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Abstract. We present an orthogonal graph drawing algorithm that uses
a sketchy drawing of the graph as input. While the algorithm produces
an orthogonal drawing with few bends in the Kandinsky model it also
preserves the general appearance of the sketch. Potential applications for
this kind of drawing algorithm include the generation of schematic maps
from geographic networks and interactive orthogonal graph drawing.

1 Introduction

Orthogonal drawings of graphs are common in many areas, but especially so in
technical and engineering applications where their apparent tidiness seems to
be appreciated. Typical examples include circuit schematics, entity-relationship
diagrams and system plans. A commonality in these applications is that, quite
often, a sketch of the drawing is already available, either because a user has
created the graph in an editor, or because the vertices have some natural, e.g.
geographic, position. In such cases, standard black-box algorithms for graph
layout do not leave sufficient control over the appearance of the drawing with
the engineer.

We extend a successful approach for orthogonal graph layout to start from a
sketch of the graph and produce a tidy, orthogonal drawing with few bends that
preserves the overall appearance of the sketch. For the purpose of this paper, a
“sketch” of a graph is a drawing that exhibits the main features to be conveyed,
but is unsatisfactory from an aesthetic point of view.

In practice, a sketch may for instance be a manual layout produced by the
user of a database schema editor or a physically realized network, and it may
but does not have to be orthogonal. Our approach can thus be viewed as a
more general case of dynamic graph drawing, since we do not require that the
sketch is drawn by a layout algorithm or even in the same representation as the
target drawing. An alternative view is that an existing drawing is to be improved
subject to user-supplied constraints or hints for the algorithm.

There is a fair amount of research on dynamic graph layout (see [4] for
an overview) and on utilizing user interaction for force-directed [22,14], quasi-
visibility [21] and layered layout [9], and while there are even attempts to learn
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parameters of layout objectives from example drawings [18,19], we know but
one instance of a method for explicit clean-up of a given sketch. SCHEMAP
is a system generating schematic maps for communication networks that was
demonstrated at last year’s Graph Drawing Software Exhibition [17]. This sys-
tem gradually orthogonalizes a given network layout (“ground plan”) into a
schematic map while preserving the embedding (including crossings). Since it
is based on a force-directed algorithm there is no guarantee that the result is
indeed orthogonal, and running times are apparently far from interactive.

We propose an efficient, dedicatedly orthogonal layout algorithm that extends
the Kandinsky approach of [13] according to the Bayesian paradigm for dynamic
layout of [2]. We therefore review briefly these two approaches in Sect. 2, before
we describe our new algorithm in Sect. 3 and provide examples in Sect. 4. We
conclude in Sect. 5.

2 Preliminaries

Our algorithm for sketch-driven orthogonal graph layout rests on two pillars:
an orthogonal layout algorithm for general planar graphs, and a framework for
extending (static) layout algorithms to dynamic graphs. We review briefly these
foundations and refer to [8,15] for background reading.

2.1 Orthogonal Graph Layout and Kandinsky Models

We assume that the reader is familiar with the concepts of planarity and network
flow. An embedded planar graph G(V, E, F ) is a planar graph with a specific
circular order of edges around vertices and a specific external face, admitting a
planar drawing that respects the given embedding. Unless otherwise specified,
the planar graphs we consider are always embedded.

A planar orthogonal box drawing of a planar graph is a planar drawing that
maps each vertex to a box and each edge to a sequence of horizontal and ver-
tical segments. We assume for the rest of this work grid drawings, i.e. drawings
in which the center of the boxes and the bends along the edges have integer
coordinates. An orthogonal shape Q is a mapping from the set of faces F of a
graph G to clockwise ordered lists of tuples (ei, ai, bi), 1 ≤ i ≤ |Q(f)|, where ei

is an edge, ai ∈ {1, . . . , 4} represents the angle formed with the following edge
inside the appropriate face in multiples of 90◦, and bi is the list of bends of
the edge. A quasi-orthogonal shape is an orthogonal shape with ai = 0 allowed,
where a 0◦ angle means that the succeeding edge is adjacent to the same side of
the vertex as the preceding edge. We denote with Q(f, i) the i-th tuple of Q(f),
with a(Q, f, i) the value of the angle field of Q(f, i), and with b(Q, f, i) the value
of the bend field of Q(f, i). A quasi-orthogonal shape Q is called valid, if there
is a planar orthogonal box drawing with quasi-orthogonal shape Q. Note that
quasi-orthogonal shape are not related to quasi-orthogonal drawings as described
in [16].

