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Abstract. Recently the bilinear pairing such as Weil pairing or Tate
pairing on elliptic curves and hyperelliptic curves have been found various
applications in cryptography. Several identity-based (simply ID-based)
cryptosystems using bilinear pairings of elliptic curves or hyperelliptic
curves were presented. Blind signature and ring signature are very useful
to provide the user’s anonymity and the signer’s privacy. They are play-
ing an important role in building e-commerce. In this paper, we firstly
propose an ID-based blind signature scheme and an ID-based ring sig-
nature scheme, both of which are based on the bilinear pairings. Also we
analyze their security and efficiency.
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1 Introduction

False certification or no certification mechanisms cause problems, which can
range from a “man-in-the-middle” attack (in order to gain knowledge over con-
trolled data) to a completely open situation (to gain access to data and re-
sources). It is important to note that these problems appear with encryption
or even a secure protocol. If the user is led to connect to a spoofing site where
appears to be what he wants, he may have a secure connection to a thief who
will work maliciously. Thus, identity certification or authentication is necessary.
In public key cryptosystem, each user has two keys, a private key and a pub-
lic key. The binding between the public key (PK) and the identity (ID) of a
user is obtained via a digital certificate. However, in a certificate-based system,
before using the public key of a user, the participant must first verify the cer-
tificate of the user. As a consequence, this system requires a large amount of
computing time and storage when the number of users increase rapidly. In 1984
Shamir [25] asked for ID-based encryption and signature schemes to simplify
key management procedures in certificate-based public key setting. Since then,
many ID-based encryption schemes and signature schemes [4][8][27] have been
proposed.
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The bilinear pairings, namely the Weil pairing and the Tate pairing of al-
gebraic curves, are important tools for research on algebraic geometry. The
early applications of the bilinear pairings in cryptography were used to eval-
uate the discrete logarithm problem. For example, the MOV attack [18] (using
Weil pairing) and FR attack [9] (using Tate pairing) reduce the discrete log-
arithm problem on some elliptic curves or hyperelliptic curves to the discrete
logarithm problem in a finite field. However, the bilinear pairings have been
found various applications in cryptography recently [4][5][14][15][17][23]. More
precisely, they can be used to construct ID-based cryptographic schemes. Many
ID-based cryptographic schemes have been proposed using the bilinear pair-
ings. Examples are Boneh-Franklin’s ID-based encryption scheme [4], Smart’s
ID-based authentication key agreement protocol [26], and several ID-based sig-
natures schemes [6][11][20][23], etc. The ID-based public key setting can be an
alternative for certificate-based public key setting, especially when efficient key
management and moderate security are required. In public key setting, users’
anonymity is protected by means of blind signature, while signers’ anonymity
by group or ring signature. This paper is focused on ID-based blind signature
and ID-based ring signature schemes.

The concept of blind signatures was introduced by Chaum [7], which pro-
vides anonymity of users in applications such as electronic voting and electronic
payment systems, etc. In contrast to regular signature schemes, a blind signa-
ture scheme is an interactive two-party protocol between a user and a signer. It
allows the user to obtain a signature of a message in a way that the signer learns
neither the message nor the resulting signature. Blind signature plays a central
role in building anonymous electronic cash.

Several ID-based signature schemes based on pairings were developed re-
cently. In this paper, we propose a blind version of ID-based signature schemes.
ID-based blind signature is attractive since one’s public key is simply his iden-
tity. For example, if a bank issues electronic cash with ID-based blind signature,
users and shops do not need to fetch bank’s public key from a database. They
can verify the electronic cash issued this year only by the following information,
Name of Country ‖ Name of City ‖ Name of Bank ‖ this year.

The concept of ring signature was introduced by Rivest, Shamir and Tau-
man [22]. A ring signature is considered to be a simplified group signature which
consists of only users without managers. It protects the anonymity of a signer
since the verifier knows that the signature comes from a member of a ring,
but doesn’t know exactly who the signer is. There is also no way to revoke the
anonymity of the signer. Ring signature can support ad hoc subset formation and
in general does not require special setup. Rivest-Shamir-Tauman’s ring signature
scheme relies on general public-key setting.

