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Abstract. Constructing symmetric drawings of graphs is NP-hard. In
this paper, we present a new method for drawing graphs symmetrically
based on group theory. More formally, we define a n-geometric automor-
phism group of a graph that can be displayed as symmetries of a drawing
of the graph in n dimensions. Then we present an algorithm to find all
2- and 3-geometric automorphism groups of a graph. We implement the
algorithm using Magma [11] and the experimental results shows that our
approach is very efficient in practice. We also present a drawing algorithm
to display a 2- or 3-geometric automorphism group.

1 Introduction

Symmetry is one of the most important aesthetic criteria that represent the
structure and properties of a graph visually. To construct a symmetric drawing
of a graph, we need two steps. The first step, called the symmetry finding step,
is to find geometric automorphisms of the graph, which can be displayed as
symmetries of a drawing of the graph. The second step, called the drawing step,
is to construct a drawing that displays these automorphisms.

However, the problem of determining whether a graph has a nontrivial strict
geometric automorphism in two dimensions is NP-complete [8]; it is probably
strictly harder than graph isomorphism. For planar graphs, there is a polynomial
time algorithm [5]. The problem of determining whether a graph can be drawn
symmetrically in three dimensions is also NP-complete [6] and a polynomial time
algorithm is given for planar graphs [6].

In this paper, we present a group-theoretic method to find all 2- and 3-
geometric automorphism groups of a graph. First we define an n-geometric au-
tomorphism group of a graph that can be displayed as symmetries of a drawing
of the graph in n dimensions.

Next we present an algorithm to find all 2- and 3-geometric automorphism
groups of a graph, based on the classification of the 2- and 3-geometric automor-
phism groups in [1]. This is done by first calculating the automorphism group
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Aut(G) of a graph G and then looking for subgroups satisfying the classification.
More specifically, we use conjugacy classes of the automorphism group to find
the subgroups.

The main contribution of this paper is that we provide an algorithm for
finding all 2- and 3-geometric automorphism groups of a graph. A heuristic for
finding an axial symmetry in two dimensions is presented by de Fraysseix [4].
Buchheim and Junger present a branch and cut approach to find either a ro-
tational symmetry or an axial symmetry in two dimensions [2]. However, our
method is the first to find dihedral groups, which have two generators, in two
dimensions and fourteen different kinds of groups, with up to three generators,
in three dimensions.

We implement the algorithm using Magma [11], a computational algebra sys-
tem for algebra, number theory, geometry and combinatorics, which incorporates
nauty [12] for finding automorphism groups of graphs. The worst case time com-
plexity is exponential in theory, but experiments show in practice it is very fast.
For example, for our first data set, which consists of graphs with |V | < 50 and
|Aut(G)| < 1000, it takes 0.022 seconds to compute all 2-geometric groups and
0.037 seconds to compute all 3-geometric groups on average. For our second data
set, which consists of graphs with |V | < 50 and 1, 000 < |Aut(G)| < 51, 000, 000,
it takes 0.41 seconds to compute all 2-geometric groups and 2.58 seconds to
compute all 3-geometric groups on average. Further, we show that our method
is much faster than the branch and cut approach [2]. The average times for the
graphs from the same data set of [2] are below 0.015 seconds. The worst case
time is 2.60 seconds, whereas the worst case time of [2] was 9197.55 seconds.

Finally we present and implement a drawing algorithm to display a 2- or
3-geometric subgroup. Examples of the outputs are illustrated in Figure 1. It
shows a drawing of four-cell displaying dihedral symmetry in two dimensions
and a drawing of four-cube displaying octahedral symmetry in three dimensions.

Fig. 1. Examples of our results.
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In the next section, we review the background and define n-geometric au-
tomorphism group. In Section 3, we describe our methods for finding 2- and
3-geometric automorphism groups. The drawing algorithm is described in Sec-
tion 4 and Section 5 concludes.

2 Background

2.1 Symmetry

Let In(R) be the group of isometries of R
n and let On(R) be the subgroup of

In(R) that fixes the origin. A matrix A is orthogonal if and only if A.AT = I. The
elements of On(R) are represented by orthogonal matrices and we use SOn(R)
to denote the subgroup corresponding to the matrices of determinant 1.

A symmetry α of a set of points Q in R
n is an isometry R

n → R
n such

that α(Q) = Q. The symmetries of the point set Q form a group S(Q) and by
translating Q if necessary we may suppose that S(Q) is a subgroup of On(R).

