Skip to main content

cAMP- and cGMP-dependent control of lipolysis and lipid mobilization in humans: putative targets for fat cell management

  • Conference paper
Insights into Receptor Function and New Drug Development Targets

Summary

The mobilization of triglycerides stored in adipose tissue (AT) plays a major role in supplying non-esterified fatty acids (NEFA) to working muscle. Lipolysis, the hydrolysis of fat cell triacylglycerols by hormone-sensitive lipase (HSL), promotes the release of NEFA and glycerol by fat cells. HSL regulation is under the potent control of cAMP and the cAMP-dependent protein kinase, protein kinase A (PKA). In human fat cells, adenylyl cyclase activity and cAMP production are under the positive control of β1-, β2- and, to a lesser extent, β3-adrenergic-receptor (AR)-dependent stimulation and α2-AR-mediated inhibition. The links between β- and α2-ARs and adenylyl cyclase activity operate through the activationof Gs and GiGTP binding proteins respectively. The adrenergic regulation of lipolysis in vitro is complex because of the heterogeneity of the distribution of α2-/β-ARs in fat cells. A number of in vitro studies have clearly established that the repertoire and the level of expression of ARs in human fat cells differ largely according to the anatomical location and the extent of AT, the sex, the age as well as genetic determinants of the subjects. Fat cells from visceral deposits exhibit the highest β-adrenergic responsiveness and lowest α2-adrenergic response. Reduced adrenaline-induced lipid mobilization has been reported in the AT of obese subjects. Physiological stimulation of adipocyte α2-ARs strongly impairs exercise-induced lipolysis in the subcutaneous AT of obese subjects. It is completely reversed by the local administration of an α2-AR antagonist. Oral administration of an α2-AR antagonist (yohimbine or idazoxan) promotes sympathetic nervous system (SNS) activation and increased lipid mobilization.

Atrial natriuretic peptide (ANP) has been shown to stimulate cGMP production and exert potent lipolytic effects in human fat cells in vitro. In addition to PKA, cGMP-dependent protein kinase (cGK-I) is involved in the phosphorylation and activation of HSL in human adipocytes. When administered intravenously or physiologically released during exercise, ANP contributes to lipid mobilization in humans. The interplay between the various pathways is discussed as well as putative pharmacological strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abassi Z, Karam T, Allaham S, Winaver J, Hoffman A (2004) Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol Therapeutics 102:223–241

    CAS  Google Scholar 

  • Akesson L, Ahren B, Manganiello VC, Holst LS, Edgren G, Dagerman E (2003) Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signalling in primary rat adipocytes. Endocrinology 144:5293–5299

    PubMed  CAS  Google Scholar 

  • Allison DB, Heo M, Faith MS, Pietrobelli A (1998) Meta-analysis of the association of the Trp64Arg polymorphism in the β3-adrenergic receptor with body mass index. Int J Obesity 22:559–566

    CAS  Google Scholar 

  • Arner P (2003) The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 14:137–145

    PubMed  CAS  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893–898

    PubMed  CAS  Google Scholar 

  • Barbe P, Millet L, Galitzky J, Lafontan M, Berlan M (1996) In situ assessment of the role of the β1-, β2-and β3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol 117:907–913

    PubMed  CAS  Google Scholar 

  • Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478

    PubMed  CAS  Google Scholar 

  • Berlan M, Galitzky J, Rivière D, Foureau M, Tran M-A, Flores R, Louvet J-P, Houin G, Lafontan M (1991) Plasma catecholamine levels and lipid mobilization induced by yohimbine in obese and non-obese women. Int J Obesity 15:305–315

    CAS  Google Scholar 

  • Berlan M, Montastruc J-L, Lafontan M (1992) Pharmacological prospect for alpha2-adrenoceptor antagonist therapy. Trends Pharmacol Sci 13:277–282

    PubMed  CAS  Google Scholar 

  • Birkenfeld A, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J (2005) Lipid mobilization with physiological atrial natriuretic peptide concentration in humans. J Clin Endocrinol Metab 90:3622–3628