After giving the formal definitions of ID-based blind signature and ring sig-
nature, we propose an ID-based blind signature scheme and an ID-based ring
signature scheme using bilinear pairings, and analyze their security and efficiency.

Organization of the Paper: The rest of the paper is organized as follows:
DLP, DDHP, CDHP, GDHP, and bilinear pairing are introduced in Section 2.
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We give the formal definition of an ID-based blind signature scheme and an ID-
based ring signature in Section 3. Our main ID-based blind signature scheme is
presented in Section 4. Section 5 gives a security proof of our ID-based blind
signature scheme. In Sections 6 and 7, we present an ID-based ring signature
scheme and analyze its security and performance, respectively. Section 8 sum-
marizes this paper and gives open problems.

2 Basic Concepts on Bilinear Pairings

Let G be a cyclic group generated by P , whose order is a prime q, and V be a
cyclic multiplicative group of the same order q. The discrete logarithm problems
in both G and V are hard. Let e : G × G → V be a pairing which satisfies the
following conditions:

1. Bilinear:e(P1+P2,Q)=e(P1,Q)e(P2,Q) and e(P ,Q1+Q2) =e(P ,Q1)e(P ,Q2),
or e(aP, bQ) = e(P,Q)ab;

2. Non-degenerate: There exists P ∈ G and Q ∈ G such that e(P,Q) �= 1;
3. Computability: There is an efficient algorithm to compute e(P,Q) for all

P,Q ∈ G.
We note that the Weil and Tate pairings associated with supersingular elliptic

curves or abelian varieties can be modified to create such bilinear maps.
Suppose that G is an additive group. Now we describe four mathematical

problems.

– Discrete Logarithm Problem (DLP): Given two group elements P and
Q, find an integer n, such that Q = nP whenever such an integer exists.

– Decision Diffie-Hellman Problem (DDHP): For a, b, c ∈ Z∗
q , given

P, aP, bP, cP decide whether c ≡ ab mod q.
– Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z∗

q , given
P, aP, bP, compute abP.

– Gap Diffie-Hellman Problem (GDHP): A class of problems where
DDHP is easy while CDHP is hard.

We assume through this paper that CDHP and DLP are intractable, which
means there is no polynomial time algorithm to solve CDHP or DLP with non-
negligible probability. When the DDHP is easy but the CDHP is hard on the
groupG, we callG a Gap Diffie-Hellman (GDH) group. Such groups can be found
on supersingular elliptic curves or hyperelliptic curves over finite field, and the
bilinear parings can be derived from the Weil or Tate pairing e : G × G → V .
Our schemes of this paper can be built on any GDH group.

3 Model

In this section, we give the formal definitions of ID-based blind signature scheme
and ID-based ring signature scheme.
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An ID-based blind signature scheme is considered be the combination of a
general blind signature scheme and an ID-based one, i.e., it is a blind signature,
but its public key for verification is just the signer’s identity.

Definition 1 (ID-Based Blind Digital Signature). An ID-based blind sig-
nature scheme (simply IDBSS) consists of six-tuple (Trust Authority (or TA),
Setup, User, Extract, Signer, Verification), where

1. TA is a trustee which can issue a tamper-resistant equipment to transfer
secret information to users. It executes two operations: System setup and
User’s private key generation.

2. Setup is a probabilistic polynomial algorithm that takes a security parameter
k, and returns params (system parameters) and master-key.

3. Extract is a probabilistic polynomial algorithm that takes as input params,
master-key and an arbitrary ID ∈ {0, 1}∗, and returns a private key SID.
Here ID is a signer’s identity and works as the signer’s public key.