2.2 Symmetric Graph Drawing and Geometric Automorphism
Group

An automorphism of a graph G = (V,E) is a permutation p of V such that if
{u, v} ∈ E then {p(u), p(v)} ∈ E. The set of automorphisms of a graph form
a group Aut(G). A straight-line drawing D of graph G is an injective function
D : V → R

n(n ≥ 0). A vertex v is placed at D(v) and an edge {u, v} is
represented as the straight-line segment joining D(u) and D(v).

The concept of geometric automorphism group in two dimensions was intro-
duced by Eades and Lin [3]. An automorphism α of a graph G is geometric if
there is a drawing D of G which displays α as a symmetry of D. Note that not
every automorphism is geometric; see Figure 2(a). A subgroup H of Aut(G) is
geometric if there is a single drawing of the graph that displays every element of
H. Note that the two geometric automorphism groups may not be combinable;
see Figure 2(b) and (c).
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Fig. 2. (a) The automorphism (1,2,3)(4,5) is not geometric. (b) A drawing of K4

displaying a geometric automorphism group of size 8. (c) A drawing of K4 displaying
a geometric automorphism group of size 6.
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2.3 The n-Geometric Automorphism Group

We generalize the notion of a geometric automorphism group [3] to n dimensions.
A group H ⊆ Aut(G) is n-geometric if there is a drawing D that displays all the
elements of H in n dimensions. Note that because we always assume that D is
centered on the origin, H will be represented as a subgroup of On(R).

Lemma 1. A group H ⊆ Aut(G) is n-geometric with respect to a drawing D if
and only if there exists a homomorphism φ : H → On(R) such that for all v ∈ V
and h ∈ H, D(hv) = φ(h)D(v).

A homomorphism φ : H → On(R) is called a representation of H. In matrix
terms, each element of H is represented by an orthogonal matrix. The represen-
tation is faithful if φ is injective.

We use basic terminology from group theory [10]. Let H be a group acting
on a set U . For u ∈ U , let Hu = {x ∈ U | x = gu for some g ∈ H} ⊆ U be
the orbit of u and Hu = {g ∈ H | g(u) = u} ⊆ H be the stabilizer of u. The
orbits divide the set U into equivalence classes, each of which can be specified
by a representative element. Two elements a and b of a group H are conjugate if
there exists h ∈ H such that b = hah−1. Conjugacy is an equivalence relation and
the equivalence classes of H are called conjugacy classes. We now characterize
n-geometric groups.

Theorem 1. A group H ⊆ Aut(G) is n-geometric if and only if there is an in-
jective homomorphism θ : H → On(R) such that for a representative v1, . . . , vk ∈
V of each orbit of H acting on V , there are corresponding distinct points a1, . . .,
ak ∈ R

n such that θ(Hvi
) = θ(H)ai

.

3 Finding Geometric Automorphism Groups

We now outline our method of finding all 2- and 3-geometric automorphism
groups based on the classification in [1]. It follows from Theorem 1 that a
permutation group A acting on a graph is n-geometric if it is isomorphic (as an
abstract group) to a finite subgroup H of On(R) and

1. if A fixes more than one vertex, then H fixes a point other than the origin;
2. for every vertex v, the stabilizer Av is isomorphic to the stabilizer in H of a

point of R
n.

When the value of n is clear from the context we shall simply refer to A as
a geometric group. The group H will be referred to as the type of A.

Our search for the geometric subgroups of Aut(G) is facilitated by the fortu-
nate fact that all of the finite subgroups of O2(R) and O3(R) have very simple
presentations. That is, they can be expressed in the form H = 〈X | R 〉, where
X is a list of generators for H and R is a list of relations between the generators.
Furthermore, there are at most three generators and in many cases the relations
simply specify the orders of the generators and the orders of their products.
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3.1 The Finding Algorithm

To find the geometric subgroups of the automorphism group Aut(G) of a graph
G = (V,E) we look for elements that satisfy the relations of its presentation. We
are only interested in finding these subgroups up to conjugacy because, as the
next lemma shows, conjugate n-geometric subgroups have essentially the same
drawings. Let Sym(V ) be the group of all permutations of V .

Lemma 2. Let H be an n-geometric subgroup of Aut(G) with respect to a draw-
ing D and suppose that H ′ = g−1Hg ⊆ Aut(G), where g ∈ Sym(V ). Then H ′ is
n-geometric with respect to the drawing D′ defined by D′(v) = D(gv).

