
Visual Specifications for Modular Reasoning
about Asynchronous Systems

Nina Amla1, E. Allen Emerson2�, Kedar S. Namjoshi3, and Richard J. Trefler4

1 Cadence Design Systems
2 Department of Computer Sciences, University of Texas at Austin

3 Bell Laboratories, Lucent Technologies
4 School of Computer Science, University of Waterloo

Abstract. We propose a framework that closely ties together visual
specification and modular reasoning of asynchronous systems. The ba-
sis of the framework is a new notation, called Modular Timing Diagrams
(MTD’s), for specifying the universal properties about causality and tim-
ing of events in an asynchronous system. MTD’s are complementary in
nature to Message Sequence Charts, that are typically used to specify
existential properties. Our framework includes two algorithms for formal
reasoning with MTD’s. The first is an efficient polynomial-time model
checking algorithm. The second is an algorithm for automatically gen-
erating an assume-guarantee partitioning of an MTD, that exploits its
inherent decompositional structure. We show how to use this decompo-
sition for modular reasoning with MTD properties in conjunction with
an asynchronous compositional reasoning rule. To illustrate the notation
and our method, we describe a case study where we specified telephony
features, such as call forwarding with MTD’s, and verified these proper-
ties on an asynchronous telephony model. The compositional reasoning
methods led to savings of 15%-80% in verification times, and comparable
savings in space.

1 Introduction

Visual specification formalisms like Message Sequence Charts (MSC’s) [MSC96]
and their extensions are widely used to specify the high-level behavior of asyn-
chronous processes. MSC specifications describe partially ordered scenarios of a
system and they are existential in nature. In this paper, we present a complemen-
tary visual notation for specifying properties that are universal in nature; that
is, properties that should hold for every computation of a system. This notation,
called Modular Timing Diagrams (MTD’s), is an extension of the Timing Dia-
grams (TD’s) notation, that is widely used in the hardware industry to specify
universal properties of hardware protocols [DJS94,Fis96,AEN99]. MTD’s form
the basis of our proposed framework for specifying and analyzing properties of
asynchronous systems in a modular manner.
� Supported in part by NSF CCR 009-8141 and TARP 003658-0650-1999.

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 226–242, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Visual Specifications for Modular Reasoning about Asynchronous Systems 227

Timing Diagrams are used to describe timing and ordering properties over
events (that is changes of value) of signals; an example timing diagram is shown
on the right half of Figure 3. In the course of our prior work in formalizing
timing diagrams [AEN99,AEKN00], we realized that while TD’s are an intuitive
notation, they also have some limitations: one cannot express either disjunction
or iteration, making it difficult to specify some properties. Our new notation
overcomes these limitations, while retaining the intuitive and visual nature of
timing diagrams. An MTD is built out of asynchronous TD modules, that are
linked together by constructs for forking (conjunction), deterministic choice, and
iteration. We illustrate the practical utility of MTD’s with example specifications
of telephony properties. We also show that MTD’s, unlike TD’s, are expressive
enough to describe any ω-regular property over events.

As part of the framework, we present efficient algorithms for formal analysis
with MTD’s. We give an efficient translation of an MTD to a Büchi automaton
describing the negated MTD property, which results in a model checking algo-
rithm of complexity O(m ∗ n ∗ k3), where m is the size of the program, n is the
number of TD nodes in the MTD, and k is the largest node size. For untimed
MTD’s (those with only ordering constraints), this Büchi automaton expresses
a stuttering-closed language. This property can be exploited by model checkers,
such as SPIN [Hol97], that are optimized to handle stuttering-closed properties
[HP94].

An asynchronous program is usually composed of several concurrent, inter-
acting components. In this situation, the state space of the program is expo-
nential in its size, and is often too large for effective analysis. This well-known
“state explosion” problem is one of the major barriers to the application of
model checking in practice. A solution to this problem can be found in methods
for compositional reasoning [dRLP97,dRdBH+01], that utilize a decomposition
of the global specification into local, assume-guarantee checks for the individual
components. While this type of reasoning has been applied quite successfully in
practice, it requires a certain degree of manual effort. In particular, the decom-
position of the specification is usually done by hand since it is difficult to auto-
matically decompose specifications written using temporal logic or automata. In
this respect, MTD’s offer a key advantage: they can be syntactically partitioned
into a collection of assume-guarantee type properties about individual compo-
nents of the system. We show in this paper how to perform such a partitioning,
fully automatically, and how to utilize the resulting assume-guarantee properties
for compositional reasoning.

In order to validate both the notation and our method, we applied it to
the analysis of an asynchronous telephony model consisting of a central switch
and several users. We chose this particular case study for a number of reasons.
First, the model is highly asynchronous and nondeterministic in nature. Second,
there is significant prior work in model checking such systems (e.g., [SHE01,
PR99]), which gave us a reasonable way to gauge the utility of MTD’s. Finally,
the inherent modularity in these systems made the application of compositional
reasoning an attractive option. MTD’s were used to specify properties of tele-

228 N. Amla et al.

phony features such as call forwarding; this turned out to be quite an easy task.
Our experience with the compositional reasoning method was encouraging – the
partitioning algorithm worked very well, saving 15%-80% in the model checking
times, and yielding smaller, yet significant reductions in space.

