokes the configuration method, and
binds the plugin instance with the filter describing the flow. Once the path has been
established and the required plugins deployed, the application can begin transmitting
data which will be forwarded along the path and processed by intermediate plugins.

3.3 Message Details

A CREATE_PATH message is transmitted by the path-initiating router toward the
destination to establish an explicitly routed path. The message contains the following
different subobjects:

•  FLOWSPEC object
The flow specification describes the format of packets that follow the explicit
path, described using the tuple <source addr/mask, dest addr/mask, source port,
dest port, protocol>. Any field can be wildcarded, network addresses can be
partially wildcarded with a prefix mask.

•  EXPLICIT_ROUTE object
An explicit route object is encoded as a series of nodes to be traversed. In the
current implementation, the hops must form a strict explicit route.

•  PLUGIN object
The plugin object describes one or multiple plugins that need to be deployed on
a node. It contains the address of the target node, followed by the plugin name
and an initial configuration parameters.

The RELEASE_PATH message removes a previously established path. The PBR
protocol also supports the STATUS message for the retrieval of path state from
remote nodes.

3.4 Forwarding Mechanisms for Explicit Path

In the following we describe how we can override Linux�s conventional destination-
based forwarding and perform our own explicit path routing, that is, move packets
along a predefined set of nodes. For each flow that requires flow-specific forwarding,
we add a filter entry into netfilter. Incoming packets are classified by the netfilter
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framework and if a flow-specific filter matches, they are marked with a next-hop
neighbor tag. For each adjacent neighbor, there is a special routing table containing a
single default route entry pointing to the corresponding neighbor. Packets that have
been marked with the next-hop tag then use the corresponding routing table and are
sent to the appropriate neighbor. To establish a complete path, filter entries are added
to all nodes along the path.
As discussed above, when considering processing sites the path from the source to the
destination does not need to be a straight IP path anymore, where all of the nodes are
distinct and no duplicated nodes exist. To support such paths, the forwarding
mechanism must consider the incoming port from where the packet has been
received. For that reason, flow filters consist of a six tuple, including the incoming
interface for the forwarding decision as well.
Note however that the current implementation is restricted to paths that enter a node
via the same interface only once, since a node cannot distinguish if a packet has
previously traversed the node. This limitation could be overturned if incoming
packets would be marked with a tag to be used for subsequent forwarding decisions.

3.5 Example Use of Path-Based Routing

In the scenario as illustrated Figure 2 we want to install an encryption and decryption
plugin on selected nodes. When considering processing costs, the optimal solution for
such a path is non-simple. The following command establishes a path which routes all
traffic matching the filter along the path:

# pbr create R1:R4:R3:R4:R7:R8:R7 --dport 6060 --plugin R3:ENCRYPT:init
--plugin R8:DECRYPT:init

4 Related Work

In this section we look at related work, both at active network architectures and
mechanisms for explicit routing and remote code deployment.

4.1 Programmable Network Architectures

In the context of programmable networks, several node architectures have been
proposed allowing to dynamically extend the networking subsystem of a router with
additional functionality.
The Active Network Node [13] is a NetBSD-based architecture that allows code
modules called router plugins to be dynamically downloaded and installed into the
OS kernel and binding plugin instances to flows. PromethOS's plugin concept has
been inspired mostly from this project. While ANN provides many of the concepts
implemented, PromethOS requires less modification of the original network stack.
Scout [17] proposes a path-based approach where the functionality of a standard IP-
compliant router is decomposed into a sequence of a interconnected components
forming a path. Recently, Scout has been ported to Linux [4], however requiring to
replace most of the Linux network stack with the Scout implementation.
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NetGraph [11] is a the network stack filtering mechanisms for FreeBSD similar to
netfilter. The concept is based on hooks offering bidirectional communication for
components attached to the network stack. These hooks are freely interconnectable to
form a network graph.
Click [16] is an architecture for assembling a router from packet processing modules
called elements. Individual elements implement router functions like packet
classification, queuing, scheduling, and interfacing with network devices. A router
configuration is a directed graph describing the required components and how
packets flow through the router. Click configurations are later compiled to machine
code, providing very good performance. Once defined configurations are static and
cannot be tailored at run-time (unlike PromethOS plugins). The static approach of
Click is overcome by the Open Kernel Environment Corral [5] which makes use of
the type-safe C programming language Cyclone [12] that is extended by
authentication mechanisms for accessing resources.