Computing the conjugacy classes of a group is a hard problem but highly
optimized algorithms for this purpose are part of Magma. Moreover, in searching
for geometric automorphisms it is often possible to restrict to a proper subgroup
of Aut(G). To take a simple example, if g is a 2-geometric automorphism of order
m > 2, then g has at most one fixed point and all the other cycles have lengthm.
Therefore, if we were looking for a 2-geometric automorphism of order 3, say,
and if the group had an orbit of length 16, then we could confine our search to
the stabilizer of a point in the orbit. These and similar considerations speed up
the search considerably but for clarity we leave them out of our descriptions of
the algorithms.

2-Geometric Subgroups. In two dimensions the only geometric groups are
the cyclic groups Cn of order n and the dihedral groups Dn of order 2n. In
all cases, the first step in finding these is to compute the automorphism group
Aut(G), in short A, of the graph G.

Algorithm for the 2-geometric cyclic groups
1. Use the orbit lengths of Aut(G) to compute an upper bound for the order

of a 2-geometric element.
2. Find representatives for the conjugacy classes of Aut(G).
3. Accept all elements of order 2 found in the previous step and all elements of

order m > 2 with at most one fixed point and all other cycles of length m.

Every pair of elements of order 2 generates a dihedral group. We makes use of
the elements found in the previous algorithm, as follows (The normalizer NA(H)
of a subgroup H is defined to be set of elements a ∈ A such that a−1Ha = H).

Algorithm for the 2-geometric dihedral groups
1. Find representatives for the conjugacy classes of geometric elements using

the previous algorithm. In this case we also require that any elements of
order 2 fix at most one point.

2. For each element g found in the previous step, compute the normalizer N of
〈 g 〉 in Aut(G).

3. Find representatives for the conjugacy classes of elements of order 2 in N .
4. Accept those elements a found in the previous step that satisfy the relation

(ga)2 = 1. The group 〈 g, a 〉 is a 2-geometric dihedral group.
5. Carry out some additional checking to choose a single representative for

dihedral groups that are conjugate within N .
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3-Geometric Subgroups. There are five types of geometric groups that can
be represented by rotations in R

3: cyclic groups Cn, dihedral groups Dn, the
tetrahedral group T , the octahedral group O, and the icosahedral group I.
Furthermore, Dn has presentation 〈x, y | x2 = y2 = (xy)n = 1 〉 and the groups
T , O and I have presentations 〈x, y | x2 = y3 = (xy)k = 1 〉, where k is 3, 4
or 5, respectively. Since D1 = C2, we shall only use the type Dn when n is at
least 2.

From each rotation group B we get a larger group B∗ by taking the direct
product of B with the central inversion −I. If we have a geometric subgroup H
of type B we find candidates for the groups of type B∗ by looking inside the
centralizer CA(H) = { a ∈ A | ah = ha for all h ∈ H } for elements of order 2
with at most one fixed point; such an element will be represented by the central
inversion. This step is straightforward (but potentially expensive) and so we
omit it from the descriptions that follow.

In addition to the groups just described, there are four other types that do
not consist entirely of rotations. They can be described by symbols (H | K). This
means that the group itself is isomorphic to a group of type H and contains a
subgroup (of rotations) of index 2 of type K. The possible types are (C2n | Cn),
(Dn | Cn), (D2n | Dn) and (O | T ).

We note that it is possible for a permutation group A to be represented as
a 3-geometric group in more than one way. For example, a cyclic group of order
4m that fixes at most one point and with all other orbits of length 4m has types
C4m and (C4m | C2m).

Algorithm for the 3-geometric groups of types Cn and (C2n | Cn)
1. Find representatives for the conjugacy classes of A and accept those elements

g of order n all of whose cycles have length 1 or n. The group 〈 g 〉 is 3-
geometric of type Cn.
But if we include the requirement that no vertex in a drawing lies on an edge
joining two other vertices, then additional work needs to be done.

2. If n is even, find all elements h ∈ CA(g) with at most one fixed point and
whose square is g. The lengths of the cycles of h will be 1, 2 and 2n. The
subgroup 〈h 〉 is 3-geometric of type (C2n | Cn).