Related Work.
Message Sequence Charts are a standardized and popular way of visually describ-
ing scenarios in communication protocols. MSC’s are well-studied and occur in
many flavors with different semantics [LL94]. They have been extended to MSC-
graphs (with the addition of choice and iteration), and to High-level MSC’s (by
adding more structure and abstractions) [MSC96]. Model checking algorithms for
MSC’s focus on either checking that an MSC-graph satisfies a temporal property
[AY99], or on matching the executions of two MSC-graphs [MPS98,MP00]. This
is because, as mentioned earlier, MSC’s describe high level implementation sce-
narios. They, therefore, specify “lower bounds” on implementations. In contrast,
MTD’s specify “upper bounds”– properties that must hold of all computations
of an implementation. Thus, MTD’s are indeed complementary to MSC’s (and
the MSC variants) in terms of their intended usage. These observations also ap-
ply to a shared variable version of MSC’s called Shared Variables Interaction
Diagrams [AG01].
MTD’s have several advantages over other graphical notations such as Live

Sequence Charts (LSC’s) [DH01] and Timeline [SHE01], in terms of expressive-
ness and efficient formal analysis. Live Sequence Charts (LSC’s) are a modifica-
tion of MSC’s that allow specification of universal properties. LSC’s use parts of
an MSC to serve as an activation condition, while the remainder is a property
that must hold of the system. Thus, an LSC is very close to a single timing
diagram, which also has a precondition and a postcondition part. A key differ-
ence is the complexity of the model checking procedures. The model checking
procedure described in [KW01] has high worst-case complexity, due to the po-
tential exponential blowup in the conversion from a partially ordered LSC to a
timed Büchi automaton that works on consistent cuts of the LSC partial order.
In contrast, although MTD’s allow partial ordering of events, our translation
goes directly to an automaton with a small polynomial blowup. Furthermore,
there does not appear to be an LSC counterpart to our automated partitioning
procedure for compositional reasoning, which is essential for checking properties
of large systems.
The Timeline notation [SHE01] has also been used to specify universal prop-

erties of asynchronous systems. It is limited, however, to describing a single
totally ordered sequence of events. A nice feature of the notation is the ability
to interleave pre- and post- conditions on a timeline; we have incorporated this in
MTD’s. Indeed, an MTD may be viewed as a compact form of a set of timelines.
In our previous work on a synchronous version of Timing Diagrams (SRTD’s)

we presented algorithms for efficient model checking and assume-guarantee par-
titioning [AEKN00,AENT01]. In this paper, we adopt a similar approach, but
show how to apply it to a more general notation and to the different domain
of asynchronous processes. The encouraging experimental results for the new

Visual Specifications for Modular Reasoning about Asynchronous Systems 229

framework lead us to believe that it is flexible, and holds great promise for
practical applications.
In summary, we believe that this paper proposes a new and interesting frame-

work for combining visual specifications with modular reasoning about asyn-
chronous systems. By closely tying together these two aspects, we derive several
advantages for the MTD framework:

– We make formal and visually explicit the informal combination of timing
diagrams for individual modules.

– We include a polynomial-time model checking algorithm for checking MTD
properties.

– The framework is supported by automated compositional reasoning meth-
ods to ameliorate the state explosion problem, that have performed well on
examples.

– We generalize and improve upon existing proposals, such as Timing Dia-
grams, Live Sequence Charts, and Timeline.

– The framework complements the scenario-based notation of Message Se-
quence Charts.

2 Modular Timing Diagrams

We illustrate the MTD syntax and semantics through the Request-Grant prop-
erty shown in Figure 1. Each node in an MTD contains a Regular Timing Dia-
gram (RTD) [AEN99]. Section 2.1 presents the formal definitions of both MTD’s
and RTD’s. The dotted nodes on the left are precondition nodes, while the solid
nodes on the right are postcondition nodes. The filled node is a special short-
hand indicating an initial, precondition node containing an empty RTD. The
∨ symbol indicates deterministic choice, while the ∧ symbol indicates forking
(conjunction). Each non-empty RTD shows a number of waveforms describing
the change of values for various signals. These changes (events) are linked to-
gether with dependencies to form a pattern of event occurrences. The arrow from
res.reply to usr.req indicates that usr.req must change value at least 1 clock
unit after res.reply changes its value. We assume that timing properties are
taken relative to timers, that are atomic propositions in the program. Some of
the nodes of an MTD may be designated as being fair, which is indicated visually
by placing a “*” above the node.
Informally, an MTD acts as follows. MTD checks are begun at the initial

nodes. If the current node is a precondition then its successor nodes are checked
only if the current pattern holds. Thus, a precondition node may not hold. On
the other hand, if the current node is a postcondition, its pattern must hold. The
set of successors is determined by the connector associated with the current node.
An ∨-connector, as in this case, is resolved by picking the unique successor whose
guard expression (labeling the edge between nodes) holds at the final state of the
current node. An ∧-connector indicates that all successor nodes must be checked.
We sometimes omit showing the connector when there is a single successor; the
connector is assumed to be an ∧-connector. This checking process begins at all

230 N. Amla et al.

���
���
���
���

���
���
���
���

usr.req

noneres.reply

res.avail

~res.avail

usr.req

noneres.reply

grant

no−grant

usr.req

Fig. 1. A Request-Grant Property

initial nodes of the MTD, and fails only if some postcondition fails to hold, or if
the fairness property of the MTD fails to hold.
In the precondition of the MTD in Figure 1, a user process, usr, requests

a resource by setting the value of boolean variable usr.req to true. The post-
condition specifies the two possible outcomes. First, if the resource is available
(res.avail is true) then the variable res.reply is set to the value grant. Af-
ter receiving res.reply, usr resets usr.req. In the second postcondition, the
resource is not available and the variable res.reply is assigned to the value
no-grant. The ∧-connector at the initial node ensures that this check is enabled
at every point along a computation – the MTD “forks off” a new check at each
step due to the loop through the connector.
This is a good example of how MTD’s allow sharing of patterns. In other

notations such as timing diagrams or Timeline, this property would have to
be split into two separate properties that duplicate the precondition pattern.
For more complex properties with multiple pre- and post-condition nodes, such
splitting results in a large amount of replication, which can have unfortunate
consequences for understanding and maintenance of specifications.