    PubMed  CAS  Google Scholar 

  • Blaak EE, van Baak MA, Kemerink GJ, Parkbiers MT, Heidendal GA, Saris WH (1994) Betaadrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol 267: E306–E315

    PubMed  CAS  Google Scholar 

  • Bolinder J, Kager L, Östman J, Arner P (1983) Differences at the receptor and post-receptor level between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes 32:117–123

    PubMed  CAS  Google Scholar 

  • Bougnères P, Le Stunff C, Pecqueur C, Pinglier E, Adnot P, Ricquier D (1997) In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J Clin Invest 99:2568–2573

    PubMed  Google Scholar 

  • Bowers RR, Festuccia WTL, Song CK, Shi H, Migliorini RH, Bartness TJ (2003) Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286:R1167–R1175

    Google Scholar 

  • Bray GA, York DA, Fisler JS (1989) Experimental obesity: A homeostatic failure due do defective stimulation of the sympathetic nervous system. Vitam Horm 45:1–125

    PubMed  CAS  Google Scholar 

  • Carel JC, Stunff CL, Condamine L, Mallet E, Chaussain JL, Adnot P, Garabedian M, Bougnères P (1999) Resistance to the lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab 84:4127–4131

    PubMed  CAS  Google Scholar 

  • Colberg SR, Simoneau J-A, Thaete FL, Kelley DE (1995) Skeletal muscle utilization of free fatty acids in women with visceral fat obesity. J Clin Invest 95:1846–1853

    PubMed  CAS  Google Scholar 

  • Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, Wagoner LE, Givertz MM, Liang C-S, Neibaur M, Haught WH, LeJemtel TH, group ftNs (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. New Engl J Med 343:246–253

    PubMed  CAS  Google Scholar 

  • Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hadjuch E, Ferré P, Foufelle F (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257

    PubMed  CAS  Google Scholar 

  • deGlisezinski I, Marion-Latard F, Crampes F, Berlan M, Hejnova J, Cottet-Emard J-M, Stich V, Rivière D (2001) Lack of alpha2-adrenergic antilipolytic effect during exercise in subcutaneous adipose tissue of trained men. J Appl Physiol 91:1760–1765

    CAS  Google Scholar 

  • de Jong JC, Sorensen LG, Tornqvist H, Jacobsen P (2004) Carbazates as potent inhibitors of hormone-sensitive lipase. Bioorg Med Chem Lett 14:1741–1744

    PubMed  Google Scholar 

  • Degerman E, Smith CJ, Tornquist H, Vasta V, Belfrage P, Manganiello VC (1990) Evidence that insulin and isoprenaline activate the cGMP-inhibited low Km cAMP-phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci USA 87:533–537

    PubMed  CAS  Google Scholar 

  • Dodt C, Lönnroth P, Fehm HL, Elam M (2000) The subcutaneous lipolytic response to regional neural stimulation is reduced in obese women. Diabetes 49:1875–1879

    PubMed  CAS  Google Scholar 

  • Ebdrup S, Sorensen LG, Olsen OH, Jacobsen P (2004) Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. J Med Chem 47:400–410

    PubMed  CAS  Google Scholar 

  • Enoksson S, Talbot M, Rife F, Tamborlane WV, Sherwin RS, Caprio S (2000) Impaired in vivo stimulation of lipolysis in adipose tissue by selective β2-adrenergic agonist in obese adolescent girls. Diabetes 49:2149–2153

    PubMed  CAS  Google Scholar 

  • Ferraro RT, Eckel RH, Larson DE, Fontvielle A-M, Rising R, Jensen DR, Ravussin E (1993) Relationship between skeletal muscle lipoprotein lipase activity and 24-hour macronutrient oxidation. J Clin Invest 92:441–445

    PubMed  CAS  Google Scholar 

  • Fredrikson G, Tornqvist H, Belfrage P (1986) Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim Biophys Acta 876:288–293

