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Abstract. The algorithm of Walker [5] is widely used for drawing trees
of unbounded degree, and it is widely assumed to run in linear time,
as the author claims in his article. But the presented algorithm clearly
needs quadratic runtime. We explain the reasons for that and present a
revised algorithm that creates the same layouts in linear time.

1 Introduction

Since Walker presented his article [5] on drawing rooted ordered trees of un-
bounded degree, this topic is considered a solved problem of Automatic Graph
Drawing. In 1979, Wetherell and Shannon [6] presented a linear time algorithm
for drawing binary trees satisfying the following aesthetic requirements: the
y-coordinate of a node corresponds to its level, so that the hierarchical struc-
ture of the tree is displayed; the left child of a node is placed to the left of the
right child, i.e., the order of the children is displayed; finally, each parent node is
centered over its children. Nevertheless, this algorithm showed some deficiencies.
In 1981, Reingold and Tilford [2] improved the Wetherell-Shannon algorithm by
adding the following feature: each pair of isomorphic subtrees is drawn identi-
cally up to translation, i.e., the drawing does not depend on the position of a
subtree within the complete tree. They also made the algorithm symmetrical: if
all orders of children in a tree are reversed, the computed drawing is the reflected
original one. The width of the drawing is not always minimized subject to these
conditions, but it is close to the minimum in general. The algorithm of Reingold
and Tilford runs in linear time, too.

Extending this algorithm to rooted ordered trees of unbounded degree in
a straightforward way produces layouts where some subtrees of the tree may
get clustered on a small space, even if they could be dispersed much better.
This problem was solved in 1990 by the algorithm of Walker [5], which spaces
out subtrees whenever possible. Unfortunately, the runtime of the algorithm
presented in [5] is quadratic, in contrary to the author’s assertion. In the present
article, we close this gap by giving an adjustment of Walker’s algorithm that
does not affect the computed layouts but yields linear runtime.
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In the next section, we establish the basic notation about trees and state the
aesthetic criteria guiding the algorithms to be dealt with. In Sect. 3, we explain
the Reingold-Tilford algorithm. In Sect. 4, we describe the idea of Walker’s
algorithm and point out the non-linear parts. We improve these parts in order
to get a linear time algorithm in Sect. 5.

2 Preliminaries

We define a (rooted) tree as a directed acyclic graph with a single source, called
the root of the tree, such that there is a unique directed path from the root to any
other node. The level of a node is the length of this path. For each edge (v, w),
we call v the parent of w and w a child of v. If w1 and w2 are two different
children of v, we say that w1 and w2 are siblings. Each node w on the path from
the root to a node v is called an ancestor of v, while v is called a descendant
of w. A leaf of the tree is a sink of the graph, i.e., a node without children. If v−
and v+ are two nodes such that v− is not an ancestor of v+ and vice versa, the
greatest distinct ancestors of v− and v+ are defined as the unique ancestors w−
and w+ of v− and v+, respectively, such that w− and w+ are siblings. Each
node v of a rooted tree T induces a unique subtree of T with root v.

In a binary tree, each node has at most two children. In an ordered tree, a
certain order of the children of each node is fixed. The first (last) child according
to this order is called the leftmost (rightmost) child. The left (right) sibling of
a node v is its predecessor (successor) in the list of children of the parent of v.
The leftmost (rightmost) descendant of v on level l is the leftmost (rightmost)
node on level l belonging to the subtree induced by v. Finally, if v1 is the left
sibling of v2, w1 is the rightmost descendant of v1 on some level l, and w2 is the
leftmost descendant of v2 on the same level l, we call w1 the left neighbor of w2
and w2 the right neighbor of w1.

To draw a tree into the plane means to assign x- and y-coordinates to its
nodes and to represent each edge (v, w) by a straight line connecting the points
corresponding to v and w. When drawing a rooted tree, one usually requires the
following aesthetic properties:

(A1) The layout displays the hierarchical structure of the tree, i.e., the y-
coordinate of a node is given by its level.

(A2) The edges do not cross each other and nodes on the same level have a
minimal horizontal distance.