��
��
��

��
��
��

��
��
��

��
��
��r2r1 r1 r2

Fig. 2. Overlapping (left) and Non-overlapping (right) Semantics

There are two common semantics of timing diagrams [Fis96,AEKN00]: over-
lapping semantics, where the precondition of a diagram is checked at every point
on a computation, and non-overlapping, where the precondition is checked at
every point until it holds, following which the checking is suspended while the
postcondition pattern is being checked. In Figure 2, we show how these styles are

Visual Specifications for Modular Reasoning about Asynchronous Systems 231

represented with MTD’s. Notice how the loop through the ∧-connector on the
left enforces the overlapping semantics, and how the loop through the post-node
on the right ensures the non-overlapping semantics.
In the rest of this section, we define the syntax and semantics of MTD’s pre-

cisely, and describe the efficient model checking algorithm. First, we will define
some terms that we will use in the sequel. There are a number of different notions
of acceptance used with automata on infinite strings. A Büchi acceptance con-
dition states that F holds infinitely often (expressed in Linear Temporal Logic
(LTL) as GF(F)) and a co-Büchi acceptance specifies that F holds from some
point onwards (written in LTL as FG(F)). One may also express an acceptance
condition as a disjunction of co-Büchi and Büchi conditions [EL87]. Informally,
a safety property specifies that something “bad” never happens during an execu-
tion, while a liveness property states that something “good” eventually happens.
We use N to represent the natural numbers.

2.1 Syntax

An MTD, T , is specified over a set of variables (sometimes called “signals”), each
with an associated domain of values. T specifies the ordering of events (usually,
these are changes in value of the variables) and timed dependencies between
events. Syntactically, an event is a pair (s, i), where s is a variable name with
an associated domain of values Ds, and i ∈ N is the position of the event. We
use v(s, i) to refer to the value of the event (s, i). An MTD may be viewed as
a graph with nodes that are associated with regular timing diagrams (RTD’s);
the picture in Figure 3 shows an example MTD on the left, and a component
RTD on the right.

T1

T4

g

g

T2 T5

T6

T3

−connector −connector

post −node
pre −node

*

M.r

N.s

M.t

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

2 3

3

2

0
1

0 1

0

dependency
sequential

dependency

2

concurrent

1

Fig. 3. A Modular Timing Diagram and a component RTD

A regular timing diagram (cf. [AEN99]) is a tuple (S, E ,SD ,CD), where

– S is a finite set of variable names.
– For each s ∈ S there is a finite set of events, E(s), represented as {(s, 0), . . . ,
(s, ns − 1)}, called the waveform for s. The set of all events E , is ∪s∈SE(s).

232 N. Amla et al.

– SD is the set of sequential dependencies on the events of E . Each dependency
is specified as (s, i) c→ (t, j). The timing constraint for the dependency, c, has
the form (clock, [a, b〉), where clock is an atomic proposition that acts as a
timer, a ∈ N, b ∈ N ∪ {∞}, and 1 ≤ a ≤ b.

– CD is a collection of mutually disjoint sets of events. Each set is called a
concurrent dependency.

We refer to the components of an RTD r as Sr, Er, SDr and CDr, respectively.
The size of an RTD r, |r|, is |Er|+ |SDr|+ |CDr|. An event (s, i+1) is a change
event if v(s, i + 1) �= v(s, i). An RTD is well-formed if (a) the source of each
sequential dependency is a change event, and the destination is either a change
event or a concurrent dependency, (b) each concurrent dependency contains at
least one change event, (c) the set of dependencies of the RTD (not considering
the mutual concurrent dependencies) is acyclic, and (d) any non-empty RTD
contains at least two events per signal. In the sequel, we consider only well-
formed RTD’s. For a non-empty RTD, the set {(s, ns − 1) | s ∈ S} of the final
events of each signal forms a pre-defined concurrent dependency, one of whose
change events is designated as the final event.
For example, the RTD in Figure 3 has three variables: M.r,N.s and M.t.

There is a sequential dependency from (M.r, 1) to (N.s, 1), and a concurrent
dependency containing (M.r, 2) and (N.s, 2).
Modular Timing Diagrams are built by composing together RTD’s. A mod-

ular timing diagram is defined by a tuple (N,C, I, F), where

– N is a finite set of nodes, partitioned into Npre, the set of pre-nodes, and
Npost, the set of post-nodes. Each node is labeled with an RTD.

– C is a set of connectors. An ∧-connector is an element of N × 2N , while an
∨-connector is an element of N × 2G×N , where G is a set of guards, which
are boolean-typed expressions over the variables of the MTD.

– I ⊆ Npre is a set of initial nodes.
– F ⊆ N is a set of fair nodes, defining a co-Büchi acceptance condition.