Algorithm for the 3-geometric groups of types Dn, (Dn | Cn) and
(D2n | Dn)

1. Find representatives for the conjugacy classes of geometric elements using
the previous algorithm.

2. For each element g found in the previous step, compute the normalizer N of
〈 g 〉 in Aut(G).

3. Find representatives for the conjugacy classes of elements of order 2 in N .
4. Accept those elements a found in the previous step that satisfy the relation

(ga)2 = 1. The group H = 〈 g, a 〉 is a dihedral group.
5. If H fixes more than one point we require all the orbits of H to have lengths

1, n or 2n. Then H is a group of type (Dn | Cn).
6. If H fixes at most one point and n = 2m, then it is of type (D2m | Dm).
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7. If H fixes at most one point and if the cycles of g have lengths 1 or n, then
H is of type Dn and also of type (Dn | Cn).

8. Carry out some additional checking to choose a single representative for
dihedral groups that are conjugate within N .

We give the details for type I. The other cases are similar except that a group
with presentation 〈x, y | x2 = y3 = (xy)4 = 1 〉 may correspond to a geometric
group of type O or to one of type (O | T ) depending on the nature of its point
stabilizers.

Algorithm for 3-geometric groups of types T , O, I and (O | T )
1. Find representative for the conjugacy classes of elements of order 5. These

elements are necessarily 3-geometric.
2. For each element g found in the previous step, find representatives for the

conjugacy classes of the elements of order 3 in A under the action of the
centralizer CA(g); that is, we consider two elements h1 and h2 of order 3 to
be equivalent if for some a ∈ CA(g) we have a−1h1a = h2.

3. For elements g of order 5 and h of order 3 found in the previous steps check
whether gh has order 2. If so, the group 〈 g, h 〉 is isomorphic to I.

4. For each group H = 〈 g, h 〉 found in the previous step, check that it fixes at
most one point and check that it is geometric by determining whether the
stabilizer of a representative for each of its orbits is of an allowed type. In
the case of I the allowed subgroups are those of orders 1, 2, 3 and 5. This
excludes the subgroups of orders 4 and 6, 10 and 12.

5. Carry out some additional checking to choose a single representative for
groups that are conjugate within Aut(G).

3.2 Experimental Results

We implement the algorithm using Magma Version 2.8 [11], and conduct two
types of experiments. The aim of the experiments is to test the runtime of the
symmetry finding algorithm described above. The runtime, in general, depends
more on the size of Aut(G) than the size of G, and thus we use test data with
large automorphism groups.

The first experiment is to find all the 2- and 3-geometric groups for a given
graph and then find a geometric automorphism group of maximum size. We use
three test data sets. The first two test sets are graphs generated from permutation
groups. For a permutation group H acting on a set V we obtain a graph G =
(V,E) by taking the edge set E to be an orbit ofH on unordered pairs of vertices.
That is, choose distinct elements u and v of V and set E = { {h(u), h(v)} | h ∈
H }. The graph created from H has an automorphism group that contains H.
For each group, we choose at most one graph. We only choose graphs that
are connected since disconnected graphs can be handled using similar methods
in [7]. The groups were taken from a Magma database of primitive permutation
groups of degree (that is, |V |) less than 50. The first test set has 67 graphs with
|Aut(G)| < 1, 000 and a second test set has 34 graphs with 1, 000 < |Aut(G)| <



A Group-Theoretic Method for Drawing Graphs Symmetrically 93

51, 000, 000. A third test data was a set of graphs with highly symmetric graphs
such as regular graphs, the cage graphs, non-Hamiltonian graphs, the platonic
solids and incidence planes from Groups & Graphs [9].

The first experiment was done on DEC Alpha 600 5/333. Tables 1 and 2
display the experimental results from the first experiment with three data sets.
First we present the time for Computing Aut(G) and the size of Aut(G). Each
row shows the time for finding each of 2- and 3-geometric groups. For each case,
we present the average and worst case of time, the average and maximum size
of the maximal subgroup.

Table 1. Results for 100 graphs

|Aut(G)| < 1, 000 |Aut(G)| > 1, 000

Time Size Time Size

Av Max Av Max Av Max Av Max
Aut(G) 0.00152 0.017 238 820 0.0042 0.017 1812375 50803200

