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Abstract. We propose a new mix network that is optimized to produce
a correct output very fast when all mix servers execute the mixing proto-
col correctly (the usual case). Our mix network only produces an output
if no server cheats. However, in the rare case when one or several mix
servers cheat, we convert the inputs to a format that allows “back-up”
mixing. This back-up mixing can be implemented using any one of a wide
array of already proposed (but slower) mix networks. When all goes well,
our mix net is the fast est, both in real terms and asymptotically, of all
those that offer standard guarantees of privacy and correctness. In prac-
tice, this benefit far outweighs the drawback of a comparatively complex
procedure to recover from cheating. Our new mix is ideally suited to
compute almost instantly the output of electronic elections, whence the
name “exit-poll” mixing.

1 Introduction

The recently devised mix network constructions of Furukawa and Sako [FS01]
and Neff [Nef01] provide the full spectrum of security properties desirable in an
election scheme. They achieve privacy, which is to say concealment of individual
votes, and also robustness against Byzantine server failures. They additionally
possess the property of universal verifiability, that is, the ability for any entity
to verify the correct functioning of the mix, even in the face of an adversary
that controls all servers and voters. Finally, the Furukawa/Sako and Neff mixes
are substantially more efficient in terms of both computational and communica-
tions requirements than previously proposed mix networks with similar security
properties.

Fast as they are, however, these mixes still remain cumbersome as tools for
large-scale elections. Sako et al. report a running time of roughly six hours to
process a batch of 100,000 votes [FMMOS02]. In a federal election involving
large precincts (conceivably millions of ballots in some states) a complete tally
would thus require many hours. Premature media predictions of Gore’s victory
in Florida in the 2000 U.S. presidential election demonstrate the hunger of the
electorate for timely information, and also the mischief that can be wrought
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in its absence. There is clearly a political and social need for faster tallying
mechanisms than Furukawa/Sako and Neff alone can provide.

We describe here a mix network that is tailored for election systems, but
with a substantial speedup over Furukawa/Sako and Neff. In settings like that
described by Sako et al., for example, we estimate that our construction is ca-
pable of yielding a six-to-eight times speedup. We achieve this improvement by
taking an “optimistic” or “fast-track” [GRR98] approach. In particular, we iden-
tify functionality in Furukawa/Sako and Neff that is not needed in the likely case
that mix servers behave correctly and that most ballots are well formed. In the
optimistic case, we show how to dispense with the costly property of robustness
against Byzantine server failures. We also provide a form of universal verifiabil-
ity that is somewhat weaker than the standard definition, but less costly, and
adequate for nearly all types of elections, as we explain.

We refer to our proposal as an exit-poll mix network, by analogy with the
“exit polls” used to provide fast predictions of election outcomes. If servers
behave correctly, our exit-poll mix yields a correct election tally very rapidly.
We expect this to be by far the most common case. If server cheating occurs, our
mix identifies misbehaving servers. The privacy of all votes remains protected
(given a majority of honest servers), but our mix does not produce an output. In
such cases, our exit-poll scheme permits seamless fallback to a more heavyweight
mix (like Furukawa/Sako or Neff) which can take over, complete the mixing and
produce an output. Such heavyweight mixes can also be employed to achieve
supplemental, after-the-fact certification of an election tally achieved with our
mix.

Our exit-poll mix is a general ciphertext-to-plaintext scheme. While it is de-
signed particularly for use in election schemes, we note that it can be employed
in many of the other applications for which such mix networks are useful. Exam-
ples include anonymous e-mail [Cha80] and bulletin boards, anonymous payment
systems [JM98] as well as anonymized Web browsing [GGMM97].

The rest of the paper is organized as follows. We review related work in
section 2. In section 3, we describe ElGamal re-encryption mix networks. We
present the high-level design of our new mix network in section 4, and give
a detailed description of the protocol in section 5. In section 6, we prove the
properties of our mix net. We conclude in section 7.

