
Measuring Application Response Times with the CIM
Metrics Model

Alexander Keller1, Andreas Köppel2, and Karl Schopmeyer3

1 IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
alexk@us.ibm.com

2 SAP AG, Infrastructure Management (CCMS), Neurottstr. 16, 69190 Walldorf, Germany
andreas.koeppel@sap.com

3 The Open Group
k.schopmeyer@opengroup.org

Abstract. We describe new extensions to the CIM Metrics Model. While the
previous version of the model provides a means to carry out response time mea-
surements against an application, the scope of the work described in this paper is
to define schema extensions capable of measuring and tracing distributed trans-
actions. The model has been developed by the Application Working Group of the
Distributed Management Task Force (DMTF) in which the authors actively par-
ticipate. The extensions described in this paper have been recently adopted by the
CIM Technical Committee and are part of the new version 2.7 of the CIM schema.
Two detailed examples illustrate the applicability of the Metrics Model to real-life
measurement scenarios in distributed computing environments.

1 Introduction and Motivation

The DMTF Common Information Model (CIM) [3,4,6] is a standardized framework
for the management of systems, software, users, networks and more that relies on the
basic structuring and conceptualization techniques of the object-oriented paradigm. CIM
provides a management information model to establish a common conceptual framework
for describing the managed environment.

The CIM Metrics Model is one of the CIM Schemas. It was originally developed
within the CIM DAP (Distributed Application Performance) Working Group, which
was later renamed Metrics Working Group. Its goal was to develop a CIM schema for
measurement information about a Unit of Work (UoW), which is measured with tools
according to the Application Response Measurement (ARM) standard. Several ARM
usage examples have been published: [7] describes an example of using ARM and CIM
units of work to measure and publish response times of EJB applications; [9] proposes
an approach for correlating ARM measurements among distributed units of work.

In the year 2000, the Applications Working Group began to develop a model specifi-
cally for the management of applications at runtime (the initial applications model deals
primarily with software distribution); we have reported on the first results of this work
in [10]. One of the specific objectives of this work is the modeling of metric data, such
as counters and gauges. It became apparent that the schema of the Metrics group and the
work of the Applications Working Group on metrics had common objectives, which led

M. Feridun et al. (Eds.): DSOM 2002, LNCS 2506, pp. 66–81, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Measuring Application Response Times with the CIM Metrics Model 67

to the inclusion of the Metrics Model into the scope of the Applications Working Group.
The principal goals of the Metrics Model are as follows:

1. Defining a model for representing UnitOfWork metrics and their definitions; an in-
stance of a metric exists only when a definition of its characteristics is present. Stated
differently, a metric exists only within the scope of its definition. This allows, among
others, the enumeration of all the metric instances for a given metric definition.

2. Showing the currently pending or recently finished actions,
3. Publishing the semantics of the measurement data, i.e., providing a definition for

the management system so that it is able to understand what the data means,
4. Relating the measurements to the entity (application system, service, component,

etc.) that executed the measured operation or action,
5. Relating the measurements hierarchically as well as sequentially (correlation).

In the following sections, we describe the design of the Metrics Model and how it
addresses these requirements. Section 2 introduces the underlying Unit of Work concept
and examines the relationship of the CIM Metrics Model to the ARM standard. Section
3 presents the Metrics Model and the new extensions, the target of our effort. Special
emphasis is put on how this model can be applied in practice: We describe in detail two
typical usage scenarios for the Metrics Model in section 4. Section 5 concludes the paper
by discussing the lessons learned during the design of the model, and presents current
items of the working group.

2 The Unit of Work Concept

Generally speaking, a Unit of Work (UoW) is an individually distinguishible set of ex-
ecutable procedures defined in a (potentially distributed) execution environment. Origi-
nally defined for transaction response time measurement, the Unit of Work concept has
been extended to address a variety of runtime entities, such as batch jobs, user-initiated
interactive operations, transactions executed under the control of a TP Monitor, short
server transactions (such as a database read), network round trip delays, or even work-
flows. The term "unit of work" is used instead of "transaction" because the latter term
may imply a specific behavior and, as the list above shows, there are many possible units
of work beyond transaction processing. Any unit of work measurement has two primary
properties:

1. The time it took to complete the unit of work, or elapsed time if it is still executing.
2. The status of the unit of work: Active, Suspended, Completed Good, Completed

Failed, Completed Aborted, Completed (with unknown state).

In addition, it is useful to understand if a unit of work depends on another one, such as
one unit of work invoking a second unit of work, waiting for data to be returned, and
then continuing processing. This relationship between a unit of work and its sub-units
may occur repeatedly and at multiple levels. For example, it is common that a failure in
a sub-unit will cause its calling unit of work to fail, and this failure may then propagate
up the calling chain.