The ∧-connectors indicate forking, ∨-connectors indicate deterministic choice
and iteration is allowed by looping in the MTD graph. Given a connector c =
(r,R), we say that c is an outgoing connector from r. The size of an ∧-connector
(r,R) is |R|; the size of an ∨-connector (r, {gi, ri}) is the sum of the lengths
of the formulas defining the guards gi. The size of an MTD is the sum of the
sizes of its component RTD’s and the sizes of its connectors. An MTD is well-
formed if (a) for each pre-node RTD, its dependency graph is a total order,
(b) every pre-node has one outgoing connector, and every post node has at
most one outgoing connector, (c) for every ∨-connector, the guards are mutually
disjoint and complete (that is, gi ∧ gj ≡ false for i �= j, and

∨
i gi = true).

We use Nterm for the subset of post-nodes, called terminal nodes, that have
no associated outgoing connector. In the sequel, we consider only well-formed
MTD’s.

Visual Specifications for Modular Reasoning about Asynchronous Systems 233

2.2 Semantics

The semantics of an MTD is a set of infinite sequences over states; each state
is a vector of values for the variables appearing in the component RTD’s. The
informal semantics of an MTD was given earlier; here, we specify the seman-
tics formally by describing a ∀-automaton whose language (the set of accepted
sequences) is the semantics of the MTD.
A ∀FA, A, is specified by a tuple (Σ,Q,Q0, δ, F) where Σ is a finite alphabet;

Q is a finite set of states; Q0, a non-empty subset of Q, is the set of initial states;
δ : Q × Σ → 2Q

+
is the transition relation, where Q+ = Q ∪ {ε(q) : q ∈ Q};

and F , a subset of Qω, is the acceptance condition. States of the form ε(q) in
Q+ are used to indicate an ε move. A run of A on input string σ ∈ Σω is an
infinite sequence ρ from (Q ×N)ω. A configuration (q, i) on the run indicates
that the automaton is in state q and is reading symbol σi. The run is valid if for
ρ0 = (q, a), q ∈ Q0 and a = 0, and for all i ∈ N, if ρi = (q, k) and ρi+1 = (q′, k′),
then either k′ = k and ε(q′) ∈ δ(q, σk), or k′ = k + 1 and q′ ∈ δ(q, σk). The run
is accepting if the projection of ρ on Q is in F , or if there are only ε moves from
some point on. ∀FA’s differ from NFA’s in that a string σ is in the language of
A if, and only if, all runs of A on σ are accepting runs (for NFA’s, only one run
need be accepting). As observed in [MP87], one can generate an NFA for the
complement of a ∀FA language, and vice versa, in linear time by keeping the
same transition structure but negating the acceptance condition. Therefore, as
NFA’s with Büchi acceptance conditions (that is, GF(accept)) suffice to define
the ω-regular languages, the same is true for ∀FA’s with the complemented Büchi
condition (that is, FG(accept)).
RTD Language: Let r = (S, E ,SD ,CD) be a non-empty RTD. The language
of r is the set of finite strings z over Σ∗ for which there exists a locator function
λz : E → [0..|z| − 1], such that:
– Every event in E can be located on z and has a value consistent with that
in r. That is, λz is total, and if λz(s, i) = k, then zk(s), the value of s at the
kth position on z, equals v(s, i).

– Let λz(s, i) = k and λz(s, i+ 1) = l. For every j in [k, l), zj(s) = v(s, i).

– For each sequential dependency (s, i)
(c,[a,b〉)→ (t, j), the number of c events

between λz(s, i) and λz(t, j) is within [a, b〉.
– For each concurrent dependency c, and each pair of events (s, i), (t, j) in c,

λz(s, i) = λz(t, j).

From the well-formedness conditions on an RTD and the first two conditions
above, each change event has a unique location, that can be computed by a finite
automaton that follows the changes of value on its signal. Once the start of each
dependency is located on z, the third and fourth conditions can be determined by
finite automata, one for each dependency. Thus, the language of r is determined
by a product automaton and therefore is regular. The DFA for this language has
a single initial state. An empty RTD has language {ε}.
MTD Semantics: Let T=(N,C, I, F) be an MTD, composed of RTD’s {ri}.
The semantics of T is given by a ∀FA, BT , that is obtained as follows. Let

234 N. Amla et al.

Bi = (Σ,Qi, {q0}, δi, Fi) be the DFA for ri, where Fi is the set of final states.
The set of states of BT is (∪iQi)∪{ti | i ∈ Nterm}. The initial states of BT are the
initial states of the DFA’s for the initial nodes of the MTD. The transitions of BT
include the transitions of each Bi, together with the following new transitions,
added in the given order.

1. If ri is a terminal post node, then for each q ∈ Fi and each a ∈ Σ, add
δ(q, a) = {ε(ti)}. For each b, add δ(ti, b) = {ti}.

2. If ri is ∧-connected to rj , . . . , rk, then for each q ∈ Fi, and each a ∈ Σ, add
δ(q, a) = {ε(q0j), . . . , ε(q0k)}.

3. If ri is ∨-connected by guards gj , . . . , gk to RTD’s rj , . . . , rk, then for each
q ∈ Fi, and each a ∈ Σ, add δ(q, a) = {ε(q0l)}, where gl(a) is the unique
guard that holds for a.