2 Related Work

Chaum proposed the first mix network, a decryption mix, in [Cha80]. In Chaum’s
construction, users encrypt their inputs with the public-key of each mix server,
starting with the last and ending with the first mix server in the net. Each mix
server removes one layer of encryption, until the plaintexts are output by the
last server. The weakness of this approach is that the mixing can not proceed
if a single server is unavailable. To achieve robustness against server failures,
[PIK93] introduced a new type of mix, re-encryption mix nets, in which the
mixing and decryption phases are separated (see section 3). The particular re-
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Scheme Re- Proof and Decrypt Addition chain
encrypt verification speed-up?

Cut and choose2[SK95,OKST97] 2n 642nk (2 + 4k)n no
Pairwise permutation[Abe99,JJ99] 2n 7n logn( 2k−1 ) (2 + 4k)n partially
Matrix representation[FS01] 2n 18n(2k − 1) (2 + 4k)n partially
Polynomial scheme[Nef01] 2n 8n(2k − 1) (2 + 4k)n partially
Exit-poll mixing [this paper] 6n 6 + 12k (5+10k)n yes

Fig. 1. Optimistic cost per server (for a total of k servers) of mixing n items with
different mix schemes, measured in number of exponentiations. Note that our proof
and verification costs do not depend on n. The table also indicates whether addition
chains can be used to pre-compute exponentiations. “Partially” indicates that addition
chains can be used only in the mixing phase but not to prove correctness.

encryption mix of [PIK93] was shown insecure in [PP89,Pfi94], but was later
fixed by [OKST97].

The main difficulty of re-encryption mixes is to design computationally effi-
cient ways for mix servers to prove that they mixed and re-encrypted their inputs
correctly in the mixing phase. The first techniques were based on costly gen-
eral purpose cut-and-choose zero-knowledge proofs [SK95,OKST97,Abe98]. Mil-
limix [JJ99] and MIP-2 [Abe99,AH01] are based on more efficient zero-knowledge
proofs specifically designed to prove that an output is a re-encryption of one of
two inputs.

The most efficient schemes to date that offer the full spectrum of security
properties are those of Furukawa and Sako [FS01] and Neff [Nef01]. The table
in figure 1 compares the real cost of mixing n items (in terms of the number
of exponentiations required) with different mixing schemes (the numbers are
taken from the respective papers). The column indicating the cost of proof and
verification is in bold, because that is typically by far the most expensive step,
and it is the step that we are optimizing. The cost of re-encryption is higher in our
scheme than in others, but the difference pales in comparison with our savings in
the proof and verification step. Furthermore, the re-encryption exponentiations
can be pre-computed. The table also indicates whether each mixing scheme can
take advantage of the speed-up techniques proposed in [Jak99]1 for multiple
exponentiations with respect to a fixed base. These techniques, based on addition
chains, reduce the equivalent cost of one exponentiation to approximately 10
multiplications for reasonable sizes of batches (see [Jak99] for more details).
This amounts to a very significant speed-up. Our scheme is not only the fastest,
but also the only one that can fully take advantage of addition chains in this
sense.
1 Other aspects of that proposal were later found flawed, and corrected, in [MK00].
The exposed vulnerabilities do not affect the soundness of the speed-up techniques.

2 We note that these proposals have computational costs quadratic in the number of
servers, due to the use of interactive proofs. However, if non-interactive proofs are
employed – as in subsequent papers – this is brought down to a linear cost. The
computational cost we use in the table assumes that this enhancement is performed.
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An attractive alternative to mix networks is homomorphic encryption, in
particular the Paillier scheme [Pai99]. Election schemes based on homomorphic
encryption require a good deal of computation for verification of correct ballot
formation, but very little for tallying. In practice, therefore, they can be much
faster than mix-based election schemes. Until recently, an objection to homo-
morphic schemes has been their inability to accommodate write-in votes, an
unavoidable requirement in the election systems of many jurisdictions. Kiayias
and Yung have recently devised a simple scheme that circumvents this difficulty
[KY02]. In brief, the idea is to permit each ballot to contain either a standard
vote or a write-in vote, and to set aside write-in votes for separate processing
via a mix network (in the unlikely case that this is needed).