68 A. Keller, A. Köppel, and K. Schopmeyer

2.1 Relationship of the CIM Metrics Model to the ARM Specification

TheApplication Response Measurement (ARM) standard [1,2] has been developed under
the auspices of the Open Group as a way to instrument applications for measurement data
about transaction response times from a client perspective. The CIM Metrics model’s
objective is the definition of the information objects that represent units of work – a
generalization of the initial problem of transaction response time measurement. ARM
and the CIM Metrics model are based on the same fundamental concept; thus, it is not
surprising that the Metrics Model can be used to represent data measured with ARM.
While ARM and the CIM Metrics Model were developed as components of a common
solution to the problem of capturing UoW information, users are free to use any other
appropriate instrumentation to populate the CIM Metrics Model. The following two
sections briefly provide some background on ARM and compare ARM and the CIM
Metrics Model.

The Application Response Measurement (ARM) API. Introduced in 1996, ARM 1.0
and, later, 2.0 [1] specify C APIs while ARM 3.0 [2] describes Java interfaces for an
ARM agent. These standardized APIs can be used to capture performance information
for transactions or any programming function where the time-to-completion is impor-
tant. ARM does not define the characteristics of the resulting data, or the means for
communicating this data to a management system. Conceptually, the ARM interfaces
are very simple (Start Transaction, and Stop Transaction, with a few other supporting
interfaces). In its new version 3.0, ARM interfaces address the following two situations:

1. The ARM agent is triggered by the instrumented application to carry out the mea-
surements (interface ArmTransaction),

2. The ARM agent receives measurements completed by the agent (ArmTranReport).

Both interfaces imply the same data structures to describe the response time, status of
the action, identity of the measured action, correlation data, and contextual data. ARM’s
concept of correlation is that the predecessor (described by a unit of work token called
"parent correlator") of the current action is stored with the measurement data. ARM 3.0
also allows enhanced transaction measurements (and its inherent response time metric)
with up to seven additional metrics.Therefore, the interfacesArmTranReportWithMetrics
and ArmTransactionWithMetrics are defined to extend the transaction interfaces. ARM
metrics fall into four pre-defined categories: gauges, counters, non-calculable numeric
values, and strings. ARM requires the application to define the transaction and the met-
rics prior to the first measurements received or executed by the agent. Thus, additional
interfaces for the definition of metrics and transaction types are specified (ArmTranDef-
inition, ArmMetricDefinition).
Comparing the CIM Metrics Model and ARM. ARM defines an API that consists of
several interface methods that are supposed to be used in a specific sequence. On the
other hand, CIM UnitOfWork and its associated classes define a data model by abstracting
from the metrics and the actual instrumentation. Although the ARM specification also
provides diagrams that describe the data model implemented by the API, the model
itself has no formal data representation. Table 1 lists the CIM classes and their ARM

Measuring Application Response Times with the CIM Metrics Model 69

Table 1. Classes of the CIM Metrics Model and ARM

CIM Metrics 2.7 ARM 3.0

CIM UnitOfWork ARMTransaction
ARMTransactionWithMetrics
ARMTranReport
ARMTranReportWithMetrics

CIM UnitOfWorkDefinition ARMTranDefinition
CIM MetricDefinition ARMMetricDefinition
CIM User Schema ARMUserDefinition
CIM UoWMetric ARMMetric

ARMTranReportWithMetrics.MetricValues
CIM LogicalElementPerformsUoW ARMSystem

ARMSystemId
CIM SubUoW ARMCorrelator
CIM LogicalElementUnitOfWorkDef N/A

equivalents. There is no semantic gap between the ARM API and CIM, although the
ARM classes target transactions while the scope of the CIM Metrics Schema is broader.
Although the concepts behind the class CIM UnitOfWork match ARM very well, some
conceptual differences can be identified. The fact that the CIM Metrics Model describes
the elements of a measurement itself contrasts with the API defined by ARM as follows:

While the purpose of ARM is to define the data access through a few well-defined
methods, the Metrics Model itself does not provide any data access interface, because, in
CIM, management data is supposed to be surfaced by a CIM Object Manager (CIMOM)
whose access operations are generic (cf. [5]). The most important difference concerns
the way how metrics and their types are defined: While ARM is restricted to 10 pre-
defined metric types, CIM allows the user to define arbitrary metric types. In addition, an
ARM transaction may carry a maximum of seven metrics, while CIM does not restrict
the number of metrics associated with a unit of work. To sum up, CIM introduces a
concept of metrics that is more flexible and adaptable to the requirements of a specific
environment than ARM.

3 The CIM Metrics Model

3.1 The Core Elements: Unit of Work, UoW Definitions, and Sub-units of Work

The central class of the CIM Metric Model, depicted in figure 1, is CIM UnitOfWork. It
represents an individual action or operation. It has an identity (which is its key) and pro-
vides contextual information (e.g., the UserName) and, most importantly, the response
time measurement values together with the execution status of the instance. Each instance
needs to reference additional information that allows a management application to under-
stand the semantics of the unit of work. Thus, CIM UnitOfWork instances are associated
via CIM StartedUoW to their corresponding definition (CIM UnitOfWorkDefinition).
The unit of work instance can also be related to a logical element (i.e. some instance
of CIM System, CIM Service, etc.) that executes/has executed the unit of work. This is
done via the association CIM LogicalElementPerformsUoW . An important feature of
the model is the association CIM SubUoW : It allows the correlation between various
instances of CIM UnitOfWork that are hierarchically related. A high-level unit of work