Different drawing conventions have been proposed for planar orthogonal box
drawings. We will concentrate on Kandinskymodels. All Kandinskymodels impose
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the following two constraints on the drawing which we call Kandinsky properties.
The bend-or-end property is defined as follows: Let G=(V, E) be an embedded
graph and consider a planar orthogonal box drawing of G. Let e1 and e2 be two
edges adjacent to the same side of a vertex v, e1 following e2 in the embedding,
and let f be the face to which e1 and e2 are adjacent. Then either e1 must have
a last bend with a 270◦ angle in f or e2 must have a first bend with 270◦ angle
in f . The non-empty face property forbids some degenerated cases for triangles
in the graph. See [13] for a detailed description of the Kandinsky properties. An
important consequence is stated in the following lemma.

Lemma 1 ([13]). Every 0◦ angle of a Kandinsky drawing has a unique corre-
sponding 270◦ bend.

Bends which correspond to a 0◦ angle are called vertex-bends, all other bends
are called face-bends.

A Kandinsky drawing of a graph can be determined in the topology-shape-
metrics framework [?, Ch. 2.3] by planarizing the graph (topology step), com-
puting angles and bends (shape step), and finally determining the length of edge
segments and size of vertex boxes (metrics step, also called compaction). Given
an embedded planar graph, the shape of a Kandinsky drawing with the minimum
number of bends is obtained from a minimum cost flow in a network that ex-
tends the well-known approach of [23] to account for 0◦ angles [13]. See Sect. 3
for details.

2.2 Dynamic Graph Layout and the Bayesian Paradigm

In dynamic graph drawing, the input is a sequence of graphs which represent
the states of a single graph that is changing over time. Dynamic graphs can be
visualized, e.g., in an animation or in a sequence of drawings, but it is important
to keep changes between consecutive frames to a minimum in order not to destroy
a viewer’s mental map of the graph [10]. Methods for dynamic orthogonal layout
are proposed in [20,5,3,7].

The core modeling task of dynamic layout, i.e. the combination of criteria
for good (static) layout with the requirement of small change, is therefore very
similar to that of sketch-driven layout. For layout algorithms based on the op-
timization of an objective function, the Bayesian framework [2,1] suggests to
incorporate a difference metric [6] as a penalty in the objective function. Opti-
mization of the combined objective function thus naturally results in a trade-off
between static layout criteria and stability.

Since orthogonal drawing algorithms in the topology-shape-metrics frame-
work heavily depend on the angles and bends computed in the shape step, it
seems natural to use the change in angles and bends as a difference metric for
orthogonal shapes [3,1].
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3 The Algorithm

Throughout this section, let Σ be an admissible drawing (a sketch) of a graph
GΣ = (VΣ , EΣ), where a sketch is admissible if there is no overlap between edges
and non-incident vertices, and no more than two edges cross in single point. Any
sketch can be transformed into an admissible one. Our objective is to determine
an orthogonal box drawing of GΣ with the following properties:

– the topology is preserved,
– the drawing is in the Kandinsky model,
– angles in the drawing deviate little from angles in the sketch (stability), and
– the drawing contains few bends (readability).