4. For each state q that is in its own ε-closure (that is, reachable from itself by
ε moves) add q to each δ(q, a).

The first rule adds a transition from the final state of a terminal post node to a
state that accepts any subsequent sequence of values. The second and third rules
implement forking and deterministic choice. The last rule is needed to ensure
that MTD’s with overlapping checks (e.g., Figure 2) have the desired semantics.
The fairness condition of BT is that a run is rejecting if (a) it gets stuck in
the states of some post-node, from some point onwards, or (b) infinitely often,
it exits out of DFA’s for nodes that are not in F . This can be written as a
disjunction of co-Büchi and Büchi conditions. Pre- and post- nodes behave as
indicated by their names: the acceptance condition ensures that whenever a run
enters a post-RTD, it must satisfy the entire pattern in that node; thus, every
postcondition that is enabled must hold. On the other hand, a pre-node may not
be satisfied but, if it is, the automaton construction ensures that the following
nodes are checked.
Expressiveness: The following theorem shows that MTD’s can express any
ω-regular property over events.

Theorem 0. For any ω-regular language L of change event sequences, there is
an MTD T such that the language of T is the set of those state sequences which,
when projected on to change events, form L.
Proof Sketch. Since L is ω-regular, it can be represented by a ∀FA A with a co-
Büchi acceptance condition on transitions [MP87]. The MTD, T , is constructed
from A as follows: transitions of A are turned into pre-nodes, and states of A
become ∧-connectors. The co-Büchi acceptance condition of A is turned into a
corresponding co-Büchi fairness condition on the nodes of T . ��

2.3 Model Checking with MTD’s

We gave the semantics of an MTD T as a ∀FA, BT . This automaton, could be
quite large, and may not be appropriate for model checking. This is because the
DFA for a post node can be exponential in its size, since it must resolve all non-
deterministic choices between unordered events. We now sketch the construction

Visual Specifications for Modular Reasoning about Asynchronous Systems 235

of an alternative ∀FA, that is more complex, but of size cubic in the size of the
MTD.
There are two key parts to this construction. First, since the events of a

pre-node are totally ordered, there is a DFA for the pre-node of size linear in
the size of the node. This DFA just checks for the events in the order given by
the total ordering. Second, for a post-node, one can construct a ∀FA on finite
strings instead of a DFA, along the lines indicated in [AEN99]. This ∀FA runs
several small DFA checks in parallel. The DFA’s check (a) each waveform, (b)
each sequential dependency, using the linear size DFA’s for the location function,
and (c) each concurrent dependency, by locating one event e of that dependency,
and checking pairwise that for each other event f in the dependency, e and f
occur at the same instant. As shown in [AEN99], these checks can be done with
a ∀FA of size cubic in the RTD size. We can replace the DFA’s for the post
nodes in the semantics with these ∀FA’s. Since the set of final events of an RTD
is a concurrent dependency, we can pick the change event of that dependency to
signal the end of checking the RTD. The final states of the DFA in the semantics
are now replaced by the final state for the waveform DFA that contains this final
change event. These replacements result in a ∀FA, that we call AT , that has size1
at most cubic in the MTD size.

Theorem 1. For any MTD T , L(BT) = L(AT).
Proof Sketch. The main component of this proof is the observation that the
∀FA replacing a postcondition DFA accepts the same set of finite strings. This
is because it checks the same conditions, using DFA’s running in parallel instead
of a product construction. ��
Since AT accepts the language of T , the complementary NFA AT , derived

from AT , accepts the complemented language. The model checking problem,
stated as M |= T , is to show that the language of M is contained in that of
T . For an MTD T , this can be done by forming the product M × AT , which
is an NFA with a fairness condition of the form GFp ∨ FGq, and checking for
emptiness.

Theorem 2. For MTD T and process M , M |= T can be determined in time
at most cubic in the size of T , and linear in the size of M .

Proof. By Theorem 1 and the procedure given above,M |= T iff L(AT ×M) =
∅. This is equivalent to searching for a rejecting run of AT on some computation
ofM . This can be done in time linear in the size ofM and linear in the size of AT
[EL87]. Since AT has size at most cubic in the size of T , the result follows. ��

3 Compositional Reasoning with MTD’s

Large systems are often composed of many concurrent, interacting processes.
This leads to a blowup in the state space of the system, commonly referred to
1 The size of AT is the size of the transition relation, which is the total length of the
formulas labeling each transition, plus the number of states.

236 N. Amla et al.

as “state explosion”, which is one of the main barriers to successfully applying
model checking in practice. One important way of ameliorating this state explo-
sion is to reason not about the entire system as a whole, but about individual
components. The compositional reasoning rule that we use is based on so-called
‘circular’, assume-guarantee style reasoning, where individual components guar-
antee certain properties based on assumptions about their environment. The
proof rule that we use, from [AENT02], is both sound and complete.
First we describe the model of computation used in the sequel; a detailed

description can be found in the reference above. The definitions of processes and
asynchronous composition are largely based on those in [AL95]. We assume an
unbounded set of variable names. A process is given by a tuple (V, I, T,F), where
V=Vl∪Vi is a set of variables, Vl is a non-empty set of “local” variables and Vi is
a disjoint set of “interface” variables. I(Vl) is an initial condition, T (V, V ′) is a
transition relation, where V ′ is a set of variable names in 1-1 correspondence with
V that define the next state, and F(V, V ′) is a fairness condition. A computation
of the process is a sequence of states that starts at an initial state, where each
pair of adjacent states either satisfies the transition relation of the process, or is
an “environment” move that does not change the values of local variables.
The interleaving composition of processes P1 and P2, written as P = P1 []P2,