70 A. Keller, A. Köppel, and K. Schopmeyer

LogicalElement

ManagedSystemElement

InstallDate:datetime
Name:string
Status:string

Id : sint64 {key}
UoWDefId: string {key, propagated}
UserName: string
StartTime: datetime
ElapsedTime: datetime
Status : uint16
MutualContextId:string
TraceLevel: uint32

UnitOfWork

*

*
SubUoWDef

Id : string {key}
Context : string
TraceLevelTypeId: string

UnitOfWorkDefinition

*

*

LogicalElementPerformsUo

*0..1

SubUoW

ManagedElement

Caption: string
Description string

Value : string

UoWMetric

Association

Aggregation
Association with WEAK reference

Inheritance

Aggregation with WEAK reference

w

w

* equivalent to: 0 .. n

MetricDefinition

InstanceId : string {key}
Name: string
DataType: uint16
Calculable: uint16
Units: string
Validity: uint16

TraceLevelType

InstanceId : string {key}
BaseType : uint16
Values: uint32[] {required}
ValueDescriptions: string[] {required}

UoWDefTraceLevelType

0..1

*

UoWMetricDefinition 1..**

*

*

UoWMetric

* w

1
StartedUoW

*

LogicalElementUnitOfWorkDef

*
UoW

Fig. 1. The Unit of Work Part of the CIM Metrics Model 2.7

can be broken down into several smaller units of work, i.e., the granularity of measure-
ments is refined. Note, however, that accumulating an overall response time from these
smaller units of work is often a complex and error-prone activity. Sub-transactions may
execute serially or in parallel and there are often small time components that are not mea-
sured. There are ongoing discussions within the ARM community to define additional
semantics indicating if a sub-transaction is blocking or non-blocking.

CIM SubUoW is not intended to model sequential relationships of units of work, but
represents blocking and non-blocking hierarchical calls. If the unit of work hierarchies
are defined and known before the execution of the action or operation, CIM SubUoWDef
expresses the anticipated relationships between the instances.A management application
could use such information to determine incorrect execution paths or to create a graphical
representation of the measurements. Note that today, an instance of a sub-unit of work can
be associated to only one parent. The reason is that the sub-unit can only be executing
in the context of one parent. On the CIM SubUoWDef side, this is not true, since a
definition can be used as a template in many higher level definitions.

Measuring Application Response Times with the CIM Metrics Model 71

3.2 Correlation with CIM UnitOfWork.MutualContextId

The correlation context of CIM UnitOfWork instances is provided by CIM SubUoW
association instances. Thus, the mutual context of two CIM UnitOfWork instances has
to be retrieved by following the associations between these instances, i.e., the mutual
context is not named explicitly. It may be needed for two situations:

– Displaying all CIM UnitOfWork instances that participate in an action as a whole.
– Direct retrieval of CIM UnitOfWork instances that participate in the same context

by using one query expression.

To facilitate these operations, we have introduced the property MutualContextId. It is
not supposed to replace CIM SubUoW association instances, but should support better
identification and correlation of distributed actions.

Cross-namespace associations are an important issue when using CIM SubUoWDef
and CIM SubUoW for correlation. They arise if the associated instances reside within
different namespaces (e.g., on different systems), i.e., the instances of CIM UnitOfWork
are provided separately and thus need to be related by a cross-namespace association.
Current CIMOM implementations cannot resolve an association having a reference that
points to another namespace (neither local nor remote). Possible workarounds are:

– Organizing the CIM providers in a way that they operate against one namespace.
– Using a separate correlation information class that carries the necessary correlation

properties (see the example described in section 4.2 for details). A management
system could then access this correlation information and provide the associations.

3.3 UoW Metrics and Metric Definitions

CIM UnitOfWork can be associated with metrics, whose semantics and data type can
be defined in the class CIM MetricDefinition. The metric definition is always defined in
conjunction with at least one definition of a unit of work (CIM UoWMetricDefinition).
In analogy to the unit of work definition, the metric definition provides additional infor-
mation to a management application to understand the semantics and usage of the metric
(Metadata). The value of a metric is held in the Value property of the CIM UoWMetric
association. Providing the metric value by means of this association avoids cluttering
the model. An alternative would have been to model the value of the metric as an addi-
tional CIM metric class. However, this additional class would still need the association
to CIM MetricDefinition and an additional association to CIM UnitOfWork. This would
result in many instances to obtain just a single value.

The reasons why the definition is kept separate from the values of unit of work and
metrics are as follows:

1. This model provides flexibility because its class definitions need not be changed to
provide new types of units of work. One only needs to create new instances. Since
there may be many different metric types, this clearly is the preferable modeling
approach. Note that where "standard" metrics exist, subclasses of these "basic"
metric classes may still be defined.