    PubMed  CAS  Google Scholar 

  • Galitzky J, Taouis M, Berlan M, Rivière D, Garrigues M, Lafontan M (1988) Alpha2-antagonist compounds and lipid mobilization:evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteers. Eur J Clin Invest 18:587–594

    PubMed  CAS  Google Scholar 

  • Galitzky J, Vermorel M, Lafontan M, Montastruc P, Berlan M (1991) Thermogenic and lipolytic effect of yohimbine in the dog. Br J Pharmacol 104:514–518

    PubMed  CAS  Google Scholar 

  • Galitzky J, Lafontan M, Nordenström J, Arner P (1993) Role of vascular alpha2-adrenoceptors in regulating lipid mobilization from human adipose tissue. J Clin Invest 91:1997–2003

    PubMed  CAS  Google Scholar 

  • Galitzky J, Sengenes C, Thalamas C, Marques M-A, Senard J-M, Lafontan M, Berlan M (2001) The lipid mobilizing effect of atrial natriuretic peptides is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 42:536–544

    PubMed  CAS  Google Scholar 

  • Gardner DG (2003) Natriuretic peptides:markers or modulators of cardiac hypertrophy. Trends Endocrinol Metab 14:411–416

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Shen W-J, Muliro K, Souza SC, Roth RA, Kraemer FB (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 276:45456–45461

    PubMed  CAS  Google Scholar 

  • Grundy SM (2004) Obesity, metabolic syndrome and cardiovascular disease. J Clin Endocrinol Metab 89:2595–2600

    PubMed  CAS  Google Scholar 

  • Grundy SM, Brewer HBJ, Cleeman JI, Smith SCJ, Lenfant C, National Heart L, and Blood Institute, Association AH (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Arterioscl Thromb Vasc Biol 24:e13–e18

    PubMed  CAS  Google Scholar 

  • Hagström-Toft E, Enoksson S, Moberg E, Bolinder J, Arner P (1998) β-adrenergic regulation of lipolysis and blood flow in human skeletal muscle in vivo. Am J Physiol 275:E909–E916

    PubMed  Google Scholar 

  • Hayakawa T, Nagai Y, Kahara T, Yamashita H, Takamura T, Abe T, Nomura G, Kobayashi K (2000) Gln27Glu and Arg16Gly polymorphisms of the beta2-adrenergic receptor gene are not associated with obesity in japanese men. Metabolism 49:1215–1218

    PubMed  CAS  Google Scholar 

  • Hellström L, Blaak E, Hagstrom-Toft E (1996) Gender differences in adrenergic regulation of lipid mobilization during exercise. Int J Sports Med 17:439–447

    PubMed  Google Scholar 

  • Hinojosa-Laborde C, Chapa I, Lange D, Haywood JR (1999) Gender differences in sympathetic nervous system regulation. Clin Exp Pharmacol Physiol 26:122–126

    PubMed  CAS  Google Scholar 

  • Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393

    PubMed  CAS  Google Scholar 

  • Horowitz J, Klein S (2000a) Lipid metabolism during endurance exercise. Am J Clin Nutr 72(Suppl):558S–563S

    PubMed  CAS  Google Scholar 

  • Horowitz JF, Klein S (2000b) Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 278:E1144–E1152

    PubMed  CAS  Google Scholar 

  • Hupfeld CJ, Dalle S, Olefsky JM (2003) Arrestin-1 down-regulation after insulin treatment is associated with supersensitization of β2-adrenergic receptor Gαs signaling in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 100:161–166

    PubMed  CAS  Google Scholar 

  • Ishiyama-Shigemoto S, Yamada K, Yuan X, Ichikawa F, Nonaka K (1999) Association of polymorphisms in the beta2-adrenergic receptor gene with obesity, hypertriglyceridemia and diabetes mellitus. Diabetologia 42:98–101

    PubMed  CAS  Google Scholar 

  • Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression and purification of three novel calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    PubMed  CAS  Google Scholar 

  • Jensen M, Haymond M, Rizza R, Cryer P, Miles J (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1173