(A3) The drawing of a subtree does not depend on its position in the tree,
i.e., isomorphic subtrees are drawn identically up to translation.

If the trees to be drawn are ordered, we additionally require the following:
(A4) The order of the children of a node is displayed in the drawing.
(A5) The algorithm works symmetrically, i.e., the drawing of the reflection of

a tree is the reflected drawing of the original tree.

Here, the reflection of an ordered tree is the tree with reversed order of children
for each parent node. Usually, one tries to find a layout satisfying (A1) to (A5)
with a small width, i.e., with a small range of x-coordinates.
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3 Reingold and Tilford’s Algorithm

For ordered binary trees, the first linear time algorithm satisfying (A1) to (A5)
was presented by Reingold and Tilford [2]. This algorithm is easy to describe
informally: it draws the tree recursively in a bottom-up sweep. Leaves are placed
to an arbitrary x-coordinate and to the y-coordinate given by their level. After
drawing the subtrees induced by the children of a parent node independently,
the right one is shifted so that it is placed as close to the right of the left subtree
as possible.1 Next, the parent is placed centrally above the children, this is, at
the x-coordinate given by the average x-coordinate of the children, and at the
y-coordinate given by its level. Finally, the edges are inserted.

The Reingold-Tilford algorithm obviously satisfies (A1) to (A5). The difficult
task is how to perform the steps described above in linear time. The crucial
part of the algorithm is the shifting of the second subtree; solving the following
problems takes quadratic runtime in total, if a straightforward algorithm is used:
first, the computation of the new position of this subtree, second, the shifting of
the subtree itself.

For the first problem, define the left (right) contour of a tree as the sequence
of leftmost (rightmost) nodes in each level, traversed from the root to the highest
level. For an illustration, see Fig. 1, where nodes belonging to the contours are
shaded. To place the right subtree as close to the left one as possible, we have to
compare the positions of the right contour of the left subtree with the positions of
the left contour of the right subtree, for all levels occuring in both subtrees. Since
each node belongs to the traversed part of the left contour of the right subtree
at most for one subtree combination, the total number of such comparisons is
linear for the complete tree. The runtime problem is how to traverse the contours
without traversing (too many) nodes not belonging to the contours. To solve this
problem, Reingold and Tilford introduce threads. For each leaf of the tree that
has a successor in the same contour, the thread is a pointer to this successor.
See Fig. 1 again, where the threads are represented by dotted arrows. For every
node of the contour, we now have a pointer to its successor in the contour: either
it is the leftmost (rightmost) child, or it is given by the thread. Finally, to keep
the threads up to date, one has to add a new thread whenever two subtrees of
different height are combined.

For the second problem, the straightforward algorithm would shift all nodes
of the right subtree by the same value. Since this needs quadratic time in total,
Reingold and Tilford attach a new value mod(v) to each node v, which is called
its modifier (this technique was presented by Wetherell and Shannon [6]). The
position of each node is preliminary in the bottom-up traversal of the tree.
When moving a subtree rooted at v, only mod(v) and a preliminary x-coordinate
prelim(v) are adjusted by the amount of shifting. The modifier of a node v

1 For simplicity, we assume throughout this paper that all nodes have the same di-
mensions and that the minimal distance required between neighbors is the same for
each pair of neighbors. Both restrictions can be relaxed easily, since we will always
compare a single pair of neighbors
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t

Fig. 1. Combining two subtrees and adding a new thread t

is interpreted as a value to be added to all preliminary x-coordinates in the
subtree rooted at v, except for v itself. Thus, the real position of a node is its
preliminary position plus the aggregated modifier modsum(v) given by the sum
of all modifiers on the path from the parent of v to the root. To compute all real
positions in linear time, the tree is traversed in a top-down fashion at the end.

When comparing contour nodes to compute the new position of the right
subtree, we need the real positions of these nodes, too. For runtime reasons,
we may not sum up modifiers on the paths to the root. Therefore, modifiers
are used in leaves as well. A modifier of a leaf v with a thread to a node w
stores the difference between modsum(w) and modsum(v). Since new threads
are added after combining two subtrees, these modifier sums can be computed
while traversing the contours of the two subtrees. We have to traverse not only
the inside contours but also the outside contours for computing the modifier
sums, since v is a node of the outside contour. Now the aggregated modifiers can
be computed as the sums of modifiers along the contours instead of the paths
to the root.