2. Instances of CIM MetricDefinition can be shared among many different
CIM UnitOfWorkDefinition instances.

72 A. Keller, A. Köppel, and K. Schopmeyer

An alternative approach consists in defining qualifiers of the unit of work class. This
approach has the same shortcomings of item 1 above, and a few additional ones. For
example, more than one qualifier would be needed to describe the definition. In addition,
there is no way to show the relationships between these qualifiers.Yet another alternative
is to include the properties of the unit of work into its definition. This, however, results in
mixing data with metadata and duplication of definitional information in every instance.

3.4 Facilitating Traces

CIM UnitOfWork.Status and CIM UnitOfWork.ElapsedTime may be indicators of faulty
system behavior or performance bottlenecks. However, they are usually insufficient
to determine the cause of a fault or a performance bottleneck. More detailed infor-
mation is often available from traces written during the execution of a unit of work.
An administrator needs to know whether traces for some particular unit of work
instance are available. The trace level is the indicator whether traces are available
for a given unit of work instance. It also defines the granularity of the traces pro-
duced. However, it does not indicate where the traces are found and how they are ac-
cessed. Thus, in addition to the properties TraceLevelType and TraceLevel of the classes
CIM UnitOfWorkDefinition and CIM UnitOfWork, a new class CIM TraceLevelType and
an association CIM UoWDefTraceLevelType are included in the model. Since the seman-
tics of the trace level are usually implementation dependent, a management application
may also need to distinguish between different semantics (the trace level type) as well as
the actual encoding of the applied types (i.e., whether the level is represented by a bitmap
or an enumeration and what the different possible levels mean). Note that the associ-
ation CIM UoWDefTraceLevelType is not attached to CIM UnitOfWork since it seems
prohibitive to burden the potentially numerous CIM UnitOfWork objects with additional
associations. A desirable side effect of this approach is that it prevents the implementa-
tion of different trace level encodings for CIM UnitOfWork instances having the same
definition, and thus ensures consistency. Section 4.2 demonstrates the applicability of
this approach for defining traces in a distributed context.

4 Examples of Using the Metrics Model

4.1 Using the CIM Metrics Model to Measure Nested Units of Work

To demonstrate the usage of the Metrics Model, a simple example has been chosen that
uses all the features of the model.As depicted in figure 2, we assume a simple application
system (Catalog Application System) that provides search functions for a catalog stored
in a database. When a catalog search request is issued against the system, the request
is validated (format of the query) and handed over to a database service access point
(DB SAP) that executes the DB query. Finally, the results of the query are prepared for
presentation and returned to the requestor. The system is able to work on several requests
in parallel.

Measuring Application Response Times with the CIM Metrics Model 73

Catalog Application System

Catalog Search
Request

Elapsed Time
Memory Consumption

Elapsed Time
Bytes Read

DB SAP

DB
Catalog
Search
Action

DB Query

Validation

Presentation

Fig. 2. Scenario: Nested Units of Work

Administrators need in-
formation on blocking re-
quests as well as detailed per-
request performance infor-
mation to optimally tune their
catalog system and database.
They want to measure the
entire search operation, in-
cluding its duration (elapsed
time) and memory consump-
tion. Since database access is
crucial, they decide to also
measure the DB query in
terms of duration and the bytes that have been received (read) from the database during
each call.

Id = "1"
Name = "SearchAction"
Context ="CatalogSearchSystem"

:UnitOfWorkDefinition

Id = "2"
Name = "DBQuery"
Context ="CatalogSearchSystem"

:UnitOfWorkDefinition

:SubUoWDef

:MetricDefinition

id = "1234567890ABCDEF"
Name = "MemoryConsumption"
DataType = 12
Calculable = 3
Units = "KiloBytes"
Validity = 3

:UoWMetricDefinition

:UoWMetricDefinition

:MetricDefinition

id = "ABCDEF1234567890"
Name = "BytesRead"
DataType = 12
Calculable = 2
Units = "KiloBytes"
Validity = 3

Name = "CatalogSearchSystem"

:ApplicationSystem

:LogicalElementUnitOfWorkDef

Name = "DBAccess"
SystemName = "CatalogSearchSystem"

:MY_DBSAP

:LogicalElementUnitOfWorkDef

:ServiceAccessPoint

Fig. 3. Instance Diagram of the Definition Objects

Setting up the Measurements: Unit of Work Definitions and Metric Definitions.
For simplicity, the classes of the Metrics Model have been used "as is". It is up to

74 A. Keller, A. Köppel, and K. Schopmeyer

the designer to decide whether deriving more specific subclasses are needed. How-
ever, subclassing from CIM ServiceAccessPoint is necessary since this class is abstract
and, thus, cannot be instantiated. The catalog system is represented by an instance of
CIM ApplicationSystem (CatalogSearchSystem). The database access component (DB
SAP) is modeled as MY DBSAP (DBAccess). The "Hosted by" relationship is not de-
picted in figure 3, but DBAccess is assumed to be hosted by CatalogSearchSystem.
The application may be described by different instances of CIM LogicalElement or its
subclasses CIM SoftwareFeature or CIM SoftwareElement.