    PubMed  CAS  Google Scholar 

  • Jensen MD (1991) Regulation of forearm lipolysis in different types of obesity. In vivo evidence for adipocyte heterogeneity. J Clin Invest 87:187–193

    PubMed  CAS  Google Scholar 

  • Jensen MD (1997) Lipolysis: contribution from regional fat. Annu Rev Nutr 17:127–139

    PubMed  CAS  Google Scholar 

  • Johnson JA, Fried SK, Pi-Sunyer FX, Albu JB (2001) Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. Am J Physiol 280:E40–E49

    CAS  Google Scholar 

  • Karpe F, Frayn KN (2004) The nicotinic acid receptor-a new mechanism for an old drug. Lancet 363:1892–1894

    PubMed  CAS  Google Scholar 

  • Kaumann A, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (-)CGP12177-evoked cardiostimulation in double beta1/beta2-adrenoceptor knock out mice. Obligatory role of beta1-adrenoceptors for putative beta4-adrenoceptor pharmacology. Naunyn Schmied Arch Pharmacol 363:87–93

    CAS  Google Scholar 

  • Kawakami M, Murase T, Igawa H, Ishibashi S, Mori N, Takagu F, Shibata S (1987) Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipolysis in 3T3-L1 cells. J Biochem 101:331–338

    PubMed  CAS  Google Scholar 

  • Khoo JC, Sperry PJ, Gill GN, Steinberg D (1977) Activation of hormone-sensitive lipase and phosphorylase kinase by purified cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 74:4843–4847

    PubMed  CAS  Google Scholar 

  • Köning D, Schumacher O, Heinrich L, Schmid A, Berg A, Dickhuth HH (2003) Myocardial stress after competitive exercise in professional road cyclists. Med Sci Sports Exerc 35:1679–1683

    Google Scholar 

  • Konkar AA, Zhai Y, Granneman JG (2000) β1-adrenergic receptors mediate β3-adrenergic-independent effects of CGP12177. Mol Pharmacol 57:252–258

    PubMed  CAS  Google Scholar 

  • Lafontan M (1994) Differential recruitment and differential regulation by physiological amines of fat cell β1-, β2-and β3-adrenergic receptors expressed in native fat cells and transfected cell lines. Cell Signalling 6:363–392

    PubMed  CAS  Google Scholar 

  • Lafontan M (2005) Fat cells:Afferent and efferent messages define new approaches to treat obesity. Annu. Rev. Pharmacol Toxicol 45:119–146

    PubMed  CAS  Google Scholar 

  • Lafontan M, Arner P (1996) Applicationof in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 17:309–313

    PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1993) Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34:1057–1091

    PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1995) Fat cell α2-adrenoceptors:the regulation of fat cell function and lipolysis. Endocrine Rev 16:716–738

    CAS  Google Scholar 

  • Lafontan M, Berlan M (2003) Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 24:276–283

    PubMed  CAS  Google Scholar 

  • Lafontan M, Barbe P, Galitzky J, Tavernier G, Langin D, Carpéné C, Bousquet-Melou A, Berlan M (1997) Adrenergic regulation of adipocyte metabolism. Human Reprod 12:6–20

    CAS  Google Scholar 

  • Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M (2005) An unsuspected metabolic role for atrial natriuretic peptides:The control of lipolysis, lipid mobilization and systemic nonesterified fatty acids levels in humans. Arterioscler Thromb Vasc Biol 25:2032–2042

    PubMed  CAS  Google Scholar 

  • Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T, Shi HH, Liu W, Paulsen JE, Gimeno RE (2005) Expression, regulation and triglyceride hydrolase activity of adiponutrin family members. J Lipid Res 46:2477–2487

    PubMed  CAS  Google Scholar 

  • Landsberg L (1989) The sympathoadrenal system, obesity and hypertension:an overview. J Neurosci Meth 34:179–186

    Google Scholar 

  • Lange LA, Norris JM, Langefeld CD, Nicklas BJ, Wagenknecht LE, Saad MF, Bowden DW (2005) Association of adipose tissue deposition and beta-2 adrenergic receptor variants:the IRAS family study. Int J Obesity 29:449–457