C2
k 0.017 0.1 23.1 47 0.11 0.634 8.9 24

D2
k 0.0057 0.034 46.1 94 0.29 3.8 16.1 24

Av for 2D 0.022 0.41
C3

k 0.017 0.1 23.1 47 0.11 0.63 8.9 24
(C2k|C3

k) 0.005 0.017 5.3 20 0.0058 0.033 7.3 24
C3

k
∗ 0.002 0.0125 6 6 0.34 5.0 8.5 12

D3
k 0.002 0.016 46.1 94 0.35 5.0 16.1 24

(Dk|C3
k) 0.002 0.0202 46.1 94 0.373 5.26 16.1 24

(D2k|D3
k) 0.002 0.025 46.1 94 0.362 5.1 16.1 24

D3
k

∗ 0.005 0.033 8 8 0.678 8.7 15.7 28
T 0.0002 0.016 12 12 0.23 2.9 12 12
T ∗ 0.0003 0.017 0 0 0.0039 0.067 24 24

(O|T ) 2e-5 0.0005 24 24 0.033 0.558 24 24
O 2e-5 0.0005 0 0 0.033 0.558 24 24
O∗ 5e-5 0.001 0 0 0.0029 0.05 48 48
I 0 0 0 0 0.048 0.617 60 60
I∗ 0 0 0 0 0 0 120 120

Av for 3D 0.037 2.58

Experimental results shows that our method is very efficient. In practice, it
computes all 2- and 3-geometric automorphism groups very quickly. For example,
for the first data set (|V | ≤ 50 with |Aut(G)| < 1, 000), it takes 0.022 seconds
to compute all 2-geometric groups and 0.037 seconds to compute all 3-geometric
groups on average. When |Aut(G)| becomes larger, then it takes longer. For ex-
ample, for the second data set (|V | ≤ 50 with 1, 000 < |Aut(G)| < 51, 000, 000),
it takes 0.41 seconds to compute all 2-geometric groups and 2.58 seconds to
compute all 3-geometric groups on average. In fact, the computation of Aut(G)
is very fast using nauty [12] inside of Magma. Most of the runtime is for looking
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Table 2. Results for highly symmetric graphs

Time Frequency Max Size Found # Non-Conjugate Groups
Av Max Total Av Av

Aut(G) 0.3125 6.069 33 51403.0909
C2

k 1.2103 24.05 30 8.6333 3.9666
D2

k 0.1125 2.859 28 17.3571 9.7857
C3

k 1.2187 24.14 33 8.3030 7.4545
(C2k|C3

k) 0.0051 0.111 26 7 4.8461
C3

k
∗ 0.1911 2.5675 20 8.4 2.8

D3
k 0.2558 4.6785 29 17.2413 13.7241

(Dk|C3
k) 0.3235 5.8675 31 16.3870 29.2580

(D2k|D3
k) 0.2489 3.8965 30 18.1333 6.3333

D3
k

∗ 0.3276 6.56 10 17.6 6.2
T 0.1721 4.039 14 12 1
T ∗ 0.0032 0.021 9 24 1.1111
(O|T ) 0.0006 0.0055 9 24 1.3333
O 0.0006 0.0055 6 24 1.5
O∗ 0.0026 0.051 5 48 1.2
I 0.0051 0.15 4 60 1
I∗ 0.0015 0.03 4 120 1
Av Total for 3D 2.7568

for the subgroups within Aut(G). This is the reason that the runtime depends
more on the size of Aut(G) than the size of G in general.

The second experiment is to find a rotational symmetry of maximum order
or a reflectional symmetry with the minimum number of fixed points. The aim
of this experiment is to compare our method with a branch and cut method [2].
We use three test sets of [2] including the rome test suite with 11529 graphs [13].
The first set aut has 3000 graphs with |V | < 30, designed to have many auto-
morphisms, but few of them are geometric. These are the so-called hard instances
of [2]. The second set sym has 8000 graphs with |V | < 80, generated specifically
to have rotational symmetries.

The second experiment was done on a standard laptop, DELL Latitude C600
(750MHz, 256 MB RAM). Tables 3 and 4 display the experimental results from
the second experiment with three test sets. The result shows that in general our
method is much faster than the branch and cut method [2]. For example, Table
3(b) displays the result for aut. It takes 0.015 seconds to find best symmetry
on average and 2.60 seconds in worst case. Note that it takes 21.6 seconds on
average and 9197.55 seconds in worst case using the method of [2] (see Table 3
in [2]). Table 3(a) displays the result for sym. It takes 0.016 seconds to find best
symmetry on average and 0.30 seconds in worst case.