As mentioned earlier, the system activity comprises two actions: the catalog search
and the database query, whereas the query is always executed within the scope of the cat-
alog search (nested unit of work). These two unit of work types are modeled as different
instances of CIM UnitOfWorkDefinition. Their nesting relationship is expressed by an
instance of CIM SubUoWDef . Instances of CIM LogicalElementUnitOfWorkDef assign
the definitions to the entity that actually executes the units of work. In our case, this is
CatalogSearchSystem and DBAccess. The definitions for the units of work SearchAc-
tion and DBQuery are straightforward: In this example, the Id does not represent a
GUID; Context is set to the application name (CatalogSearchSystem). We have omitted
the properties InstallDate and Status.

SearchAction:
UnitOfWorkDefinition

DBQuery:
UnitOfWorkDefinition

MemoryConsumption:
MetricDefinition

ReceivedBytes:
MetricDefinition

CatalogSearchSystem:ApplicationSystem

DBAccess:MY_DBSAP

Id = 1023348
UoWDefId = "1"
UserName = "MyUser"
StartTime = "20020308174512.200000+000"
ElapsedTime = "00000000000000.500000:000"
Status = 4
Caption =""
Description =""

:UnitOfWork

Id = 4587344957
UoWDefId = "2"
UserName = "MyUser"
StartTime = "20020308174512.300000+000"
ElapsedTime = "00000000000000.300000:000"
Status = 4
Caption =""
Description =""

:UnitOfWork

:StartedUoW

:UoWMetric

Value = "201"

:UoWMetric

:UoWMetric

Value = "1453"

:UoWMetric

:StartedUoW

:SubUoW

:LogicalElementPerformsUoW

:LogicalElementPerformsUoW

Fig. 4. Instance Diagram of the Metric and UnitOfWork Objects

Measuring Application Response Times with the CIM Metrics Model 75

Since we do not only want to measure the elapsed time, but also memory con-
sumption and the number of bytes read for the respective units of work, these two
additional metrics must be defined as instances of CIM MetricDefinition. These two
instances are attached to the corresponding CIM UnitOfWorkDefinition by means of
CIM UoWMetricDefinition. The metric definitions’ Caption and Description are omitted
for the sake of brevity. ID is a GUID, Datatype corresponds to uint32 (encoded as an
enumerated value "2"), Validity is "atStop" (encoded as "3"). The Calculable property
of the MemoryConsumption object is "Non-Summable" (encoded as "3") since it does
not make sense to aggregate the amount of consumed memory. BytesRead.Calculable,
on the other hand, was chosen to be "Summable" (encoded as "2") because it may be
valid to calculate the overall throughput of the database by summing up the values of
this metric. The definitions are assumed to be static, i.e., the property values are not
modified during the lifetime of the definition instances.

Obtaining the Results: Units of Work and Metrics. Figure 4 depicts the measurement
data for one search operation with its corresponding DB query. Both are described as in-
stances of CIM UnitOfWork. The search was executed by the user "MyUser". The action
started at March 8 2002:5:45:12.2 pm (GMT) and lasted 0.5 seconds. The search action
was completed successfully (Status = 4). If it was not yet completed, its status would be
"Active" (Status = 1). The memory consumption of the search was 1453 kB. The nested
DB query was executed on March 8 2002 at 5:45:12.3 PM (GMT) and lasted 0.3 sec-
onds. Thus, the validation and presentation lasted approximately (since the impact of the
measurements themselves is not considered) 0.2 seconds. The query was also completed
successfully (Status = 4). The number of bytes read during the query is 201 kB. The met-
ric values for memory consumption and bytes read are each stored in the Value property
of the CIM UoWMetric instances. The instances of CIM LogicalElementPerformsUoW
are used to attach search-units of work to CatalogSearchSystem and the query-units
ofwork to DBAccess. CIM UnitOfWork.Caption and Description have been chosen to
be empty for both CIM UnitOfWork instances.

4.2 An Advanced Use Case: Distributed Statistic Records

The following example describes a more advanced scenario that fully exploits the func-
tionality offered by the Metrics Model for solving the problem of correlating statistical
measurements obtained from a real-world distributed application. This example demon-
strates how a developer may define extensions to address specific requirements. It uses
the existing CIM Metrics Model without requiring the use of other CIM schemas so that
its impact on existing instrumentation is minimal.

The Scenario. A user requests a business action (e.g., a search for a catalogue item)
that requires cooperation of several application systems (systems A, B, C and D, each
running on different hosts). In addition, each system may need to execute more than one
local action (system A and B). These local actions are sequential actions, i.e., not nested
and may also require calls to other systems (e.g., between systems A and B or B and C).

76 A. Keller, A. Köppel, and K. Schopmeyer

System B System C

System D

Distributed Business Action

Local
Action 2

Local
Action 1

Local
Action 1

Local
Action 1

System A

Local
Action 1

Local
Action 2

Frontend/
Browser

Fig. 5. Scenario of a Distributed Business Action

Performance monitoring and
analysis of the distributed
business action is the ultimate
goal of the application system’s
administrator or the application
software vendor’s support orga-
nization to detect performance
bottlenecks. Therefore, it is
necessary to measure each local
action and store the results of the measurement. Further, a mechanism needs to be
provided that correlates local actions to re-assemble the distributed business action
for monitoring or analysis purposes. The data, generated by local measurements and
subsequently correlated, is to be described in a CIM model that allows management
tools to efficiently access and process such performance data.