    CAS  Google Scholar 

  • Langin D, Lafontan M (2004). Lipolysis and lipid mobilization in human adipose tissue. In: Bray GA, Bouchard C (eds) Handbook of obesity. etiology and pathophysiology. 2nd Edition. Marcel Dekker, Inc, New York. Basel, p 515–532

    Google Scholar 

  • Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M, Arner E, Sicard A, Jenkins CM, Viguerie N, van Harmelen V, Gross RW, Holm C, Arner P (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54:3190–3197

    PubMed  CAS  Google Scholar 

  • Large V, Hellström L, Reynisdottir S, Lönnqvist F, Eriksson P, Lannfelt L, Arner P (1997) Human beta2-adrenoceptor gene polymorphism are highly frequent in obesity and associated with altered adipocyte beta2-adrenoceptor function. J Clin Invest 100:3005–3013

    PubMed  CAS  Google Scholar 

  • Large V, Reynisdottir S, Langin D, Fredby K, Klannemark M, Holm C, Arner P (1999) Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res 40:2059–2065

    PubMed  CAS  Google Scholar 

  • Ligget SB, Shah SD, Cryer PE (1988) Characterization of β-adrenergic receptors in human skeletal muscle obtained by needle biopsy. Am J Physiol 254:E795–E798

    Google Scholar 

  • Linné Y, Dahlman I, Hoffstedt J (2005) β1-adrenoceptor gene polymorphism predicts long-term changes in body weight. Int J Obesity 29:458–461

    Google Scholar 

  • Lönnqvist F, Wahrenberg H, Hellstrom L, Reynisdottir S, Arner P (1992) Lipolytic catecholamine resistance due to decreased β2-adrenoceptor expression in fat cells. J Clin Invest 90:2175–2186

    PubMed  Google Scholar 

  • Lönnqvist F, Thörne A, Nilsell K, Hoffstedt J, Arner P (1995) A pathogenic role of visceral fat β3-adrenoceptors in obesity. J Clin Invest 95:1109–1116

    PubMed  Google Scholar 

  • Lorenzen A, Stannek C, Lang H, Andrianov V, Kalvinsh I, Schwabe U (2001) Characterization of a G protein-coupled receptor for nicotinic acid. Mol Pharmacol 59:349–357

    PubMed  CAS  Google Scholar 

  • Lowe DB, Magnuson S, Qi N, Campbell A-M, Cook J, Hong Z, Wang M, Rodriguez M, Achebe F, Kluender H (2004) Invitro SARof (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase. Bioorg Medicinal Chem Lett 14:3155–3159

    CAS  Google Scholar 

  • Maisel AS (2003) Nesiritide: a new therapy for the treatment of heart failure. Cardiovasc Toxicol 3:37–42

    PubMed  CAS  Google Scholar 

  • Mason DA, Moore JD, Green SA, Liggett SB (1999) Again of function polymorphismina G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    PubMed  CAS  Google Scholar 

  • Mauriège P, Galitzky J, Berlan M, Lafontan M (1987) Heterogeneous distribution of beta-and alpha2-adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 17:156–165

    PubMed  Google Scholar 

  • Mauriège P, Pergola GD, Berlan M, Lafontan M (1988) Human fat cell beta-adrenergic receptors: beta agonist-dependent lipolytic responses and characterization of beta-adrenergic binding sites on human fat cell membranes with highly selective beta1-antagonists. J Lipid Res 29:587–601

    PubMed  Google Scholar 

  • Mauriège P, Després JP, Prud’homme D, Pouliot MC, Marcotte M, Tremblay A, Bouchard C (1991) Regional variation in adipose tissue lipolysis in lean and obesemen. J Lipid Res 32:1625–1633

    PubMed  Google Scholar 

  • Mauriège P, Marette A, Atgié C, Bouchard C, Thériault G, Bukowiecki LK, Marceau P, Biron S, Nadeau A, Després J-P (1995a) Regional variation in adipose tissue metabolism of severely obese premenopausal women. J Lipid Res 36:672–684