4. Signer and User are a pair of probabilistic interactive Turing machines,
where both machines have the following tapes: a read-only input tape, a write-
only output tape, a read/write working tape, a read-only random tape, and
two communication tapes. Signer is given on its input tape (ID, SID). User
is given on its input tape (ID,m), where m is a message. The length of all
input must be polynomial in k. Signer and User engage in the signature
issuing protocol and stop in polynomial-time. At the end of this protocol,
Signer outputs either completed or not-completed, and User outputs either
fail or the signature σ(m) of the message m.

5. Verification is a probabilistic polynomial-time algorithm that takes
(ID,m, σ(m)) and outputs either accept or reject.

The security of an ID-based blind signature scheme consists of two require-
ments: the blindness property and the non-forgeability of additional signatures.
We say the blind signature scheme is secure if it satisfies two requirements.

Like [2] and [16], we give a formal definition of the blindness of ID-based
blind signature scheme.

Definition 2 (Blindness). Let A be the Signer or a probabilistic polynomial-
time algorithm that controls the Signer. A is involved in the following game with
two honest users, namely U0 and U1.

1. (ID, SID)← Extract(params, ID).
2. (m0,m1)← A(ID, SID) (A produces two documents).
3. Select b ∈R {0, 1} (i.e., b is a random bit which is kept secret from A). Put

mb and m1−b to the read-only input tape of U0 and U1, respectively.
4. A engages in the signature issuing protocol with U0 and U1 in arbitrary order.
5. If U0 and U1 output σ(mb) and σ(m1−b), respectively, on their private tapes,

then give those outputs to A. Otherwise, give ⊥ to A.
6. A outputs a bit b′ ∈ {0, 1}.
If b′ = b, A knows the message and its corresponding signature of each user. In
this case, we say A wins.
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An ID-based signature is blind if, for all probabilistic polynomial-time algo-
rithm A, A wins in the following experiment with probability at most 1/2+1/kc

for sufficiently large k and some constant c. The probability is taken over the
coin flips of Extract, two users, U0 and U1, and A.

The ID-based ring signature can be viewed as the combination of a ring
signature and an ID-based signature.

Definition 3 (ID-Based Ring Digital Signature). An ID-based ring signa-
ture scheme (simply IDRSS) consists of four-tuple, namely (Setup, Extract,
Signing, Verification). Three parties are involved in the scheme: a Signer,
a User and a TA (Like IDBSS, TA is a trustee, it executes two operations:
System setup and User’s private key generation).

1. Setup is a probabilistic polynomial algorithm, run by TA, that takes a secu-
rity parameter k and returns params (system parameters) and master-key.

2. Extract is a probabilistic polynomial algorithm, run by TA, that takes as
input params, master-key, and an arbitrary ID ∈ {0, 1}∗. It returns a
private key SID. Here ID is the signer’s identity and used as the signer’s
public key.

3. Signing is a probabilistic polynomial algorithm that takes params, a private
key SID, a list of identities, L, which includes ID corresponding to SID, and
a message m. The algorithm outputs a signature σ(m) for m.

4. Verification is a probabilistic polynomial-time algorithm that takes
(L,m, σ(m)) and outputs either accept or reject.

We say an ID-based ring signature scheme is secure if it satisfies two require-
ments, namely, the unconditional ambiguity (i.e., the adversary cannot tell the
identity of the signer with a probability larger than 1/r, where r is the cardinal-
ity of the ring, even assuming that he/she has unlimited computing resources)
and the non-forgeability of additional signatures.

4 Our ID-Based Blind Signature Scheme

In this section, we present an ID-based blind signature scheme from the bilinear
pairings. Our scheme is similar to Schnorr’s blind signature scheme.

Let G be a GDH group of prime order q. The bilinear pairing is given as
e : G×G→ V .