Our algorithm follows the topology-shape-metrics approach and proceeds as
follows. First, a planarization G = (V, E, F ) of GΣ is determined. by replacing
each crossing in the sketch by a dummy node, so that V = VΣ ∪ C where C
is the set of dummy nodes. Since we do not change the embedding of G in the
following steps, this ensures that the topology of GΣ is preserved. Next, a quasi-
orthogonal shape of G is determined from Σ by rounding angles in the sketch to
the nearest multiple of 90◦ and classifying each edge bend as either a 900 or a
270◦ bend. Note that the resulting quasi-orthogonal shape S need not be valid. A
valid quasi-orthogonal shape Q in the Kandinsky model is then determined so as
to satisfy a trade-off between stability and bend-number. Finally, a compaction
algorithm is applied on Q to compute a Kandinsky drawing of G, from which the
final drawing is obtained by replacing dummy nodes with edge crossings.

We concentrate on the problem of determining a quasi-orthogonal shape Q,
since all other steps in the algorithm can be carried out using standard algo-
rithms. The problem is stated in terms of an optimization problem for which we
present a min-cost flow formulation based on [13].

3.1 Problem Statement

The problem of finding a quasi-orthogonal shape Q is a bi-criteria optimization
problem where the two objectives are readability (number of bends) and stability
(change in shape).

The readability of a shape Q is independent of the given sketch and defined
as the total number of bends, namely

B(Q) =
1
2

∑
f∈F

∑

(e,a,b)∈Q(f)

|b| .

The stability of an orthogonal shape Q is expressed in terms of the difference
between angles in Q and corresponding angles in the shape S of the sketch

∆A(Q, S) =
∑
f∈F

∑

1≤i≤|f |
|a(S, f, i)− a(Q, f, i)|
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and the difference in edge bends

∆B(Q, S) =
∑
f∈F

∑

1≤i≤|f |
∆(b(S, f, i), b(Q, f, i))

where ∆(s1, s2) denotes a restricted edit-distance between two strings, in which
only insert and delete operations are permitted. This is similar to the shape
difference metric used in [6]. From these components we form a weighted com-
promise between the degree of change with respect to the given sketch and the
number of bends in the quasi-orthogonal shape. Our objective function thus
reads

D(Q|S) = α · ∆A(Q, S) + β · ∆B(Q, S)︸ ︷︷ ︸
stability

+ γ · (B(Q)− B(S))︸ ︷︷ ︸
readability

where parameters α, β, and γ control the relative importance of angle or bend
changes and bend number. We are now ready to state our problem formally.

Problem 1. Given a quasi-orthogonal shape S of a planar graph G, find a valid
quasi-orthogonal shape Q of G in the Kandinsky model such that D(Q|S) is
minimum.

3.2 Bend-Minimum Kandinsky Shapes

Bend-minimum Kandinsky shapes for planar embedded graphs can be obtained
by solving a path-based min-cost flow problem [13]. Since it is essential for our
algorithm, we briefly review some important properties of the flow network, but
assume that the reader is familiar with Tamassia’s min-cost flow formulation for
creating bend-minimum drawings of embedded planar graphs with maximum
degree four [23]. This formulation contains a node for each vertex (vertex-node),
and for each face (face-node) of the input graph.

The angle defined inside a face f between to consecutive edges a, b sharing a
vertex v is determined by the flow on the network-edge that connects the vertex-
node of v with the face-node of f . A flow of 0 defines an angle of 90◦, a flow
of 1 an angle of 180◦ and so forth. This is illustrated in Fig. 1. Since the sum
of angles around a vertex must be 360◦, each vertex-node is connected to the
source of the network with an edge of capacity degree(v)− 4.

0 0

1
f

g h

v

Fig. 1. A vertex v incident to faces f , g, and h, and the corresponding part of the
min-cost flow network where arc labels indicate flow values according to the depicted
shape
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Since zero flow represents an angle of 90◦, an angle of 0◦ corresponds to
negative flow which is not feasible in the network. In Kandinsky networks, this
problem is solved as shown in Fig. 2 by introducing additional vertices and arcs
which allow flow coming from a face-node to enter a vertex-node. Before a unit
of flow can enter a vertex node, it crosses an edge and thus creates a bend. It
follows that each 0◦ angle has the associated bend required by Lemma 1. For
each vertex-node v we define the supply(v) as degree(v) − 4. A vertex-node v
with positive supply is connected to the network source with capacity supply(v),
and a vertex-node v with negative supply is connected to the network sink with
capacity −supply(v).