It is our belief that mix networks will nonetheless remain an essential tool
in electronic voting, as they still provide features that homomorphic schemes
cannot. Vote-buying and coercion are serious threats in any election, but poten-
tially much more problematic in Internet-based elections, given the anonymizing
mechanisms available on the Internet and its reach across many jurisdictions.
Schemes based on mix networks offer ways of minimizing these threats [HS00],
while homomorphic schemes do not. A second advantage of mix networks is
their flexibility with regard to key distribution. To distribute shares in the Pail-
lier system without use of a trusted third party requires expensive joint RSA
key-generation protocols (e.g., [BF97]), and distribution of a fresh RSA modulus
for every election involving a different distribution of trust. Mix-based schemes
can be based on discrete-log cryptosystems, with simpler and more generalizable
keying mechanisms. With this in mind, we propose a new mix network which
offers a significant efficiency improvement over existing constructions.

3 ElGamal Re-encryption Mix Network

In this section, we describe the basic operation of a plain-vanilla re-encryption
mix network based on the ElGamal cryptosystem. It will serve as a basis for our
main construction described in section 4 and 5. The operation of a mix network
can be divided into the following steps:

1. Setup Phase. In the setup phase, the mix servers jointly generate the public
and private parameters of an ElGamal cryptosystem. The private key is
shared in a (t, n)-threshold verifiable secret sharing scheme among all mix
servers, while the public parameters are published.

2. Submission of Inputs. All users submit their inputs to the mix encrypted
with the public parameters generated in the setup phase.

3. Mixing Phase. Each mix server in turn mixes and re-randomizes the batch
of ciphertexts submitted to the mix.

4. Decryption Phase. After the mixing is done, all output ciphertexts are
decrypted by a quorum of mix servers.

We start with a description of the ElGamal cryptosystem, and discuss in
particular how to re-randomize ciphertexts in the mixing phase. We then explain
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how to jointly generate the parameters for an ElGamal cryptosystem in the setup
phase, and how the quorum decryption works in the decryption phase.

3.1 ElGamal Cryptosystem

ElGamal is a randomized public-key encryption scheme. Let P and Q be two
large primes such that P = 2Q + 1. We denote by GQ the subgroup of Z

∗
P of

order Q. Let g be a generator of GQ. The private key is an element x ∈ ZQ,
and the corresponding public key is y = gx mod P . To encrypt a plaintext
m ∈ GQ, we choose a random element r ∈ ZQ and compute the ciphertext
Ey(m, r) = (gr, myr). Note that an ElGamal ciphertext is a pair of elements
of GQ. To get the decryption Dx(G, M) of an ElGamal ciphertext (G, M), we

compute Dx(G, M)
�
= M/Gx. The ElGamal cryptosystem is semantically secure

[Bon98] if the decisional Diffie-Hellman assumption holds in the group GQ.

Re-randomization
ElGamal is a randomized encryption scheme that allows for re-randomization of
ciphertexts. Given an ElGamal ciphertext (G, M), a mix server can efficiently
compute a new ciphertext (G′, M ′) that decrypts to the same plaintext as (G, M)
(we say that the ciphertext (G′, M ′) is a re-randomization of (G, M)). To re-
randomize a ciphertext, the mix server chooses a value r ∈ ZQ uniformly at
random and computes (G′, M ′) = (Ggr, Myr). Observe that this does not require
knowledge of the private key, and that the exponentiation can be pre-processed.

Given two ElGamal ciphertexts, it is infeasible to determine whether one
is a re-randomization of the other without knowledge of either the private de-
cryption key x or the re-randomization factor r, assuming that the Decision
Diffie-Hellman problem is hard in GQ. A mix server can use this property to
hide the correspondence between its input and output ciphertexts: the input
ciphertexts are first re-randomized, then output in a random order.

However, a mix server who knows the re-randomization factor r can effi-
ciently convince a verifier that (G′, M ′) is a re-randomization of (G, M) with-
out revealing r. The proof of re-randomization consists simply of proving that
logg(G′/G) ≡ logy(M ′/M) (mod P ), which trivially implies that there exists r
such that (G′, M ′) = (Ggr, Myr). To prove the former discrete logarithm equal-
ity, we may use for example Schnorr signatures [Sch91] (as suggested in [Jak98])
or a non-interactive version [FS86] of the Chaum-Pedersen protocol [CP92]. This
proof of re-randomization will serve as the basis for a proof that allows a mix
server to prove that it mixed its inputs correctly (observe that in the real proof
of correctness, a mix server must not reveal which output is a re-randomization
of which input, so the proof outlined above will not work as is.)