Table 4 displays the result for rome data. It takes 0.009 seconds to find best
symmetry on average and 0.12 seconds in worst case. Note that it takes 4.26
seconds on average and 19.29 seconds in worst case using the method of [2].
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Table 3. Results for (a) 8000 graphs in sym and (b) 3000 graphs in aut

(a) runtimes for sym, 1 ≤ n ≤ 80

Time (sec)

n Av Max

1–10 0.0013 0.05

11–20 0.0038 0.21

21–30 0.0124 0.30

31–40 0.0140 0.24

41–50 0.0177 0.22

51–60 0.0219 0.25

61–70 0.0285 0.16

71–80 0.0351 0.27

(b) runtimes for aut, hard instances

Time (sec)

n Av Max

1–5 0.0008 0.01

6–10 0.0027 0.05

11–15 0.0056 0.22

16–20 0.0115 0.70

21–25 0.0362 1.58

26–30 0.0356 2.60

Table 4. Results for all 11529 graphs in rome

Time Size

Av Max Graph Av Max Graph

Aut(G) 0.00102125 0.011 grafo10316.100.lgr 5.0617 1920 grafo8507.75.lgr

BestCycle 0.00909117 0.12 grafo5890.48.lgr 1.6825 3 grafo206.12.lgr

4 Displaying a Geometric Automorphism Group

4.1 Choosing a Representation

It is possible to construct different drawings which display a given geometric
automorphism group H, depending on the choice of the representation. Let
H ⊆ Aut(G) be a 2- or 3-geometric group. We now describe how the choice
of representation effects the drawing.

We may consider only representations of H with a fixed image T ⊆ O2(R) or
O3(R). Consider two different faithful representations φ, θ : H → T . Then φθ−1

is an automorphism of H. Hence choosing a different representation is equivalent
to composing a fixed representation with an automorphism of H.

Let G be a cycle of length 5 with a cyclic subgroup H = 〈 (12345)) 〉 = 〈 p 〉.
Figure 3 shows four different drawings that displayH. Each uses a representation
that takes a generator of H (p, p2, p3 or p4 respectively) to a rotation by 2π/5.
Note that Figure 3 1a) and 1d), 1b) and 1c) are the same up to relabeling.
This is because p and p4, and p2 and p3 are conjugate in Aut(G) by (25)(34).
Furthermore p and p2 are conjugate by (2345) ∈ S5 \Aut(G) thus the drawings
that display them use the same points for vertices with different edges.
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Fig. 3. Using different representations to display the same group

4.2 Symmetric Drawing Algorithm

A simple drawing method for two dimensions is given by [3] where the main idea
is to draw each orbit in a circle. We extend this method to three dimensions.

Algorithm to display a 3-geometric group
Let v1, v2, . . . , vr be representatives for the orbits of H acting on the vertex
set V of the graph. For each i:

1. Find the stabilizer Hvi of vi.
2. If Hvi

= H, define D(vi) to be the origin.
3. If the dimension of φ(Hvi

) is one, define D(vi) to be a vector of length i
fixed by φ(Hvi); that is, an eigenvector of length i for the eigenvalue 1.

4. If the dimension of φ(Hvi) is two, let r be the reflection generating φ(Hvi).
Choose D(vi) to be a vector of length i fixed by r and not fixed by any other
element in a subgroup of φ(H) containing r.

5. If Hvi is the trivial group, define D(v) to be any vector of length i not in the
fixed point space of any non-trivial element of φ(H). (These spaces of fixed
points are known in advance and only need to be computed once.)

6. For v in the orbit of vi, choose h ∈ H such that v = hvi and define D(v) to
be φ(h)D(vi).

Note that the points D(v) are not uniquely determined. At step 3, the orbit
can be placed at a different radius and at steps 4 and 5 there is considerable
choice for the selected point. The drawing algorithm has been implemented using
magma, java and jjgraph. For smaple outputs, see Figure 4.

Fig. 4. Four-cube displaying (a) cyclic and (b) dihedral symmetry. (c) six-cube dis-
playing cyclic symmetry (d) the dodecahedron displaying dihedral symmetry.
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5 Conclusion

In this paper, we present a group-theoretic method to find all 2- and 3-geometric
automorphism groups of a graph. We implement the method using Magma and the
experimental results show that our approach is very efficient in practice. We also
present a simple drawing algorithm to display 2- or 3-geometric automorphism
groups.

To construct a maximally symmetric drawing of a graph, we need to choose
a geometric automorphism group of a maximum size. In fact it is possible to
construct different symmetric drawings of a graph, depending on the choice of the
2- or 3-geometric groups, the representation of a given geometric automorphism
group, and ordering of the orbits with given representation.
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