4 Walker’s Algorithm

For drawing trees of unbounded degree, the Reingold-Tilford algorithm could
be adjusted easily by traversing the children from left to right, placing and
shifting the corresponding subtrees one after another. However, this violates
property (A5): the subtrees are placed as close to each other as possible and small
subtrees between larger ones are piled to the left; see Fig. 2(a). A simple trick
to avoid this effect is to add an analogous second traversal from right to left; see
Fig. 2(b), and to take average positions after that. This algorithm satisfies (A1)
to (A5), but smaller subtrees are usually clustered then; see Fig. 2(c).

To obtain a layout where smaller subtrees are spaced out evenly, as for ex-
ample in Fig. 2(d), Walker [5] proposed the following proceeding; see Fig. 3: the
subtrees of the current root are processed one after another from left to right.
First, each child of the current root is placed as close to the right of its left sib-
ling as possible. As in Reingold and Tilford’s algorithm, the left contour of the
current subtree is then traversed top down in order to compare the positions of
its nodes to those of their left neighbors. Whenever two conflicting neighbors v−
and v+ are detected, forcing v+ to be shifted to the right by an amount of
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(a) (b)

(c) (d)

Fig. 2. Extending the Reingold-Tilford algorithm to trees of unbounded degree

shift , we apply an appropriate shift to all smaller subtrees between the subtrees
containing v− and v+. More precisely, let w− and w+ be the greatest distinct
ancestors of v− and v+. Notice that both w− and w+ are children of the current
root. Let subtrees be the number of children of the current root between w−
and w+ plus 1. Spacing out the subtrees is shifting the subtree rooted at the i-th
child to the right of w− by an amount of i·shift/subtrees, for i = 1, . . . ,subtrees.
Observe that subtrees may be shifted several times by this algorithm, even while
adding a single subtree. It is easy to see that this algorithm satisfies (A5).

Fig. 3. Spacing out the smaller subtrees

Unfortunately, many parts of the algorithm presented in [5] do not run in
linear time. Some of them are easy to improve, for example by using Reingold
and Tilford’s ideas, and some require new ideas. All problems concern Walker’s
procedure APPORTION; see pages 695–697 in [5]. In the following, we list the
critical parts. In the next section, we will explain how to change these in order
to obtain linear runtime.

Traversing the right contour: A recursive function GETLEFTMOST is used to
find the leftmost descendant of a given node v on a given level l. If the level
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of v is l, the algorithm returns v. Otherwise, GETLEFTMOST is applied re-
cursively to all children of v, from left to right. The aggregated runtime of
GETLEFTMOST is not linear in general. To prove that, we present a series
of trees Tk such that the number of nodes in Tk is n ∈ Θ(k2), but the total
number of GETLEFTMOST calls is Θ(k3). Since k ∈ Θ(n1/2), this shows that
the total runtime of GETLEFTMOST is Ω(k3) = Ω(n3/2). The tree Tk is defined
as follows (see Fig. 4(a) for k = 3): Beginning at the root, there is a chain of 2k
nodes, each of the last 2k−1 being the right or only child of its predecessor. For
i = 1, . . . , k, the i-th node in this chain has another child to the left; this child
is the first node of a chain of 2(k − i) + 1 nodes. The number of nodes in Tk is

2k +
k∑

i=1

(2(k − i) + 1) = 2k + k(k − 1) + k ∈ Θ(k2) .

Now, for each i = 0, . . . , k − 1, we have to combine two subtrees when visiting
the node on the right contour of Tk on level i. In this combination, the highest
common level of the subtrees is 2k− i− 1, and by construction of Tk we always
have to apply GETLEFTMOST to every node of the right subtree up to this level.
The number of these nodes is

k − i+
k−i−1∑

j=0

(2j) = (k − i) + (k − i)(k − i− 1) = (k − i)2 ,

hence the total number of GETLEFTMOST calls for all combinations is

k−1∑

i=0

(k − i)2 =
k∑

i=1

i2 = k(k + 1)(2k + 1)/6 ∈ Θ(k3) .