SAP_DSRMainRecord

Service: uint16
Action: string
Actiontype: uint16
LUWInfo: string
ProcessID: uint32
ThreadID: uint32
CPUTime: uint32
QueueTime: uint32
LoadTime: uint32
GenTime: uint32
NetTime: uint32
WaitTime: uint32
MaxMem: uint32
EndTime: datetime
Additional: string
TransId: string

id : sint64 [key]
UoWDefId: string [key, propagated]
UserName: string
StartTime: datetime
ElapsedTime: datetime
Status : uint16

UnitOfWork

Local Context
Information

Local
Measurement

Local Context
Information

Local
Measurement

ComponentType: string
ComponentName: string
Destination: string
Receivetime: uint32
Sent Bytes: uint32
Received Bytes: uint32
NoOfCalls: uint16
Additional: string

SAP_DSRCallRecord

Id : string [key]
Context : string
Name : string

UnitOfWorkDefinition

Type: string

SAP_DSRRecordDefinition

SAP_DSRCallRecords:
CIM_SubUoW

SAP_DSRDefCallRecords:
CIM_SubUoWDef

*

1

SAP_DSRRecords
CIM_StartedUoW

1

w *

Destination Context
Information

Local
Measurement

Fig. 6. Using CIM UnitOfWork and CIM UnitOfWorkDefinition for DSRs

The solution to the above situation is to use the Unit of Work concept with some
extensions for correlation, as described in section 3.2. For clarity, the solution is described
in two steps: Step one addresses the local measurements, step two addresses correlation.
This solution has been implemented for SAP systems, i.e., mySAP components such as
Internet Transaction Server (ITS) and is called Distributed Statistic Records (DSR).
The underlying data store is capable of handling object lifecycle issues and the time
frame during which data is kept is typically between an hour and a day, although it can
be configured to keep data for longer time periods.

Local Measurements. A local action is defined as all code locally executed within
one OS process. The underlying software architecture consists of several processes

Measuring Application Response Times with the CIM Metrics Model 77

operating in parallel. The processes have a dedicated "type" or purpose and may be
executed concurrently. When a request is received by the application system, the request
is either assigned to a free process (of the appropriate type) or queued for subsequent
processing.

Each local action creates a Main Record, which is an instance of a unit of work (see
figure 6). The main record is derived from CIM UnitOfWork and adds further statistical
information for the local action. It extends the properties inherited from CIM UnitOfWork
by local context information such as Action (name of the local action), ActionType (type
of the local action) and local measurements such as CPUTime, QueueTime, MaxMem (maximum
amount of memory used during the action), etc. The underlying data structures of the
SAP system define the property Additional for potential custom-defined parameters in
a name-value pair format. A particular problem is the Id: While it is not a problem to
locally assign a unique number its uniqueness is not guaranteed in a scenario where the
records/instances are to be retained in a central repository. Eventually, a new key may
have to be assigned to such operations, but reserving some bits of the Id for system
identification is also a potential solution. Figure 7 depicts an instance diagram of the
various record types.

:SAP_DSRMainRecord

Id = 10
UoWDefId = "1"
UserName ="A"

Id = 11
UoWDefId = "2"
ComponentName ="RemoteComp1"

:SAP_DSRCallRecord

Id = "1"
Name = "SAP_DSRMainRecord"

:SAP_DSRRecordDefinition

:SAP_DSRCallRecords

Id = "2"
Name = "SAP_DSRCallRecord"

:SAP_DSRRecordDefinition

:CIM_StartedUoW

:CIM_StartedUoW

Id = 12
UoWDefId = "2"
ComponentName ="RemoteComp2"

:SAP_DSRCallRecord
:CIM_StartedUoW

:SAP_DSRCallRecords

:SAP_DSRCallRecordsDef

:SAP_DSRMainRecord

Id = 9
UoWDefId = "1"
UserName ="C":CIM_StartedUoW

Fig. 7. Instance Diagram for Main Records and Call Records

During the course of the local action, calls to external systems may be issued. Apart
from correlation (described below), the information about the called system and mea-
surements of the calls are important for performance analysis. Such information is iden-
tified in a Call Record and represented by the class SAP DSRCallRecord. A main
record SAP DSRMainRecord can have multiple call records (or none if no calls have
been executed). The call record logs the calls issued to a particular system: This is

78 A. Keller, A. Köppel, and K. Schopmeyer

described by the following destination context information: ComponentType (type of sys-
tem called), ComponentName (ID of the system), Destination (service access point used
for the calls). Alternatively, the destination context could have been placed in some
CIM ServiceAccessPoint class, associated via CIM LogicalElementPerformsUOW ;
however, extending the model to the environment of the units of work was not the
intent of the model. Strictly speaking, the call record could also be modeled as
CIM StatisticalInformation. However, the record structure needs to have a version
(which is accomplished by using CIM UnitOfWorkDefinition); in addition, the num-
ber of calls per record is small or even equal to one (which is not the basic idea of
statistical information) and, finally, the call record is always within the scope of a par-
ticular main record. All these arguments led to the decision to model the call record as
CIM UnitOfWork.