3.2 Distributed ElGamal

In the setup phase, the mix servers jointly generate the parameters (P, Q, g, x, y)
of an ElGamal cryptosystem, in such a way that the private key x is dis-
tributed in a (n, t)-threshold verifiable secret sharing (VSS) scheme among all
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mix servers [Fel87]. To set up this VSS, a simple solution is to have a trusted
“dealer” generate all the parameters and then distribute shares of the private
key to the mix servers. (An alternative solution that does not require a trusted
third party was proposed in [Ped91], but it was later found flawed by [GJK+99].
Note that the proved-correct protocol suggested in [GJK+99] is for a different
VSS scheme.)

With the private key thus shared, it is known that any quorum of t mix
servers can jointly decrypt the output ElGamal ciphertexts without explicitly
reconstructing the private key x. A quorum T of t servers can decrypt a cipher-
text (G, M) as follows:

Dx(G, M) =
M

Gx
=

M∏
j∈T (Gxj )

∏
l∈T,l �=j

−l
j−l

.

Observe that this equation requires each server j ∈ T to raise G to the xj-th
power. Server j may prove that it has honestly computed S = Gxj with the
following proof of discrete logarithm equality: logG S ≡ logg yj(= xj) (mod P ).

4 Mix Net Design

Our new mix net mixes ciphertexts like an ElGamal re-encryption mix. The
novelty lies first in a highly efficient method for proving that the mixing was
done correctly, and second in a method for falling back on a more heavyweight
mix if cheating by a server is detected. We start with a high-level description of
these two building blocks.

Each input ciphertext submitted to our mix net is required to be the en-
cryption of a plaintext that includes a cryptographic checksum. To verify that a
mix server operated correctly, we ask for a proof that the product of the plain-
texts corresponding to the input ciphertexts equals the product of the plaintexts
corresponding to the output ciphertexts. As we shall show, such proofs can be
produced and verified highly efficiently without knowledge of the plaintexts. We
call this proof a proof-of-product (POP) with checksum.

This proof however does not detect all types of cheating. Rather, it guar-
antees that if the mix server did not mix correctly, it had to introduce in the
output at least one new ciphertext that corresponds to a plaintext with an in-
valid checksum. When outputs are decrypted, invalid checksums are traced to
one of two sources: either an input that was originally submitted to the mix
network with an invalid checksum, or a cheating mix server. The difficulty of
this approach lies in the fact that since invalid checksums can only be traced at
decryption time, cheating may not be detected until after the harm is done. In
effect, a cheating server may be able to match inputs to outputs before cheating
gets detected in the verification step. If we were to use this mix just like that,
nothing could be done after a server has cheated to restore the privacy of those
users whose inputs have already been traced. In particular, a second round of
mixing wouldn’t help.
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To address this difficulty, we introduce the second main contribution of this
paper, which may be of interest on its own. Our approach is to encrypt users’
inputs twice (a technique we call double enveloping). In the verification step
outlined above, the output ciphertexts are first decrypted only once. If the ver-
ification succeeds and no servers are found to have cheated, the output cipher-
texts are decrypted one more time and yield the plaintext. If on the other hand
one or several servers are found to have cheated, the output ciphertexts are not
decrypted further. Instead, they become the input to a different (slower) mix
network such as [Nef01] and are mixed a second time before being finally de-
crypted. This second round of mixing ensures that the privacy of users can not
be compromised. A cheating server in the first round of mixing may learn at most
the relationship between a double-encrypted ciphertext and a single-encrypted
ciphertext, which does not help to find the corresponding plaintext after the
second round of mixing.

In the rest of this section, we describe these two building blocks in greater
detail.