Finding the ancestors and summing up modifiers: This part of the algorithm is
obviously quadratic. When adjusting the current subtree to the left subforest,
the greatest distinct ancestors of the possibly conflicting neighbors are computed
for each level by traversing the graph up to the current root, at the same time
computing the modifier sums. Since the distance of the levels grows linearly, the
total number of steps is in Ω(n2).

Counting and shifting the smaller subtrees: When shifting the current subtree
to the right because of a conflict with a subtree to the left, the procedure
APPORTION also shifts all smaller subtrees in-between immediately. Further-
more, the number of these subtrees is computed by counting them one by one.
Both actions have an aggregated runtime of Ω(n3/2), as the following example
shows. Let the tree T k be constructed as follows (see Fig. 4(b) for k = 3): add k
children to the root. The i-th child, counted i = 1, . . . , k from left to right, is
root of a chain of i nodes. Between each pair of these children, add k children as
leaves. The leftmost child of the root has 2k + 5 children, and up to level k − 1,
every rightmost child of the 2k+5 children has again 2k+5 children. The number
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of nodes of T k is

1 +
k∑

i=1

i+ (k − 1)k + (k − 1)(2k + 5) ∈ Θ(k2) .

Furthermore, by construction of the left subtree, adding the i-th subtree chain
for i = 2, . . . , k results in a conflict with the left subtree on level i. Hence all
(i− 1)(k+ 1)− 1 smaller subtrees between the two conflicting ones are counted
and shifted. Thus, the total number of counting and shifting steps is

k∑

i=2

((i− 1)(k + 1)− 1) = (k + 1)k(k − 1)/2− k + 1 ∈ Θ(k3) .

As in the last example, we derive that counting and shifting needs Ω(n3/2) time
in total.

(a) T3 (b) T 3

Fig. 4. Examples proving the non-linear runtime of Walker’s algorithm

5 Improving Walker’s Algorithm

In this section, we explain how to improve the algorithm of Walker to run in
linear time without affecting the computed layouts. For a closer look, see [1],
where we present the complete revised algorithm in a pseudocode style as well
as an experimental runtime comparison of both versions.

Traversing the contours and summing up modifiers: This can be done exactly
as in the case of binary trees by using threads; see Sect. 3. The fact that the left
subforest is no tree in general does not create any additional difficulty.

Finding the ancestors: The problem of finding the greatest distinct ancestors w−
and w+ of two nodes v− and v+ can be solved by the algorithm of Schieber and
Vishkin [3]. For each pair of nodes, this algorithm can determine the greatest
distinct ancestors in constant time, after an O(n) preprocessing step. However,
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in our application, a much simpler algorithm can be applied. First observe that
we know the right ancestor w+ anyway; it is just the root of the current subtree.
Furthermore, as v+ is always the right neighbor of v− in our algorithm, the left
one of the greatest distinct ancestors only depends on v−. Thus we may shortly
call it the ancestor of v− in the following. We use a node pointer ancestor(x) for
each node x to save its ancestor and initialize it to x itself. Observe that this value
is not correct for rightmost children, but we do not need the correct value w− of
ancestor(v−) until the right neighbor v+ of v− is added, i.e., until the current root
is the parent node of w−. Hence assume that we are placing the subtrees rooted
at the children of v from left to right. Since tracing all ancestor(x) consumes too
much time, we use another node pointer defaultAncestor . Our aim is to have the
following property (*) for all nodes v− on the right contour of the left subforest
after each subtree addition: if ancestor(v−) is up to date, i.e., is a child of v,
then it points to the correct ancestor w− of v−; otherwise, the correct ancestor
is defaultAncestor . We start with placing the first subtree, rooted at w, which
does not require any ancestor calculations. After that, we set defaultAncestor
to w. Since all pointers ancestor(x) of the left subtree either point to w or to
a node of a higher level, the desired property (*) holds, see Fig. 5(a). After
placing the subtree rooted at another child w′ of v, we distinguish two cases:
if the subtree rooted at w′ is smaller than the left subforest, we can actualize
ancestor(x) for all nodes x on its right contour by setting it to w′. By this, we
obviously keep (*); see Fig. 5(b). Otherwise, if the new subtree is larger than the
left subforest, we may not do the same because of runtime. But now it suffices
to set defaultAncestor to w′, since again all pointers ancestor(x) of the subtree
induced by w′ either point to w′ or to a node of a higher level, and all other
subtrees in the left subforest are hidden. Hence we have (*) again; see Fig. 5(c).