[Setup]
Let P be a generator of G. Choose a random number s ∈ Z∗

q and set
Ppub = sP . Define two cryptographic hash functions H : {0, 1}∗ → Z/q and
H1 : {0, 1}∗ → G. The system parameters are params={G, q, P, Ppub, H,H1},
and s be the master-key of TA.
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[Extract]
Given an identity ID, which implies the public key QID = H1(ID), the

algorithm returns the private key SID = sQID.
The above two operations, [Setup] and [Extract] are carried out by TA.

Note that TA can access to the sensitive private key SID. To avoid power abuse
by TA, n trust authorities with (n, n)-threshold secret sharing scheme can be
used to escrow the master-key, as suggested in [11].

[Blind Signature Issuing Protocol]

User Signer

r ∈R Z∗
q

R
Compute R = rP

✛
a, b ∈R Z∗

q ,

Compute

t = e(bQID + R + aP, Ppub)

c = H(m, t) + b (mod q)
c ✲

Compute S = cSID + rPpub

✛ S
Compute

S′ = S + aPpub

c′ = c − b

Fig. 1. The blind signature issuing protocol

Suppose that m is the message to be signed. Let a ∈R denote the uniform
random selection. The protocol is shown in Fig. 1.

– The signer randomly chooses a number r ∈ Z∗
q , computes R = rP , and sends

R to the user as a commitment.
– (Blinding) The user randomly chooses a, b ∈ Z∗

q as blinding factors. He
computes c = H(m, e(bQID +R+aP, Ppub))+ b (mod q), and sends c to the
signer.

– (Signing) The signer sends back S, where S = cSID + rPpub.
– (Unblinding) The user computes S′ = S + aPpub and c′ = c− b. He outputs
{m,S′, c′}.
Then (S′, c′) is the blind signature of the message m.
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[Verification:]
Accept the signature if and only if

c′ = H(m, e(S′, P )e(QID, Ppub)−c′
).

To produce a blind signature, the Signer only requires to compute three
scalar multiplications in G, while the User requires three scalar multiplications
in G, one hash function evaluation and one bilinear pairing computation. The
verification operation requires one hash function evaluation, two bilinear pairing
computations and one exponentiation in V . One pairing computation can be
saved, if a large number of verifications are to be performed for the same identity
by precomputing e(QID, Ppub). Our signature consists of an element in G and
an element in V. In practice, the size of the element in G (elliptic curve group or
hyperelliptic curve Jacobians) can be reduced by a factor of 2 with compression
techniques in [12][13].

5 Analysis of the IDBSS

This section proves the security of our blind signature scheme assuming the
intractability of CDHP and ideal randomness of hash functions H and H1. For
generic parallel attack, we assume the intractability of ROS-problem [24] i.e.,
to find an Overdetermined, Solveable system of linear equations modulo q with
Random inhomogenities.

5.1 Correctness

The verification of the signature is justified by the following equations:

H(m, e(S′, P )e(QID, Ppub)−c′
)

= H(m, e(S + aPpub, P )e(QID, Ppub)−c′
)

= H(m, e(cSID + rPpub + aPpub, P )e(QID, Ppub)−c′
)

= H(m, e(cSID, P )e(rPpub + aPpub, P )e(QID, Ppub)−c′
)

= H(m, e(SID, P )ce((r + a)Ppub, P )e(QID, Ppub)−c′
)

= H(m, e(QID, Ppub)ce((r + a)P, Ppub)e(QID, Ppub)−c′
)

= H(m, e(QID, Ppub)c−c′
e(R+ aP, Ppub))

= H(m, e(QID, Ppub)be(R+ aP, Ppub))
= H(m, e(bQID +R+ aP, Ppub))
= H(m, t) = c− b = c′

5.2 Security Proofs

On the blindness of our ID-based blind signature scheme, we can state the fol-
lowing theorem:
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Theorem 1. The proposed scheme is blind.

Proof. We consider the experiment in Definition 2. Let A be the Signer or
a probabilistic polynomial-time algorithm that controls the Signer and has
(ID, SID) from Extract(params, ID).

If A gets ⊥, it is easy to see that A wins the game with probability exactly
the same as a random guessing of b, i.e., with probability 1/2.