    PubMed  Google Scholar 

  • Mauriège P, Prud’homme D, Lemieux S, Tremblay A, Després J-P (1995b) Regional differences in adipose tissue lipolysis from lean and obese women: existence of postreceptor alterations. Am J Physiol 269:E341–E350

    PubMed  Google Scholar 

  • Mauriège P, Imbeault P, Langin D, Lacaille M, Alméras N, Tremblay A, Després JP (1999) Regional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 40:1559–1571

    PubMed  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev Mol Cell Biol 2:569–609

    Google Scholar 

  • McGarry JD (2002) Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    PubMed  CAS  Google Scholar 

  • Meek SE, Nair KS, Jensen MD (1999) Insulin regulation of regional free fatty acid metabolism. Diabetes 48:10–14

    PubMed  CAS  Google Scholar 

  • Meirhaeghe A, Helbecque N, Cottel D, Amouyel P (1999) β2-adrenoceptor gene polymorphism, body weight and physical activity. The Lancet 353:236

    Google Scholar 

  • Meirhaeghe A, Cottel D, Helbecque N, Amouyel P (2000) Impact of polymorphisms in the human β2-adrenoceptor gene on obesity in French population. Int J Obesity Relat Metab Disord 24:382–387

    CAS  Google Scholar 

  • Millet L, Barbe P, Lafontan M, Berlan M, Galitzky J (1998) Catecholamine effects on lipolysis and blood flow in human abdominal and femoral adipose tissue. J Appl Physiol 85:180–188

    Google Scholar 

  • Mori Y, Kim-Motoyama H, Ito Y, Katakura T, Yasuda K, Ishiyama-Shigemoto S, Yamada K, Akanuma Y, Ohashi Y, Kimura S, Yazaki Y, Kadowaki T (1999) The Gln27Glu beta2-adrenergic receptor variant is associated with obesity due to subcutaneous fat accumulation. Biochem Biophys Res Commun 258:138–140

    PubMed  CAS  Google Scholar 

  • Moro C, Crampes F, Sengenes C, de Glisezinski I, Galitzky J, Thalamas C, Lafontan M, Berlan M (2004a) Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB J 18:908–910

    PubMed  CAS  Google Scholar 

  • Moro C, Galitzky J, Sengenes C, Crampes F, Lafontan M, Berlan M (2004b) Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J Pharmacol Exp Ther 308:984–992

    PubMed  CAS  Google Scholar 

  • Moro C, Polak J, Richterova B, Sengenes C, Pelikanova T, Galitzky J, Stich V, Lafontan M, Berlan M (2005) Differential regulation of atrial natriuretic peptide-and adrenergic receptor-dependent lipolytic pathways in human adipose tissue. Metabolism 54:122–131

    PubMed  CAS  Google Scholar 

  • Nguyen M, Satoh S, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalewsky J, Dahiyat BI, Chi N-W, Olefsky JM (2005) JNK and tumor necrosis factor-amediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280:35361–35371

    PubMed  CAS  Google Scholar 

  • Nielsen S, Guo Z, Albu JB, Klein S, O’Brien PC, Jensen MD (2003) Energy expenditure, sex, and endogenous fuel availability in humans. J Clin Invest 111:981–988

    PubMed  CAS  Google Scholar 

  • Niessner A, Ziegler S, Slany J, Billensteiner E, Woloszczuk W, Geyer G (2003) Increases in plasma levels of atrial and brain natriuretic peptides after running a marathon: are their effects partly counterbalanced by adrenocortical steroids? Eur J Endocrinol 149:555–559

    PubMed  CAS  Google Scholar 

  • Oberkofler H, Esterbauer H, Hell E, Krempler F, Patsch W (2000) The Gln27Glu polymorphism in the beta2-adrenergic receptor gene is not associated with morbid obesity in Austrian women. Int J Obesity Relat Metab Disord 24:388–390