4.1 Proof of Product with Checksum

Consider a mix server who receives as inputs n ElGamal ciphertexts (Gi, Mi),
and outputs a permuted re-randomization of these, namely a permutation of
the list of (G′

i, M
′
i) = (Gig

ri , Miy
ri). Our key idea is to let the mix server

prove that its operations are product preserving, i.e. that the product of the
plaintexts corresponding to the input ciphertexts (Gi, Mi) equals the product of
the plaintexts corresponding to the output ciphertexts (G′

i, M
′
i). The following

property of the ElGamal encryption scheme makes this possible:

Proposition 1. (Multiplicative Homomorphism of ElGamal): Let (G1, M1) and
(G2, M2) be ElGamal encryptions of plaintexts P1 and P2. Then (G1G2, M1M2)
is an ElGamal encryption of the product P1P2. We call (G1G2, M1M2) the “prod-
uct” of (G1, M1) and (G2, M2).

Proposition 1 shows that any verifier can compute an ElGamal encryp-
tion (G, M) of

∏
mi, and an ElGamal encryption (G′, M ′) of

∏
m′

i, where
mi (resp. m′

i) is the plaintext corresponding to (Gi, Mi) (resp., (G′
i, M

′
i)). To

prove that its operations are product preserving, the mix server need only prove
that logg(G′/G) = logy(M ′/M). As we saw in section 3.1, this implies that∏

mi =
∏

m′
i.

The Need for a Checksum
The product equality

∏
mi =

∏
m′

i clearly does not imply that the sets {mi}n
i=1

and {m′
i}n

i=1 are equal. In other words, the property of being product-preserving
does not by itself guarantee that a mix net operates correctly. Our approach is
to restrict the plaintexts mi (and therefore also m′

i) to a particular format, in
such a way that it becomes infeasible for a dishonest mix server to find a set
{m′

i} �= {mi} such that
∏

mi =
∏

m′
i and all the elements m′

i are of the required
format. We propose to define this special format by adding a cryptographic
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checksum to the plaintext, drawing on the techniques of [JJ01]. This is done as
follows.

Users format their inputs to the mix net as an ElGamal encryption of a
plaintext m and an ElGamal encryption of h(m), where h : {0, 1}∗ → GQ is a
cryptographic hash function (in the proof of security, we model h has a random
oracle [BR93]): (

Ey(m, r), Ey(h(m), r′)
)

Each input to the mix now consists of a pair of ElGamal ciphertexts. The
mix re-randomizes separately each of the two ElGamal ciphertexts in every pair,
then outputs all the pairs in a random order. The mix must then prove that the
products of the plaintexts corresponding to the first element in the pair are the
same in the input and the output (

∏
mi =

∏
m′

i) and also that the products of
the plaintexts corresponding to the second element in the pair are the same in
the input and the output (

∏
h(mi) =

∏
h(m′

i)). As we shall prove in section 6,
these two proofs together guarantee the set equality {mi} = {m′

i}.

4.2 Double Enveloping

As we have already pointed out, a mix whose correctness was enforced only by
a proof-of-product with redundancy may not detect server cheating until after
the harm is done. To illustrate how users’ privacy may be compromised even
if all cheating servers are disqualified, we offer the following example. Assume
that the first mix server is corrupt and that the input submitted by user i is
(Ey(mi, ri), Ey(h(mi), r′

i)). The corrupt first server can replace the input of user
1 by (Ey(m1, r1)Ey(m2, r2), Ey(h(m1), r′

1)Ey(h(m2), r′
2)) (recall the definition of

the product of ElGamal ciphertexts in Section 4.1), and replace the input of user
2 by (1, 1, 1, 1). Such cheating will only be detected after the decryption phase.
Even if the cheating server were to be disqualified and the mixing protocol
restarted, the cheating server would still be able to distinguish the plaintexts
submitted by users 1 and 2 from other users’ plaintexts, by comparing the output
of the restarted protocol with that of the first execution.

To defend against this attack, we add a second layer of encryption to the
plaintext m of a user. A user whose plaintext input is m is required to submit
the following triple of ciphertexts to the mix:

(Ey(G, r), Ey(M, r′), Ey(h(G, M), r′′)),

where (G, M) = (gr̂, myr̂), and as before h : {0, 1}∗ → GQ is a cryptographic
hash function.