is defined provided that, for each process, its local variables are disjoint from
the variables of the other, that is Vl(P1) ∩ V (P2) = ∅ and Vl(P2) ∩ V (P1) = ∅.
Furthermore, P has local variables Vl(P1) ∪ Vl(P2), interface variables Vi(P1) ∪
Vi(P2), initial condition I(P1) ∧ I(P2), transition relation T (P1) ∨ T (P2), and
fairness condition F(P1) ∧ F(P2).
We use the notation W ′ = W , for a set of variables W , to mean that (∀w :

w ∈W : w′ = w). The set of infinite executions of process P , Lω(P), is the set of
infinite sequences satisfying the formula I(P) ∧ G(TP ∨ V ′l (P) = Vl(P)) ∧ F(P).
The set of finite executions, L∗(P), is the set of finite sequences satisfying I(P) ∧
G(TP ∨ V ′l (P) = Vl(P)). The language of P , denoted by L(P) is Lω(P)∪L∗(P).
The formula for Lω(P) expresses the constraints that the first state is an initial
one, every transition is either that of P or an “environment” transition, which
keeps the local variables of P unchanged, and the fairness condition holds. The
interleaving of environment and process moves is inspired by [AL95]. This is
the appropriate choice for modeling computations of programs that are open
to the environment – notice that each component of a composition P []Q is, of
necessity, an open program. It also has the nice consequence that composition
can be viewed as the conjunction of languages. The external language of process
P , Lext(P), is the projection of its language on the interface variables, that is,
Lext(P) ≡ (∃Vl(P) : L(P)). The relationship P |= Q is defined only when
Vi(Q) ⊆ Vi(P), and holds if, and only if, Lext(P) ⇒ Lext(Q) is valid.
The choice of processes P and Q, denoted by P + Q, is the process that

behaves either as P or as Q. The closure of process P , denoted by CL(P), is a
process whose language is the safety closure2 of the language of P ; this is just
P with fairness condition true.

2 The safety closure of L is the strongest safety property containing L [AS85].

Visual Specifications for Modular Reasoning about Asynchronous Systems 237

Compositional Reasoning[AENT02]: For processes P1, P2 and T , to show
that P1 []P2 |= T , find abstract processes Q1 and Q2 such that

1. P1 []Q2 |= Q1, Q1 []P2 |= Q2, and
2. Q1 []Q2 |= T , and
3. either P1 []CL(T) |= (T +Q1 +Q2), or P2 []CL(T) |= (T +Q1 +Q2).

Note that the last check in the proof rule is not needed if one of Q1, Q2,
or T is a safety property. The auxiliary processes Q1 and Q2 act as mutual
assumptions and guarantees in the first condition. For instance, P1 assuming
Q2 satisfies Q1 and symmetrically P2 satisfying Q2 under the assumption Q1.
The second condition ensures that they jointly satisfy T . The last check guards
against well-known pitfalls (see [NT00,AENT01]) in applying circular reasoning
in the presence of fairness.
In the next section, we present an automated method of partitioning an MTD

T into components T1 and T2, and for generating the auxiliary processes Q1 and
Q2 from this partitioning.

3.1 Decomposing an MTD Property

Let T be a specification MTD for P1 []P2. To use T for assume guarantee rea-
soning, we must decompose T into parts T1 and T2 corresponding to processes
P1 and P2, respectively. We call these the fragments of T .
Consider the ∀FA, AT , for T as constructed in Section 2.3. Let A1 be the

∀FA defining fragment T1, that is obtained from AT by the following pruning
procedure. In A1, first retain all the post-node DFA’s that either check a wave-
form for a variable of P1, check a sequential dependency that ends in an event
of P1, or check for the final event of a node that contains a variable of P1. Then,
for all nodes that are on a path to the post-node DFA’s chosen earlier, retain
the sub-automata for all pre-nodes, and for all post-nodes that do not contain
a variable of P1, retain only the check for the final event. Prune away all other
sub-automata. The form of the acceptance condition remains unchanged. Define
L(T1) to be the language of A1.
Theorem 3. For MTD T and fragments T1 and T2, L(T) = L(T1) ∩ L(T2).
Proof Sketch. Since the languages are defined by ∀FA, it is more convenient
to show the contrapositive. From left-to-right, a rejecting run for a sequence in
L(T) must either get stuck in some post-DFA, in this case, it induces a rejecting
run in Ai, where i is the process to which the DFA corresponds; or, it passes
through a non-fair node infinitely often and the same run is a rejecting run in
one of A1 or A2. In the other direction, since the ∀FA’s for the fragments are
sub-automata of AT , a rejecting run in one of them is a rejecting run for AT . ��

3.2 Constructing Abstract Processes

From the fragments T1 and T2 constructed earlier, we can construct the auxiliary
processes Q1 and Q2, respectively. Informally speaking, Qi is the automaton Ai