    CAS  Google Scholar 

  • Paolisso G, Tacunni FA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217

    PubMed  CAS  Google Scholar 

  • Paolisso G, Gambardella A, Tagliamonte MR, Saccomano F, Salvatore T, Gualdiero P, D’onofrio MVF, Howard BV (1996) Does free fatty acid infusin impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab 81:4244–4248

    PubMed  CAS  Google Scholar 

  • Pirola L, Johnston AM, Obberghen EV (2004) Modulation of insulin action. Diabetologia 47:170–184

    PubMed  CAS  Google Scholar 

  • Rathz DA, Brown KM, Kramer LA, Liggett SB (2002) Amino acid 49 polymorphismin the human beta-1 adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol. 30:155–160

    Google Scholar 

  • Reynisdottir S, Wahrenberg H, Carlström K, Rössner S, Arner P (1994) Catecholamine resistance in fat cells of women with upper body obesity due to decreased expression of beta2-adrenoceptors. Diabetologia 37:428–435

    PubMed  CAS  Google Scholar 

  • Ribarik Coe N, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta 1391:287–306

    Google Scholar 

  • Richards M, A, Lainchbury JG, Nicholls MG, Troughton RW, Yandle TG (2002) BNP in hormoneguided treatment of heart failure. Trends Endocrinol Metab 13:151–155

    PubMed  CAS  Google Scholar 

  • Richelsen B (1986) Increased alpha2-but similar beta-adrenergic receptor activities in subcutaneous gluteal adipocytes from females compared with males. Eur J Clin Invest 16:302–309

    PubMed  CAS  Google Scholar 

  • Romijn JA, Fliers E (2005) Sympathetic and parasympathetic innervation of adipose tissue: metabolic implications. Curr Opin Clin Nutr Metab Care 8:440–444

    PubMed  CAS  Google Scholar 

  • Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, Lönnqvist F, Arner P (2002) Mapping of early signaling events in tumor necrosis-alpha-mediated lipolysis in human fat cells. J Biol Chem 277:1085–1091

    PubMed  CAS  Google Scholar 

  • Schiffelers SLH, Blaak EE, Saris WHM, Baak MAv (2000) In vivo β3-adrenergic stimulation of human thermogenesis and lipid utilization. Clin Pharmacol Therap 67:558–566

    CAS  Google Scholar 

  • Schiffelers SLH, Saris WHM, Boomsma F, Baak MAv (2001) Beta1-and Beta2-adrenoceptor-mediated thermogenesis and lipid utilization in obese and lean men. J Clin Endocrinol Metab 86:2191–2199

    PubMed  CAS  Google Scholar 

  • Schutz Y, Flatt JP, Jéquier E (1989) Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity. Am J Clin Nutr 50:307–314

    PubMed  CAS  Google Scholar 

  • Sengenes C, Berlan M, de Glisezinski I, Lafontan M, Galitzky J (2000) Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 14:1345–1351

    PubMed  CAS  Google Scholar 

  • Sengenes C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumié A, Lafontan M, Galitzky J (2002) Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol 283:R257–R265

    CAS  Google Scholar 

  • Sengenes C, Bouloumié A, Hauner H, Berlan M, Busse R, Lafontan M (2003) Involvement of a cGMP-dependent pathway in natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 278:48617–48626

    PubMed  CAS  Google Scholar 

  • Shen W-J, Sridhar K, Bernlohr DA, Kraemer FB (1999) Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc Natl Acad Sci USA 96:5528–5532

    PubMed  CAS  Google Scholar 

  • Shihara N, Yasuda K, Moritani T, Ue H, Adachi T, Tanaka H, Tsuda K, Seino Y (1999) The association between Trp64Arg polymorphism of the beta3-adrenergic receptor and autonomic nervous system activity. J Clin Endocrinol Metab 84:1623–1627

    PubMed  CAS  Google Scholar 

  • Siegel AJ, Lewandrowsky EL, Chun KY, Sholar MB, Fishman AJ, Lewandrowsky KB (2001) Changes in cardiac markers including B-natriuretic peptide in runners after the Boston marathon. Am J Cardiol 88:920–923