MetricDefinition

id : string [key]
Name: string
DataType: uint16
Calculable: uint16
Units: string
Validity: uint16SAP_DSRRecordDefinition

*
SAP_DSRRecordMetricDefs:

CIM_UoWMetricDefinition

SAP_DSRMetricDefinition

1..*

Fig. 8. Using CIM MetricDefinition

To allow the man-
agement application
to benefit from
CIM MetricDefini-
tion.Validity and
Calculable, CIM Me-
tricDefinition is used
to add the description
of the metrics defined
in the classes SAP DSRxxxRecord (where ’xxx’ stands for either ’Main’ or ’Call’). For
this purpose, SAP DSRMetricDefinition was derived from CIM MetricDefinition (see
figure 8). Its instances carry the metric definition, which is associated to the appropriate
UoW definition (SAP DSRRecordDefinition). Since the metrics are already present
in subclasses of CIM UnitOfWork, information like Datatype and Name is actually
duplicated. Units may be expressed either by means of an appropriate qualifier or by
CIM MetricDefinition.Units.

Id = "1"
Name = "SAP_DSRMainRecord"

:SAP_DSRRecordDefinition

Id = "2"
Name = "SAP_DSRCallRecord"

:SAP_DSRRecordDefinition

:SAP_DSRCallRecordsDef

:SAP_DSRMetricDefinition

id = "111"
Name = "CPU-time"
DataType = uint32
Calculable = yes
Units = "MilliSeconds"
Validity = 3

:SAP_DSR
RecordMetricDefs

:SAP_DSR
RecordMetricDefs

:SAP_DSRMetricDefinition

id = "112"
Name = "ReceivedBytes"
DataType = uint32
Calculable = yes
Units = "KiloBytes"
Validity = 3

instances also for:
Queue-time: uint32
Load-time: uint32
Gen-time: uint32
Net-time: uint32
Wait-time: uint32
Max-mem: uint32
Resp-time: uint32

instances also for:
Receivetime: uint32
SentBytes: uint32
NoOfCalls: uint16

Fig. 9. Instantiating the DSR subclasses of CIM MetricDefinition

Measuring Application Response Times with the CIM Metrics Model 79

The association CIM UoWMetric has not been used since the metric values are al-
ready published in SAP DSRxxxRecord instances. This modeling decision was made
because the intended usage of the unit of work data is either the retrieval of the entire
record (with all its metrics) or no record at all. Therefore, an additional query, specified
in the CIM Query Language (CQL), would also have to retrieve the metric values, which
adds additional overhead. Consequently, a management application dealing with these
units of work would have to be aware of this deviation from the standard. The instance di-
agram, depicted in figure 9, shows how the definition-sub-model has been applied to the
example. SAP DSRMetricDefinition.Name corresponds to the property names defined in
the SAP DSRxxxRecords that represent the values of the metrics. For each metric prop-
erty of the SAP DSRxxxRecords, a corresponding SAP DSRMetricDefinition instance
exists.

Correlation of distributed Measurements. Now that the model for defining local
measurements has been described, we will focus on how to correlate these local mea-
surements across several distributed systems. To achieve correlation, a distributed con-
text needs to be established for each participating action and stored for subsequent
aggregation. The context, captured in the newly defined class SAP DSRClientInfo, is
defined to hold information about the system that initiates the action: InitiatorSystem,
InitiatorService (the component or function that has been adressed by the action),
the user (InitiatorUserId), the first action executed and its type (InitiatorAction,
InitiatorActionType). These properties are helpful for aggregating local actions to cal-
culate statistics according to the common context of several distributed business actions.
The MutualContextId, discussed in section 3.2, is assigned to each business action only
once by the initiating system and ties the results of the statistical calculations for local
actions back to the overall business action.

The new class SAP DSRClientInfo is instantiated by the first system that re-
ceives a request without such client information. In addition, a newly defined as-
sociation SAP DSRPassport is instantiated, whose purpose is to connect the new
SAP DSRClientInfo instance to the SAP DSRMainRecord instance. Furthermore, the
MutualContextId property and all other initiator context attributes are set. Each call to
another system requires that the payload of the call is to be extended with the client
information. Finally, the calling system enters its system ID into the PreviousSystem

property of SAP DSRClientInfo and sets TraceLevel (introduced in section 3.4) to the
appropriate level before transmitting the client information. At the end of its local action,
the client information (with PreviousSystem="") is stored together with the correspond-
ing SAP DSRMainRecord. The called system receives the client information, checks
whether the TraceLevel requires that traces be written and prepares the measurements of
its own (local) SAP DSRMainRecord. On its calls to other systems, it transmits the same
SAP DSRClientInfo it has received and changes the value of the PreviousSystem prop-
erty to its own system ID. The unchanged value of the TraceLevel allows the consistent
tracing of an entire business action. It corresponds to the ARM correlator field.