Thus (G, M) replaces m in the description of POP-with-checksum above.
(Other double enveloping designs resulting in the same functional structure are
possible. We choose this one for concreteness.) If cheating is caused by a corrupt
server, we can re-randomize all the inner-layer encryptions and their order with
a standard ElGamal-based re-randomization mix net, before they are finally
decrypted to plaintexts. Although the adversary might be able to link some
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inner-layer encryptions to the input ciphertexts, he cannot link the final output
plaintexts to them.

5 Exit-Poll Mix Net

Assumptions. We assume that there exists a bulletin board, which is accessi-
ble to the public, and is authenticated, tamper-proof, and resistant to denial-of-
service attacks. All messages and proofs are posted on this bulletin board.

Setup. The mix servers jointly generate parameters (P, Q, g, x, y) for an ElGa-
mal cryptosystem E. The public parameters are made public, while the private
key x is shared among the mix servers in a (t, n)-threshold VSS scheme. Users
are required to submit their input mi to the mix net formatted as follows:

1. The user encrypts the input mi to produce Ey(mi) = (Gi, Mi).
2. The user computes Hi = h(Ey(mi)). As explained earlier, we model h as a

random oracle in the proof of security. In practice, a publicly available hash
function such as MD5 [Riv92] or SHA-1 [N95] should be used.

3. The user submits the triple Ey(Gi), Ey(Mi), Ey(Hi). The mix servers check
that every component belongs to GQ, and that this input has not already
been submitted. If any component is not in GQ, the user is disqualified and
the triple is discarded. If the same input has already been submitted by
another user, the duplicate submission is discarded.

4. The user proves his knowledge3 of Gi, Mi, Hi. This is important to prevent
a user from re-encrypting and re-posting another user’s input. This proof
of knowledge should be bound to a unique mix-session identifier to achieve
security across multiple invocations of the mix. Any user who fails to give
the proof is disqualified, and the corresponding input is discarded.

5. We note that dishonest users may submit inputs that are not properly for-
matted, in the sense that the equality Hi = h(Ey(mi)) does not hold. We
stress that such improperly formatted inputs can not force our mix net to
default to the slower back-up mixing. The only event that can trigger a
default to the back-up mixing is cheating by one of the mix servers.

First Stage: Re-randomization and Mixing. This step proceeds as in all
re-randomization mix nets based on ElGamal. One by one, the mix servers re-
randomize all the inputs and their order. (Note that the components of triples
are not separated from each other during the re-randomization.) In addition,
each mix net must give a proof that the product of the plaintexts of all its
inputs equals the product of the plaintexts of all its outputs.

3 We note that for reasons of efficiency, it suffices that he proves knowledge of one of
these components, and make the proof relative to the other two. This can be done
(as is standard) by letting the latter two be part of the input to the random oracle
that sets the challenge for the proof.
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1. Each mix server reads from the bulletin board the list of triples corresponding
to re-encryptions of Ey(Gi), Ey(Mi), Ey(Hi) output by the previous mix
server: {(gri , ai · yri), (gsi , bi · ysi), (gti , ci · yti)}N

i=1. (Note that even if some
servers have cheated, the ciphertexts can still be formatted like that, provided
that every component belongs to GQ.)

2. The mix server re-randomizes the order of these triples according to a secret
and random permutation. Note that it is the order of triples that is re-
randomized, and that the three components Ey(Gi), Ey(Mi) and Ey(Hi)
that make up each triple remain in order.

3. The mix server then re-randomizes each component of each triple indepen-
dently, and outputs the results: {(gr′

i , a′
i · yr′

i), (gs′
i , b′

i · ys′
i), (gt′

i , c′
i · yt′

i)}N
i=1.

4. The mix server proves that
∏

ai =
∏

a′
i and

∏
bi =

∏
b′
i and

∏
ci =

∏
c′
i.

Second Stage: Decryption of the Inputs

1. A quorum of mix servers jointly decrypt each triple of ciphertexts to produce
the values Gi, Mi and Hi, using the technique we reviewed in Section 3.2.