2C+1

2C+1

2C+1 2C+1

2C+1

2C+1

2C+1

2C+12C+1

2C+1

Fig. 2. Kandinsky flow network for a node adjacent to five edges. Thick lines depict
the original node and edges, thin lines depict network nodes and edges. All capacities
are one except at pointed arcs which have capacity three. If not stated explicitly, arcs
have zero cost except for dashed circular arcs which have cost −C

3.3 Sketch-Driven Kandinsky Shapes

In this section we describe modifications to the Kandinsky network that yield a
network for Problem 1.

The first modification concerns angles around a vertex v. We define for each
angle defined by two consecutive edges e and e′ on a vertex v an angle-node
av

e,e′ . We create two arcs, one from av
e,e′ to the vertex-node of v and one in

the opposite direction. Both arcs have unconstrained capacity and cost α. We
denote with UA(v) the set of angle-nodes of a vertex v. Angle-nodes are the only
nodes connected to vertex nodes. All arcs which were connected to vertex-nodes
in the original formulation are now connected to the corresponding angle-node.
For each angle, and therefore for each angle-node w, there is a target angle
a(w) defined by the shape S of the sketch. If a(w) > 0, then w is connected to
the source with an arc of capacity a(w) and cost zero. If a(w) < 0, then w is
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(a) around a vertex

f

s

g f

s

g
(2,0)(1,w) (1,w) (2,0)

(2,0)

(1,0)

(2,0)
(1,2C)

(b) at regular and vertex-bends

Fig. 3. Modified Kandinsky network. Newly introduced arcs are dashed and labeled
with capacity and cost in (b), where w = β − γ. Newly introduced nodes are marked
gray. Node s is the global source

connected to the sink with an arc of capacity a(w) and cost zero. Additionally
we remove a(w) from the supply of the vertex-node. Therefore the supply of a
vertex node is now defined as supply ′(v) = degree(v)− 4− ∑

w∈UA(v) a(w). Our
construction is illustrated in Fig. 3(a).

The second modification concerns the modeling of bends. For each bend in
S we create the device shown left in Fig. 3(b). A demand of 1 is added to both
faces incident to the edge containing the bend. The effect of this device is, that
either Q contains the bend at zero cost or the bend is removed at cost β − γ.
Additionally we assign arcs between faces the cost β+γ. Note that the first and
the last bend on an edge are potential vertex-bends. For this type of bends we
create a different device as shown right in Fig. 3(b). This device ensures that
vertex-bends can be confirmed at zero cost.

Lemma 2. An optimal solution of the above path-based min-cost flow problem
yields an optimal solution for Problem 1.

Sketch of Proof. Observe that the original Kandinsky network is modified inside
of boxes that represent vertices of the input graph. The total amount of supply
in a box remains unchanged since supply ′(v) +

∑
UA(v) a(w) = degree(v) − 4 =

supply(v). The same holds for bend devices. Therefore the set of quasi-orthogonal
shapes that correspond to a feasible flow in the network is the same as in the
original formulation, namely the set of all valid quasi-orthogonal shapes. It re-
mains to show that a min-cost flow in the network yields an optimal solution for
D(Q|S).

Let x be a feasible flow in the network, and Q the valid quasi-orthogonal
shape corresponding to x. Consider the arc a(v, w) between an angle-node w and
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its vertex-node v in the flow network and a(w, v) the reverse edge. We assume
that either x(a(v, w)) = 0 or x(a(w, x)) = 0. The angle-node w represents the
angle between an edge e and its following edge in the embedding. Let (e, aS , bS)
be a tuple in S and (e, aQ, bQ) be the corresponding tuple in Q describing this
angle. Then aQ = aS − x(a(v, w)) + x(a(w, v)) and therefore α · |aS − aQ| =
α · (a(w, v)) + α(a(v, w)).