238 N. Amla et al.

considered as a process (this sort of duality is used, for instance, in the COSPAN
model checker). For simplicity, we assume that the processes P1 and P2 do not
write to a shared variable. The process Q1 is obtained by determinizing A1, and
modifying the resulting automaton, that accepts sequences, into a process, that
generates sequences, as follows: for each automaton transition of a post-node,
Q1 reads variables written by P2, and writes values of variables written by P1,
according to the transition. For a transition corresponding to a pre-node, Q1 sets
its variables non-deterministically, until the precondition is met. The acceptance
conditions on A1 are turned into fairness conditions for Q1. To prevent deadlocks
in Q1, we make the following assumption on T : if a variable v occurs in a node
r of T , then v may occur in any of r’s ∨-successors, but v can only occur in one
of r’s ∧-successors. We have not found this to be a restriction in our case study.
Theorem 4. For each fragment Ti of MTD T , L(Qi) = L(Ti). ��
Since Ai is a ∀FA, we may, in general, need to determinize it in order to

consider it as a process. This can incur an exponential blowup. However, by the
Lichtenstein-Pnueli thesis [LP85], the size of the specification is usually much
smaller than the size of the process. Thus, one may assume that, for instance, the
size of T1 is much smaller than the size of P1, so the potential exponential blowup
in going from T1 to Q1 still results in a process that is smaller than P1. Recall
that Q1 replaces P1 in the compositional checks. Theorem 4 lets us reformulate
the check P1 []Q2 |= Q1, in step 1 of the compositional rule, as P1 []Q2 |= A1.
Using A1 on the right hand side allows us use the efficient complementation
property of ∀FA, that reduces the complexity of this check. Theorems 3 and 4
ensure that we do not need to check step 2 of the compositional rule.

4 Applications

We used the verification tool COSPAN/FormalCheck [HHK96] to verify a num-
ber of properties of a Plain Old Telephone System (POTS). We chose COSPAN
for its efficient symbolic model checking implementation. However, since it is
based on a synchronous process composition model, we had to simulate asyn-
chronous composition by introducing an environment variable, turn, that is set
nondeterministically, ensuring that at each point, only one component can make
a move.
The POTS model consists of a Switch, a Phones process and the environment

process Env, that is responsible for assigning the turn variable. The Phones
process contains three telephones, T0, T1 and T2, and each telephone is connected
to the Switch, as shown in Figure 4 for telephone T0. Each telephone in Phones
communicates with the Switch through the following variables: cmd, busy and
outnum. The Switch send messages to the telephones through the variables msg0,
msg1 and msg2.
We specified and verified the following telephone features: the basic telephone

call, call forwarding and changing the existing call forwarding plan. The call
forwarding feature specified in Figure 5 allows a user to forward a telephone call

Visual Specifications for Modular Reasoning about Asynchronous Systems 239

msg0

cmd

busy

outnum

Phones.T0switch

Fig. 4. The Plain Old Telephone System (POTS)

to another phone if the current phone is either busy or if it is not answered
after exactly four rings. The first precondition states that telephone T1 places
a call to T2, that has a call forwarding plan (switch.fplan[T2] = yes) that
forwards calls to T0 (switch.fnum[T2] = T0). If either T2 is busy or if there
is no answer after four rings (Switch.ringer = 4), the Switch forwards the
call. In the postcondition, that specifies the forwarding protocol, the Switch (a)
informs T1 that it is forwarding the call (msg1 = forwarding), (b) checks if T0
is busy (msg0 = ru-busy) and (c) waits for T1 to acknowledge the forwarding
message (msg1 = forwarding).

��

��

T0

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

none place_callT1.cmd

T1.outnum

switch.msg1

T2T1

none

yes

T2.busyT2.busy

T2 T0T1.outnum

switch.msg0

try_conn

switch.msg1 forwarding

switch_busy

src_ackT1.cmd

forwarding

ru_busy

ack

switch.msg1

0 1 2 3 4switch.ringer

ring_tonetry_conn

T2.cmd noneack

switch.fplan[T2]

switch.fnum[T2]

Fig. 5. POTS: Call Forwarding Feature

We did the verification both non-compositionally and compositionally using
our assume-guarantee proof rule. Furthermore, we used the heuristic to partition
the MTD property T into fragments, Tp and Ts, and to generate the abstract

240 N. Amla et al.

Table 1. Experimental Results

Model Checking Task Reachable States BDD size Time (seconds) Space (Mb)
Basic telephone call

Compositional check 1 2.7 x e11 1060069 91 728
Compositional check 2 7.0 x e06 32553 3 7
Non-Compositional check 7.4 x e09 4707116 263 3923

Call forwarding
Compositional check 1 1.2 x e11 1610343 190 1234
Compositional check 2 1.4 x e08 23283 2 11
Non-Compositional check 3.1 x e09 2273486 100 1457

Changing forwarding plan
Compositional check 1 2.6 x e11 1388866 165 789
Compositional check 2 47150 10295 1 1
Non-Compositional check 4.2 x e09 3519750 337 2202

processes, Qp and Qs. Since the abstract process for the Switch had no fair-
ness, we did not need to check the last condition in the proof rule. Moreover,
as a consequence of Theorem 4, we did not have to check the second condi-
tion (Qp [] Qs |= T) either. The table summarizes our verification results for three
properties, where the first two rows correspond to the assume-guarantee checks
(Switch [] Qp [] Env |= Ts and Qs [] Phones [] Env |= Tp) and the last row is the non-
compositional verification (Switch [] Phones [] Env |= T).
The results in Table 1 indicate that the two compositional checks led to sav-

ings of 15%-80% in verification times and comparable savings in BDD-nodes
used, when compared to the single non-compositional check. The partitioning
heuristic worked without any modification for the first property. However, for the
other properties, we had to strengthen the precondition and redo the partition-
ing and abstract process generation. The checks involving the abstract phones
was more expensive because the Phones process, being the initiator of all trans-
actions, has more non-determinism. As part of future work, we intend to apply
this technique on other examples and investigate ways of refining the abstract
process without having to modify the property.