Suppose that A gets σ(mb) and σ(m1−b), instead of ⊥. For i = 0, 1, let
Ri,ci,Si be the data exchanged during the signature issuing protocol, and (S′

0, c
′
0)

and (S′
1, c

′
1) are given to A. Then it is sufficient to show that there exist two

random factors (α, b) that map Ri, ci, Si to S′
j , c

′
j for each i, j ∈ {0, 1} (here

α ∈ G). We can define α := S′
j − Si, b := −c′j − (−ci). As

e(Ri, Ppub) = e(Si − ciSID, P ) = e(Si, P )e(−ciQID, Ppub),

we have:

c′j = H(m, e(S′
j , P )e(QID, Ppub)−c′

j )

= H(m, e(Si + α, P )e(QID, Ppub)b−ci)
= H(m, e(ciQID +Ri, Ppub)e(α, P )e(QID, Ppub)b−ci)
= H(m, e(Ri, Ppub)e(α, P )e(QID, Ppub)b)

Thus the blinding factors always exist which lead to the same relation de-
fined in the signature issuing protocol. Therefore, even an infinitely powerful A
succeeds in determining b with probability 1

2 .
Taking two cases into account, the probability that A wins is 1

2 . Therefore,
the proposed scheme is blind. �

Next, we discuss the non-forgeability of the proposed ID-based blind signa-
ture scheme. Let A be the adversary who controlsUser. We consider three cases.

Case 1: Non-interaction with Signer

If A successful produces a valid message-signature pairing (m,σ(m)) with a
non-negligible probability η, then we will show that using A, we can construct
a simulaterM to solve the CDHP with the non-negligible probability η.

Let qH be the maximum number of queries asked from A to H, it is limited
by a polynomial in k. We assume that all queries are different. Let (G,V, q, e(, ),
P, Ppub, QID) be the problem that we want to solve: to find SID ∈ G from
e(QID, Ppub) = e(SID, P ).M simulates as follows:

– Select I ∈R {1, · · · , qH}.
– Let A simulates H as follows: For i−th query to H, if i = I, then ask H for

the answer. Otherwise, randomly select and output an element from Zq.
– Randomly input a number r ∈ Zq, send R = rP to A.
– A outputs a signature (mI , S

′, c′).
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We denote by η the success probability ofM, which is non-negligible.
Now we useM to get SID from e(QID, Ppub) = e(SID, P ). We runM with

a random tape (i.e., with random input (a, b, r) and a random choice of H.M
then outputs a valid signature (S′

1, c
′
1) after trying 1/η times. We rewindM with

the same random tape and run it with a different choice of H. After at most 2/η
times, we can get another valid signature (S′

2, c
′
2). Then we have

S′
1 − S′

2 = c′1SID − c′2SID,

Because c′1 and c′2 are different choices of H, i.e., c′1 �= c′2, we can get SID =
((c′1−c′2)−1 mod q)(S′

1−S′
2). If Ppub = sP,QID = H1(ID) = tP, then SID = stP ,

i.e., we solved CDHP.
Since we assume that the CDHP is intractable, the success probability of the

forgery in this case is negligible.

Case 2: Non-fixed ID Forgery

We assume that Extract is a random oracle, and allow an adversary A to
query it. A executes the following experiment:

1. (ID, SID)←Extract(params, ID).
2. A queries Extract qE (qE > 0) times with (params, IDi �= ID) for i =

1, · · · , qE . Extract returns to A the qE corresponding secret key SIDi . We
assume that qE is limited by a polynomial in k.

3. A produces qE signatures with the help of (IDi, SIDi
).

4. A outputs a signature (m,σ(m)).

Since H and H1 are random oracles, both Extract and the blind signature
issuing protocol between User and Signer generate random numbers with uni-
form distributions. This means that A learns nothing from query results. Case
2 can be reduced to Case 1, so we claim that, under the argument that all hash
functions are random oracles and that the CDHP is intractable, the successful
probability of the non-fixed ID attack on the proposed scheme is negligible.