4.2 Explicit Path Routing and Service Deployment

Several resource allocation protocols capable of supporting applications that request
per-flow routing and allow functions to be deployed in the network core have been
developed. This section briefly describes a few of these protocols.

Table 1. Comparison of signaling protocols supporting explicit paths

Source
Routing ATM/PNNI MPLS Beagle PBR

 Plugin deployment no no no yes yes

 Explicit routing strict or
loose

strict or
loosea

strict or
loose

strict or
loose

Strictb

 Looping paths Noc no no no yes

 Router state Noned VCI/VPI
entry

MPLS tag
entry

RSVP
filter entry

netfilter
filter

a.PNNI supports hierarchical routing where the source can address the logical group leader,
representing an aggregation of nodes.
b.PBR currently supports only strict routes but loose routes could be easily implemented.
c.May be possible but not intended by IP protocol.
d.Hop addresses are stored directly in the IP option header. However, due to the option header
length limit, the number of hops is restricted to eight.

The IP source routing option [18] provides a means for the source of an IP datagram
to supply routing information to be used by intermediate routers. The route data are
composed of a series of Internet addresses present in the IP option header. Since there
is an upper limit of the option header length, only 8 hosts can be explicitly routed.
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The Private Network-to-Network Interface [1] is a signaling and routing protocol
between ATM switches with the purpose of setting up Virtual Connections (VCs).
PNNI determines an optimal path satisfying QoS constraints and reroutes connections
(crankback) when VC establishment fails. PNNI performs explicit source routing, in
which the ingress switch determines the entire path to the destination. Setting up
explicit paths is seen as an attractive feature of ATM since each application can have
its own specific path requirements. Nevertheless, ATM does not support the concept
of processing resources as introduced by active networks.
The Multiprotocol Label Switching [20] approach is based on a label-swapping
paradigm implemented in the networking layer. MPLS defines two label distribution
protocols that support explicitly routed paths. CR-LDP [14], which is an extension of
LDP [3], is peer-to-peer protocol where messages are reliably delivered using TCP
and state information associated with explicitly routed LSPs does not require periodic
refresh. An explicit route can be strict, where all nodes are explicitly listed, or loose,
allowing to define paths through portions of the network with partial knowledge of
the topology. RSVP-TE [2] extends the original RSVP [6] protocol by setting up
explicit label switched paths and to allocate network resources (e.g., bandwidth). The
explicit route object encapsulated in a Path message includes a concatenation of hops,
describing a strict or loose route. RSVP-TE is based on soft state, where the state of
each LSP must periodically be refreshed (typically every 30 seconds). CR-LDP and
RSVP-TE are signaling protocols that perform similar functions but currently no
consensus exists on which protocol is technically superior.
Beagle [8] is a signaling protocol for the setup of structured multi-party, multi-flow
applications described by an application mesh. The mesh formulates the resources to
be allocated as a network graph. The Beagle protocol is based on RSVP and
introduces a new route constraint object carrying explicit routing information. In
contrast to signaling protocols like MPLS and PNNI, Beagle allows applications to
allocate computation and storage resources required for delegates, which are
application-specific code segments that execute on routers.
The PBR protocol has specifically been designed for active networks. It allows the
deployment of new code on routers and the setup of explicitly routed paths,
supporting also looping paths such that the same processing site can be visited
multiple times.

5 Conclusions

In this paper we have presented PromethOS, an extensible and modular architecture
for integrated services routers. PromethOS allows to dynamically load plugins at
runtime into the kernel, to create instances of plugins, and to bind plugin instances to
individual flows. The path-based routing protocol establishes explicitly routed paths
and installs plugins on selected nodes. We freely distribute our source code with the
intent of providing the research community with a services platform to build upon.
Currently, PromethOS is being extended to provide resource control mechanisms for
plugins in kernel space. We focus on aspects of memory consumption, processor
cycles and bandwidth on both general purpose and network processors.
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