If a local action initiates subsequent local actions on the same system (each ac-
tion is represented by a new SAP DSRMainRecord, cf. the scenario depicted in figure
5, where SystemA.LocalAction1 inititiates SystemA.LocalAction2), only the initiating

80 A. Keller, A. Köppel, and K. Schopmeyer

MainRecord is associated with the client information (Cardinality 0..1). This is possible
because the generated (or received) client information is transferred internally via shared
memory. Subsequent local actions store the MutualContextId, which is sufficient to either
relate to the client information associated with the first local action or to relate all local
actions that logically share the same SAP DSRClientInfo instance. Note that subsequent
local actions transfer the client information if calls to other systems are executed. In-
stead of using CIM SubUoW to associate local actions, SAP DSRClientInfo holds this
information. This eliminates the problem of resolving cross-namespace CIM SubUoW
associations that would be needed between related SAP DSRMainRecord instances on
different systems. This modeling decision allows the access of all needed information
local to one CIM provider and is independent from CIMOM implementation issues (such
as the traversal of cross-namespace associations, mentioned in section 3.2). Conceptu-
ally, the properties of the SAP DSRClientInfo class can be thought of as the externalized
properties of a cross-namespace subclass of the CIM SubUoW association.

5 Lessons Learned and Outlook

In this paper, we have described the Metrics Model and its extensions, which have
been adopted for CIM version 2.7. After comparing the Metrics Model with the most
widely used standard for measuring application response times, the ARM API, we have
described the design decisions that went into this model. To illustrate the applicability
of the model to real-life environments, we have described two typical usage scenarios
that have been implemented by the authors: the first scenario deals with determining
application response times for nested transactions, while the second, more complex
scenario describes distributed statistic records. This advanced use case leverages recent
additions to the Metrics Model, such as setting up traces and establishing a mutual
context. It also presents several examples how the Metrics Model may be enhanced with
environment-specific extensions.

During this work, it was recognized that the concepts behind the Metrics Model
are not confined to measuring response times of distributed applications, but apply to a
wide range of managed elements (devices, systems, networks, SLAs, etc.). Thus, it is the
intention of the Applications Working Group to extend the model described in this paper
so that it provides a basis for the generic modeling of metrics in a managed environment.
This includes the definition of a mechanism for dynamically (i.e., at runtime) associating
both metrics and their definitions with any managed element. Similar to the concept of
UoW Definitions and Units ofWork, described in this paper, such a mechanism allows the
dynamic creation and enumeration of all the metric instances for a given metric definition.
The emerging Service Level Agreement model, which is currently being developed by
the CIM Policy Working Group, is another area where the concepts behind the Metrics
Model may be applied.

Acknowledgments. The authors would like to thank the members of the DMTFApplica-
tionWorking Group for helpful discussions and continuous advice, and their commitment
to making this work succeed.

Measuring Application Response Times with the CIM Metrics Model 81

References

1. Systems Management: Application Response Measurement (ARM) API. Open Group Tech-
nical Standard, Document Number: C807, The Open Group, July 1998.

2. Application Response Measurement, Issue 3.0 – Java Binding. Open Group Technical Stan-
dard, Document Number: C014, The Open Group, October 2001.

3. W. Bumpus, J.W. Sweitzer, P. Thompson, A.R. Westerinen, and R.C. Williams. Common
Information Model: Implementing the Object Model for Enterprise Management. J. Wiley &
Sons, 2000.

4. Common Information Model (CIM)Version 2.2. Specification, Distributed Management Task
Force, June 1999.

5. Specification for CIM Operations over HTTP, Version 1.1. Specification, Distributed Man-
agement Task Force, 2002.

6. Specification for the Representation of CIM in XML Version 2.0. Specification, Distributed
Management Task Force, 1999.

7. M. Debusmann, M. Schmidt, and R. Kröger. Generic Performance Instrumentation of EJB
Applications for Service Level Management. In R. Stadler and M. Ulema, editors, Proceedings
of the IEEE/IFIP Network Operations and Management Symposium (NOMS ’02), Florence,
Italy, April 2002. IEEE Press.

8. O. Festor and A. Pras, editors. Proceedings of the 12th IFIP/IEEE International Workshop
on Distributed Systems: Operations & Management (DSOM’2001), Nancy, France, October
2001. INRIA Press.

9. R. Hauck. Architecture for Automated Management Instrumentation for Component Based
Applications. In Festor and Pras [8], pages 231–242.

10. A. Keller, H. Kreger, and K. Schopmeyer. Towards a CIM Schema for RunTime Application
Management. In Festor and Pras [8], pages 217–230.

	Introduction and Motivation
	The Unit of Work Concept
	Relationship of the CIM Metrics Model to the ARM Specification

	The CIM Metrics Model
	The Core Elements: Unit of Work, UoW Definitions, and Sub-units of Work
	Correlation with {em CIM_UnitOfWork./}{tt MutualContextId}
	UoW Metrics and Metric Definitions
	Facilitating Traces

	Examples of Using the Metrics Model
	Using the CIM Metrics Model to Measure Nested Units of Work
	An Advanced Use Case: Distributed Statistic Records

	Lessons Learned and Outlook