(a) (b) (c)

Fig. 5. Adjusting ancestor pointers when adding new subtrees: the pointer ancestor(x)
is represented by a solid arrow if it is up to date and by a dashed arrow if it is expired.
In the latter case, the defaultAncestor is used and drawn black. When adding a small
subtree, all ancestor pointers ancestor(x) of its right contour are updated. When adding
a large subtree, only defaultAncestor is updated
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Counting the smaller subtrees: For that, we just have to number the children of
each node consecutively; then the number of smaller subtrees between the two
greatest distinct ancestors w− and w+ is the number of w+ minus the number
of w− minus 1. Hence it can be computed in constant time (after a linear time
preprocessing step to compute all child numbers).

0 0 0

0 0 0

0 0 0 1
1
3 0 0 [− 1

3 ]

0 0 0 1 0
1
3 0 0 [− 1

3 ] 0

0 0 0 1 0 1

[ 13+
1
5 ] 0 0 [− 1

3 ] 0 [− 1
5 ]

Fig. 6. Aggregating the shifts: the top number at node x indicates the value of shift(x),
and the bottom number indicates the value of change(x)

Shifting the smaller subtrees: In order to get a linear runtime, we will shift each
subtree at most once when it is not the currently added subtree. The currently
added subtree, however, may be shifted whenever it conflicts with a subtree to
the left, using the fact that shifting a single subtree is done in constant time
(recall that we only have to adjust prelim(w+) and mod(w+)). Furthermore,
shifting the current subtree immediately is necessary to keep the right contour of
the left subforest up to date. All shiftings of non-current subtrees are performed
in a single traversal after all subtrees of the current root have been placed. To
memorize the shiftings at the moment they arise, we use real numbers shift(x)
and change(x) for each node x and set both to zero at the beginning. Assume
that the subtree rooted at w+ is the subtree currently placed, and that a conflict
with the subtree rooted at w− forces the current subtree to move to the right by
an amount of shift . Let subtrees be the number of subtrees between w− and w+,
plus 1. According to Walker’s idea, the i-th of these subtrees has to be moved
by i·shift/subtrees. We save this by increasing shift(w+) by shift , decreasing
change(w+) by shift/subtrees, and increasing change(w−) by shift/subtrees. The
interpretation of this is the following: to the left of node w+, the nodes are
shifted by an amount initialized to shift , but this amount starts decreasing by
shift/subtrees per subtree at node w+ and ends decreasing at w−, where it is
zero. The trick is to aggregate the shifts: since the decrease in the amount of
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shifting is linear, we can add all these decreases in one array; see Fig. 6 for an
example. Finally, we execute all shifts in a single traversal of the children of the
current root as follows, see Fig. 7: we use two real values shift and change to
store the shifts and the decreases of shift per subtree, respectively, and set both
to zero at the beginning. Then we traverse the children from right to left. When
visiting child v, we move v to the right by shift (i.e., we increase prelim(v) and
mod(v) by shift), increase change by change(v), and increase shift by shift(v)
and by change. Then we go on to the left sibling of v. It is easy to see that this
algorithm shifts each subtree by the correct amount.

0 0 0 1 0 1

[ 13+
1
5 ] 0 0 [− 1

3 ] 0 [− 1
5 ]

0 [ 15+
1
3 ] [ 25+

2
3 ]

3
5

4
5 0

0 [− 1
5− 1

3 ] [− 1
5− 1

3 ] [− 1
5− 1

3 ][− 1
5 ] [− 1

5 ]

Fig. 7. Executing the shifts: the new numbers at node x indicate the values of shift
and change before shifting x, respectively
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