At bend devices there are two possibilities: either a bend is conserved at cost
zero, or it is deleted at cost β −γ. A newly created bend has cost β+γ in x. Let
bQ have minimum edit distance to bS with kD deletions and kI insertions. Then
kD(β − γ) + kI(β+ γ) = β(kD + kI) + γ(kI − kD) = ∆(bQ, bS) + γ · (|bQ| − |bS |).

	

Lemma 2 and [13] hence yield an efficient algorithm for an optimal trade-off

between bend-reduction and sketch-preservation.

Theorem 1. Problem 1 can be solved in time O(n2 log n).

4 Examples

While our approach works very well for graphs which are sufficiently connected,
graphs with many tree like structures in the outer face are more difficult, be-
cause small angle changes result in major differences in appearance. We use an
augmentation method in this case to improve the quality of the algorithm. The
idea of the augmentation is to put a frame around the graph and connect vertices
on the outer face to this frame by straight lines, see Fig. 4. We then execute the
algorithm and finally remove the frame together with the augmentation edges.
The introduced edges give the drawing a greater stability. We connect only ver-
tices which are on the conex hull of the sketch drawing with the frame to avoid
introducing new crossings.

An experimental version of our approach has been implemented in Java using
yFiles [24]. Figure ?? shows the result of our algorithm applied to the example
used in the paper that initiated this work [17]. In contrast to the force-directed
approach used there, our network-flow approach has negligible running time and
is therefore truly interactive.

A second application that we envision is the beautification of ER diagram
sketches of which the designer wants certain features to be preserved. An example

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Ground plan from [17] and its framed sketch.
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Fig. 5. Schematic map produced by our algorithm for ground plan from [17].

SchName

Schema

SCH_RELS

Relation

RelName

d

VIEW_RELATION
BASE_RELATION

Query

VIEW_ATTRS

VIEW_ATTRIBUTE

AttrName

AttrNum

Indexes

RefRel

KEYS

FKEY

KEY

KeyNo

DEFINES

INDEX

INDEX_ATTRS

IndexTypeIndexName

ATTRIBUTE REL_ATTRS
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AttrName DataType
SchName

Schema

SCH_RELS Relation

RelName

d

VIEW_RELATION

BASE_RELATION

Query

VIEW_ATTRS

VIEW_ATTRIBUTEAttrName

AttrNumIndexes

RefRel

KEYS

FKEY

KEY

KeyNo

DEFINES

INDEX

INDEX_ATTRS

IndexType

IndexName

ATTRIBUTE

REL_ATTRS

KEY_ATTRSAttrName

DataType

Fig. 6. ER diagram from [?, p. 577]) and an orthogonalized version

is given in Fig. 6. Note that some degree one vertices such as the one labeled
“Query” change their relative position in order to avoid vertex-bends, which
would have been necessary if the angles had been fixed. This a good example for
the trade-off optimization.

5 Discussion

Our approach can be extended to a fully dynamic orthogonal graph drawing
algorithm by considering the most recent drawing as a sketch. Note that the
structure of the graph may since have changed, i.e. nodes and vertices may have
been added or removed. The deletion of graph elements poses no problem, since
we can simply remove them from the sketch as well. Additions to the graph
require more care, since, e.g., newly created edges split an angle in the sketch
drawing into two, and we can not infer the target values for those two angles in
the network. We do have, however, a target value for the sum of these angles.
Therefore merging the two angle-nodes into one and using the sum of the angles
as the target value for the merged node solves this problem. See Fig. 7 for an
illustration.
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Fig. 7. Edge insertion for dynamic layout

It is worth noting that the globally defined parameters α, β, and γ can be
adjusted locally for every angle and bend. This may be useful in dynamic graph
drawing, e.g. to give older parts of a drawing increased stability.

An issue we have not addressed in this work is the compaction of sketch draw-
ings. In our implementation we use the compaction algorithm described in [11]
together with visibility postprocessing. However, sometimes it may be helpful
to preserve some distances in the sketch drawing, especially in the dynamic sce-
nario. Our future research will investigate this problem.
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