Case 3: Fixed ID Generic Parallel Attack

In [24], Schnorr proposed a new attack, called generic parallel attack, on
Schnorr’s blind signature scheme. This attack also applies to our blind scheme.
In the following, we prove that our scheme is secure against the generic parallel
attack under the assumption of the intractability of the ROS-problem.

We first describe how A uses the generic parallel attack to forge l + 1 valid
ID-based blind signatures in our scheme. Let qH be the maximum number of
queries of H from A.

1. The signer sends commitments R1 = r1P,R2 = r2P, · · · , Rl = rlP.
2. A selects randomly ak,1, ak,2, · · · , ak,l ∈ Zq and messages m1,m2, · · · ,mt. He

computes fk = e(
∑l

i=1 ak,iRi, Ppub) and H(mk, fk) for k = 1, 2, · · · , t. Here
t < qH .
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3. A solves l + 1 of t Eqs. (1) in the unknowns c1, c2, · · · , cl over Zq :

H(mk, fk) =
l∑

j=1

ak,jcj for k = 1, 2, · · · , t. (1)

4. A sends the solutions c1, c2, · · · , cl as challenge to the signer.
5. The signer sends back Si = ciSID + riPpub for i = 1, 2, · · · , l.
6. For each solved Eq. (1), A gets a valid signature (mk, S

′
k, c

′
k) by setting

c′k :=
l∑

j=1

ak,jcj = H(mk, fk)

and

S′
k :=

l∑
j=1

ak,jSj .

7. A outputs l + 1 signatures (mk, S
′
k, c

′
k) for k = 1, 2, · · · , l + 1.

It is easy to see that the forged signature is valid. According to Eq. (1), we
have:

e(S′
k, P )e(QID, Ppub)−c′

k = e




l∑
j=1

ak,jSj , P


 e (QID, Ppub)

−c′
k

= e




l∑
j=1

ak,j(cjSID + rjPpub), P


 e(QID, Ppub)−c′

k

= e (SID, P )
∑l

j=1
ak,jcj e




l∑
j=1

ak,jrjPpub, P


 e(QID, Ppub)−c′

k

= e




l∑
j=1

ak,jRj , Ppub


 = fk

and
H(mk, e(S′

k, P )e(QID, Ppub)−c′
k) = c′k

The essence of the above attack is to solve the so-called ROS-problem, which
is shown below.

ROS-Problem[24]: Find an overdetermined, solveable system of linear equa-
tions modulo q with random inhomogenities. More precisely, given an oracle
random function F : Zl

q → Zq, find coefficients ak,i ∈ Zq and a solvable system
of l + 1 distinct equations of Eq. (2) in the unknowns c1, c2, · · · , cl over Zq :

ak,1c1 + · · ·+ ak,lcl = F (ak,1, · · · , ak,l) for k = 1, 2, · · · , t. (2)
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The security against the generic parallel attack to our ID-based blind signa-
ture scheme depends on the difficulty of ROS-problem. As Schnorr states that the
intractability of the ROS-problem is “a palausible but novel complexity assump-
tion”. At Crypto2002, D. Wagner [28] claimed that he can break ROS-problem
with subexponential time. To be resistant against this new attack, q may need
to be at least 1600 bits long.

Remark: The most powerful attack on blind signature is the one-more signature
forgery introduced by Pointcheval and Stern in [21]. They suggested two kinds
of attacks: the sequential attack and the parallel attack. But at the moment we
believe that their method can’t be applied to our scheme, since multiple key
components involve their blind signature scheme, while only one single private
key is engaged in our scheme. Schnorr [24] proved that the security against
the one-more signature forgery of his blind signature scheme depends on the
difficulty of ROS-problem. However, our ID-based blind signature scheme seems
difficult to prove that the security against the sequential one-more signature
forgery depends on the difficulty of ROS-problem. We remain an open problem
to find a formal proof against the sequential one-more signature forgery on our
scheme.