5 Conclusions

The goal of this work, inspired by the success of MSC-based notations for de-
scribing asynchronous systems, is to provide a framework for visually specifying
asynchronous behavior, coupled with modular reasoning algorithms. This pa-
per does so by proposing a new notation, Modular Timing Diagrams, together
with an efficient, polynomial-time model checking algorithm, and an assume-
guarantee partitioning algorithm that appears to work quite well in practice.
In [MP87] it was proposed that ∀FA be used as a visual specification lan-

guage; our work brings this idea closer to practical use. While MTD’s are similar

Visual Specifications for Modular Reasoning about Asynchronous Systems 241

to ∀FA, the visual notation specifies ordering constraints more compactly, which
is evident in the efficient but tricky translation of MTD’s to ∀FA as opposed to
the simple and direct translation in the reverse direction indicated in Theorem 0.
Moreover, we find that visual notations make explicit the information necessary
for property decomposition, and therefore are particularly well suited for auto-
mated compositional reasoning. One may also consider replacing the RTD’s in
the MTD nodes with synchronous timing diagrams; the translation results and
the partitioning heuristics should carry over in a fairly straightforward manner.
In future work, we hope to extend the functionality of the RTDT tool [AEKN01]
to MTD’s.

References

[AEKN00] N. Amla, E.A. Emerson, R.P. Kurshan, and K.S. Namjoshi. Model
checking synchronous timing diagrams. In FMCAD, 2000.

[AEKN01] N. Amla, E.A. Emerson, R.P. Kurshan, and K.S. Namjoshi. RTDT: a
front-end for efficient model checking of synchronous timing diagrams.
In CAV, 2001.

[AEN99] N. Amla, E.A. Emerson, and K.S. Namjoshi. Efficient decompositional
model checking for regular timing diagrams. In CHARME, 1999.

[AENT01] N. Amla, E.A. Emerson, K.S. Namjoshi, and R. Trefler. Assume-
guarantee based compositional reasoning for synchronous timing dia-
grams. In TACAS, volume 2031 of LNCS, 2001.

[AENT02] N. Amla, E.A. Emerson, K. Namjoshi, and R. Trefler. Composi-
tional Reasoning for Asynchronous Systems, 2002. URL: http://-
www.cs.bell-labs.com/who/kedar/publications.html.

[AG01] R. Alur and R. Grosu. Shared variable interaction diagrams. In 16th
IEEE International Conference on Automated Software Engineering,
2001.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. on
Programming Languages and Systems (TOPLAS), May 1995.

[AS85] B. Alpern and F. Schneider. Defining liveness. Information Processing
Letters, 21(4), 1985.

[AY99] R. Alur and M. Yannakakis. Model checking of message sequence charts.
In Proc. Tenth International Conference on Concurrency Theory, 1999.

[DH01] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1), 2001.

[DJS94] W. Damm, B. Josko, and Rainer Schlör. Specification and verification
of VHDL-based system-level hardware designs. In Egon Borger, editor,
Specification and Validation Methods. Oxford University Press, 1994.

[dRdBH+01] W-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers. Concurrency Verification: Introduction to Com-
positional and Noncompositional Proof Methods. Cambridge University
Press, 2001.

[dRLP97] W-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositional-
ity: The Significant Difference, volume 1536 of LNCS. Springer-Verlag,
1997.

242 N. Amla et al.

[EL87] E.A. Emerson and C. Lei. Modalities for model checking: Branching
time logic strikes back. Science of Computer Programming, 8(3):275–
306, 1987.

[Fis96] K. Fisler. A Unified Approach to Hardware Verification Through a Het-
erogeneous Logic of Design Diagrams. PhD thesis, Computer Science
Department, Indiana University, August 1996.

[HHK96] R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In CAV, volume
1102 of LNCS, 1996.

[Hol97] G. Holzmann. The SPIN model checker. IEEE Transactions on Software
Engineering, 23(5), May 1997.

[HP94] G.J. Holzmann and D. Peled. An improvement in formal verification.
In FORTE, 1994.

[KW01] J. Klose and H. Wittke. An automata based interpretation of live se-
quence charts. In TACAS, volume 2031 of LNCS, 2001.

[LL94] P.B. Ladkin and S. Leue. What do message sequence charts mean? In
Formal Description Techniques, 1994.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specifications. In POPL, 1985.

[MP87] Z. Manna and A. Pnueli. Specification and verification of concurrent
programs by forall-automata. In POPL, 1987.

[MP00] A. Muscholl and D. Peled. Analyzing message sequence charts. In 2nd
Workshop on SDL and MSC, 2000.

[MPS98] A. Muscholl, D. Peled, and Z. Su. Deciding properties for message
sequence charts. In FoSSaCS, 1998.

[MSC96] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), 1996.
[NT00] K.S. Namjoshi and R.J. Trefler. On the completeness of compositional

reasoning. In CAV, volume 1855 of LNCS. Springer-Verlag, 2000.
[PR99] M. Plath and M. Ryan. Feature integration using a feature construct.

Science of Computer Programming, 41(1), 1999.
[SHE01] M.H. Smith, G.J. Holzmann, and K. Etessami. Events and constraints:

A graphical editor for capturing logic requirements of programs. In 5th
International Symposium on Requirements Engineering, 2001.

	Visual Specifications for Modular Reasoning about Asynchronous Systems
	Introduction
	Modular Timing Diagrams
	Syntax
	Semantics
	Model Checking with MTD's

	Compositional Reasoning with MTD's
	Decomposing an MTD Property
	Constructing Abstract Processes

	Applications
	Conclusions
	References