2. All triples for which Hi = h(Gi, Mi) are called valid.
3. Invalid triples are investigated according to the procedure described below.

If the investigation proves that all invalid triples are benign (only users
cheated), we proceed to step 4. Otherwise, the decryption is aborted and
we continue with the back-up mixing.

4. A quorum of mix servers jointly decrypts the ciphertexts (Gi, Mi) for all valid
triples. This successfully concludes the mixing. The final output is defined
as the set of plaintexts corresponding to valid triples.

Special Step: Investigation of Invalid Triples. The investigation proceeds
as follows. The mix servers must reveal the path of each invalid triple through
the various permutations. For each invalid triple, starting from the last server,
each server reveals which of its inputs corresponds to this triple, and how it
re-randomized this triple. The cost of checking the path of an invalid triple is
three exponentiations per mix server (the same cost as that incurred to run one
input through the mix net). One of two things may happen:

– Benign Case (Only Users Cheated): if the mix servers successfully pro-
duce all such paths, the invalid triples are known to have been submitted
by users. The decryption is resumed after the incorrect elements have been
removed.

– Serious Case (One or More Servers Cheated): if one or more mix
servers fail to recreate the paths of invalid triples, these mix servers are
accused of cheating and replaced, and our mix terminates without producing
an output. In this case, the inputs are handed over to the back-up mixing
procedure described next.

Note that when the mix servers investigate an invalid triple we assume im-
plicitly that the successive permutations applied by mix servers define a unique
path for each triple through the mix net. This is not strictly true if two or more
triples encode the same inner-layer ciphertext. Indeed if two triples correspond to
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different outer-layer encryptions of the same inner-layer ciphertext, the (outer-
layer) re-encryption of one can be passed off as a re-encryption of the other.
In this case, the permutations do not strictly commit mix servers to a unique
path for each triple. Observe however that this does not affect the investigation
of invalid triples. A corrupt server may substitute one copy (i.e. outer-layer en-
coding) of an invalid triple for another, but must eventually account for all copies.

Back-Up Mixing. The outer-layer encryption of the inputs posted to the mix
net is decrypted by a quorum of mix servers. The resulting set of inner-layer
ciphertexts becomes the input to a standard re-encryption mix net based on
ElGamal (using, for example, Neff’s scheme described in [Nef01]). At the end
of this second mixing, the ciphertexts are finally decrypted to plaintexts, which
concludes the mixing.

6 Security Analysis

We start with a brief discussion of the efficiency of our scheme. The costs are as
follows for a batch consisting of n inputs:

– Re-encryption and Mixing: Linear number of modular exponentiations (6n).
– Proof of Correct Mixing: Constant number of modular exponentiations (but

number of modular multiplications linear in n).
– Verification: Constant number of modular exponentiations per server (but

number of modular multiplications linear in n). The cost is also linear in the
number of servers.

– Decryption: Linear number of modular exponentiations ((5 + 10k)n for k
servers).

This makes our mix not only twice as fast as the next fastest mix network
[Nef01], but also the only mix (among mixes with standard security guarantees)
for which the costs are incurred mostly in the re-encryption and decryption
phases. This is important because these two phases (unlike the proof phase)
can benefit from the significant speed-up techniques developed in [Jak99]. Us-
ing addition chains, we estimate that the cost of one exponentiation is roughly
equivalent to 10 multiplications, with reasonably sized batches.

We now turn to proving that our mix network offers guarantees of correctness,
verifiability and privacy.

Proposition 2. (Correctness) If all parties follow the protocol, the output of
the mix net is a permuted decryption of the input.

Since the set of plaintexts is preserved in re-randomizations, this follows from
the correctness of decryption.

The verifiability of our mix net is a restricted form of universal verifiability
in the sense that only the operation of the mix net on valid inputs (i.e., the
inputs that are well-formed according to our protocol) are universally verifiable.
We call this restricted form of verifiability “public verifiability”.
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Definition 1. (Public Verifiability) A mix net is publicly verifiable if there ex-
ists a polynomially bounded verifier that takes as input the transcript of the
mixing posted on the bulletin board, outputs “valid” if the set of valid outputs is
a permuted decryption of all valid inputs, and otherwise outputs “invalid” with
overwhelming probability. Note that to prove public verifiability, we consider an
adversary that can control all mix servers and all users.