6 Our ID-Based Ring Signature Scheme

The concept of ring signature has recently been formalized by Rivest et al. in
[22]. A ring signature allows a member of an ad hoc collection of users U to prove
that a message is authenticated by a member U. It is very useful in anonymity
protection. Naor [19] combined the deniable authentication and Rivest et al.’s
ring signature and proposed Deniable Ring Authentication.

The first ring signature scheme is based on RSA cryptosystem and the general
certificate-based public key setting. The first ring signature scheme based on
DLP was proposed by M. Abe, M. Ohkubo, and K. Suzuki in [1] recently, and
their scheme is based on the general certificate-based public key setting too. In
this section, we present an ID-based ring signature scheme using pairings.

Let G be a GDH group of prime order q. The bilinear pairing is e : G×G→ V.

[Setup]
The system setup is the same as IDBSS. The system parameters params=

{G, q, P, Ppub, H,H1}. The master key of TA is s.

[Extract]
Given an identity ID, the algorithm outputs SID = sH1(ID) as the private

key associated with ID. The public key is given by QID = H1(ID).
Let IDi be a user’s identity, and SIDi be the private key associated with

IDi for i = 1, 2, · · · , n. Let L = {IDi} be the set of identities. The real signer’s
identity IDk is listed in L.
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[Signing]

– (Initialization): Choose randomly an element A ∈ G, compute ck+1 = H(L ‖
m ‖ e(A,P )).

– (Generate forward ring sequence): For i = k + 1, · · · , n − 1, 0, 1, · · · , k − 1
(i.e., the value of i all modulo n), choose randomly Ti ∈ G and compute
ci+1 = H(L ‖ m ‖ e(Ti, P )e(ciH1(IDi), Ppub)).

– (Forming the ring): Compute Tk = A− ckSIDk
.

– (Output the ring signature): Select 0 (i.e., n) as the glue value, the resulting
signature for m and L is the (n+ 1)-tuple: (c0, T0, T1, · · · , Tn−1).

[Verification]
Given (c0, T0, T1, · · · , Tn−1),m, and L, compute

ci+1 = H(L ‖ m ‖ e(Ti, P )e(ciH1(IDi), Ppub)) for i = 0, 1, · · · , n− 1.

Accept if cn = c0, and reject otherwise.

7 Analysis of the IDRSS

7.1 Correctness

From the procedure of ring signature generation, we have:

ck+1 = H(L ‖ m ‖ e(A,P ))
ck+2 = H(L ‖ m ‖ e(Tk+1, P )e(ck+1H1(IDk+1), Ppub))

...
...

cn = H(L ‖ m ‖ e(Tn−1, P )e(cn−1H1(IDn−1), Ppub))
= c0

c1 = H(L ‖ m ‖ e(T0, P )e(c0H1(ID0), Ppub))
c2 = H(L ‖ m ‖ e(T1, P )e(c1H1(ID1), Ppub))

...
...

ck = H(L ‖ m ‖ e(Tk−1, P )e(ck−1H1(IDk−1), Ppub))

Since Tk = A − ckSIDk
, in the procedure of ring signature verification, we

have:

ck+1 = H(L ‖ m ‖ e(Tk, P )e(ckH1(IDi), Ppub))
= H(L ‖ m ‖ e(A− ckSIDk

, P )e(ckH1(IDi), Ppub))
= H(L ‖ m ‖ e(A,P )e(−ckSIDk

, P )e(ckH1(IDi), Ppub))
= H(L ‖ m ‖ e(A,P )e(−ckH1(IDi) + ckH1(IDi), Ppub))
= H(L ‖ m ‖ e(A,P ))

The sequence {ci} (i = 0, 1, · · · , n − 1) in the ring signature verification
procedure is the same as the ring signature generation procedure, so we have
cn = c0.
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7.2 Security

Our ID-based ring scheme holds unconditionally signer-ambiguity, because all Ti

but Tk are taken randomly from G. In fact, at the starting point, the Tk is also
distributed uniformly over G, since A is randomly chosen from G. Therefore, for
fixed L and m, (T0, T1, · · · , Tn−1) has | G |n solutions, all of which can be chosen
by the signature generation procedure with equal probability, regardless of the
signer.

When n = 1, our ID-based ring signature reduces to the ID-based signature
scheme proposed by F. Hess [11] (Let P1 = Ppub in Hess scheme). Hess’s ID-based
signature scheme is non-forgeability under the assumption of the intractability
of the CDHP and all hash functions are random oracles.

For n > 1, we fix a set of identities, denoted by L. Suppose that A’s identity
IDA is not listed in L, but he wants to forge a valid ring signature. A can either
forge a valid signature of a user whose identity IDk is listed in L (this is the
same as the case of n = 1), or executes the following experiment:

S1 A queries Extract qE (qE > 0) times with (params, IDi /∈ L) for i =
1, · · · , qE . Extract returns to A the qE corresponding secret key SIDi

.
S2 Choose randomly an integer c0 ∈ Zq.
S3 Do the same as “generate forward ring sequence” of [Signing] for i =

0, 1, · · · , n− 2, where n =| L |.
S4 Assign c0 to H(L ‖ m ‖ e(Tn−1, P )e(cn−1H1(IDn−1), Ppub)).
S5 Output the ring signature: (c0, T0, T1, · · · , Tn−1).

If A finishes above S1 and get a (ID′
i, SID′

i
), such that H1(ID′

i) = H1(IDj),
IDj ∈ L, then he can forge a valid ring signature. But since H1 is random
oracle, Extract generates random numbers with uniform distributions. This
means that A learns nothing from query results. Since H is acted as a random
oracle too and all Ti are taken randomly from G, the probability of c0 = H(L ‖
m ‖ e(Tn−1, P )e(cn−1H1(IDn−1), Ppub)) is 1/q. So we say that the proposed
ID-based ring signature scheme is non-forgeable.

7.3 Efficiency

Our ring signature scheme can be performed with supersingular elliptic curves or
hyperelliptic curves. The essential operation in our ID-based signature schemes
is to compute a bilinear pairing. Due to [3] and [10], the computation of a bilinear
pairing becomes efficient. Furthermore, the length of signature can be reduced
by a factor of 2 using compression technique.

Since our scheme is based on identity rather than an arbitrary number, a
public key consists of some aspects of a user’s information which may uniquely
identify himself, such as email address. In some applications, the lengths of public
keys and signatures can be reduced. For instance, in an electronic voting or an
electronic auction system, the registration manager (RM) can play the role of
TA in an ID-based cryptosystem. In the registration phase, RM gives a bidder
or a voter his registration number as his public key ={(The name of the e-voting
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or e-auction system || RM || Date || Number), n }. Here n is the number of all
bidders or voters.

8 Summary and Open Problems

The ID-based public key setting can be an alternative for certificate-based public
key setting, when efficient key management and moderate security are required
in particular. In this paper, we proposed an ID-based blind signature scheme
and ID-based ring signature scheme using the bilinear pairing. We also analyzed
their security and efficiency. Our ID-based blind signature scheme and ID-based
ring signature scheme can be easily combined to design electronic voting scheme
or electronic cash scheme.

The security of our ID-based blind signature scheme against the generic
parallel attack to depends on the difficulty of ROS-problem. At Crypto2002, D.
Wagner [28] claimed that he can break ROS-problem with subexponential time.
To be resistant against this new attack, q may need to be at least 1600 bits long.
Our ID-based blind signature scheme maybe not so efficient in implementation.
To improve our ID-based blind signature scheme against the generic parallel
attack remains as an open problem. On the security against the sequential one-
more signature forgery of our ID-based blind signature scheme, we expect to find
a formal proof under standard assumptions.
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