Proposition 3. Our mix net is publicly verifiable if there exists a group G in
which the discrete logarithm problem is hard.

Proof. The proof proceeds by contradiction. We assume that one or several mix
servers cheat during the execution of a mixing protocol, yet manage to produce
a transcript that fools an outside verifier into believing that the mixing was done
correctly. We show how to use these cheating mix servers to compute discrete
logarithms in the group G. Our proof is based on the following lemma:

Lemma 1. Let a and b be two elements of a group G of order |G|. For ran-
dom values r1, . . . , rN and s1, . . . , sN , we compute the following group elements:
hi = aribsi . Consider an adversary who on inputs h1, . . . , hN outputs integers
e1, . . . , eN such that

∏N
i=1 hei

i = 1 and at least one of the ei’s is non-zero. With
probability 1 − 1/|G|, the knowledge of these ei’s allows us to compute loga b.

Proof. If
∑N

i=1 siei �= 0, then we can compute loga b=−(
∑N

i=1 riei)/(
∑N

i=1 siei).
It remains to prove that

∑N
i=1 siei �= 0 happens with probability 1−1/|G|. Since

the values ri’s are random, the knowledge of the hi’s yields no information to
the adversary about the si’s. Indeed we have log hi = ri + loga bsi. Since the
distribution of ri is uniformly random, the distribution of si is also uniformly
random given hi. The probability that the vector E = (e1, . . . , eN ) chosen by the
adversary is orthogonal to an unknown random S = (s1, . . . , sN ) is 1−1/|G|. 
�

Now let us turn to the proof of proposition 3. We denote the inputs to the
mix network as

(Ey(G1,r1 ),Ey(M1,r
′
1),Ey(H1,r

′′
1 )),..., (Ey(GN ,rN ),Ey(MN ,r′

N ),Ey(HN ,r′′
N )),

and denote the outputs of the mix network as

(Ey(G1, r1), Ey(M1, r′
1),Ey(H1,r′′

1 )),..., (Ey(GN ,rN ),Ey(MN ,r′
N ),Ey(HN ,r′′

N )).

For cheating to escape detection, the equation
∏

i

Hi =
∏

i

Hi (1)

must hold, and in addition we must have Hi = h(Gi,Mi) for all i. Furthermore,
since we restrict the notion of universal verifiability to valid inputs, we have
Hi = h(Gi, Mi) for all i. Equation 1 can therefore be rewritten:

∏
i

h(Gi, Mi) =
∏

i

h(Gi,Mi). (2)
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Now recall that in our security proof, we model the hash function h as a random
oracle. Each time a mix server queries h on a new input, we choose random
values ri and si and return aribsi (we answer queries on inputs that have already
been queried consistently). Since the mix server cheated, equation 2 gives us a
non-trivial product relationship of the type that allows us to compute discrete
logarithms in the group G according to lemma 1, and this concludes the proof.


�
Our mix network offers the same guarantee of privacy as all mix networks

based on ElGamal re-encryptions, e.g. [Nef01].

7 Conclusions

We constructed a verifiable mix network that is extremely fast in case none of the
mix servers cheat. This enables election officials to quickly announce the results
in the common case when all mix servers honestly follow the mixing protocol.
In case one or more of the mix servers cheat, our system detects the cheating
server or servers and then redoes the mixing using one of the standard (slower)
mix systems [Nef01]. We emphasize that server cheating cannot compromise user
privacy; it just causes the mixing process to run slower.

Our fast verifiable mixing is achieved by using the homomorphic property
of ElGamal encryption to quickly test that the product of all plaintext inputs
is equal to the product of all plaintext outputs. Clearly, this simple product
test is insufficient for proving correct mixing. However, we are able to prove
that by adding an appropriate checksum to all inputs this product test becomes
sufficient. Furthermore, we use double enveloping to ensure user privacy in case
one or more mix servers cheat. We hope that our approach can be used to speed-
up other secure distributed computations in case all participants honestly follow
the protocol, without affecting security in case of cheating.
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