    PubMed  CAS  Google Scholar 

  • Smith CJ, Manganiello VC (1989) Role of hormone-sensitive low Km cAMP phosphodiesterase in regulation of cAMP-dependent protein kinase and lipolysis in rat adipocytes. Mol Pharmacol 35:381–386

    PubMed  CAS  Google Scholar 

  • Soni KG, Lehner R, Metalnikov P, O’Donnell P, Semache M, Gao W, Ashman K, Pshezhetsky AV, Mitchell GA (2004) Carboxylesterase 3 (EC 3.1.1.1.) is a major adipocyte lipase. J Biol Chem 279:40683–40689

    PubMed  CAS  Google Scholar 

  • Stich V, de Glisezinsky I, Crampes F, Hejnova J, Cottet-Emard J-M, Galitzky J, Lafontan M, Rivière D, Berlan M (2000) Activation of alpha2-adrenergic receptors impairs exerciseinduced lipolysis in SCAT of obese subjects. Am J Physiol 279:R499–R504

    CAS  Google Scholar 

  • Stich V, Marion-Latard F, Hejnova J, Viguerie N, Lefort C, Suljkovicova H, Langin D, Lafontan M, Berlan M (2002) Hypocaloric diet reduces exercise-induced alpha2-adrenergic antilipolytic effect and alpha2-adrenergic receptor mRNA levels in adipose tissue of obese women. J Clin Endocrinol Metab 87:1274–1281

    PubMed  CAS  Google Scholar 

  • Strålfors P, Belfrage P (1985) Phosphorylation of hormone-sensitive lipase by cyclic GMP-dependent protein kinase. FEBS Lett 180:280–284

    PubMed  Google Scholar 

  • Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353:33–36

    PubMed  CAS  Google Scholar 

  • Taggart AKP, Kero J, Gan X, Cai T-Q, Cheng K, Ippolito M, Ren N, Kaplan R, Wu K, Wu T-J, Jin L, Liaw C, Chen R, Richman J, Connolly D, Offermans S, Wright SD, Waters G (2005) (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotininc acid receptor PUMA-G. J Biol Chem 280:26649–26652

    PubMed  CAS  Google Scholar 

  • Tansey JT, Sztalryd C, Hlavin EM, Kimmel AR, Londos C (2004) The central role of perilipin A in lipid metabolism and adipocyte lipolysis. IUBMB Life 56:379–385

    PubMed  CAS  Google Scholar 

  • Tavernier G, Barbe P, Galitzky J, Berlan M, Caput D, Lafontan M, Langin D (1996) Expression of β3-adrenoceptors with low lipolytic action in human subcutaneous fat cells. J Lipid Res 37:87–97

    PubMed  CAS  Google Scholar 

  • Tavernier G, Jimenez M, Giacobino JP, Hulo N, Lafontan M, Muzzin P, Langin D (2005) Norepinephrine induce lipolysis in beta1/beta2/beta3-adrenoceptor knock out mice. Mol Pharmacol 68:793–799

    PubMed  CAS  Google Scholar 

  • Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass. Trends Endocrinol Metab 14:439–441

    PubMed  CAS  Google Scholar 

  • Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Med 9:352–355

    PubMed  CAS  Google Scholar 

  • Van Pelt RE, Jankowski CM, Gozansky WS, Schwartz RS, Kohrt WM (2005) Lower body adiposity and metabolic protection in postmenopausal women. J Clin Endocrinol Metab. 90:4573–4578

    PubMed  Google Scholar 

  • Villena JA, Roy S, Sarkady-Nagy E, Kim K-H, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    PubMed  CAS  Google Scholar 

  • Wahrenberg H, Lönnqvist F, Arner P (1989) Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest 84:458–467

    PubMed  CAS  Google Scholar 

  • Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrine Rev 21:697–738

    CAS  Google Scholar 

  • Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassal DG, Marshall FH, Wilson S, Pike NB (2003) Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 278:9869–9874

    PubMed  CAS  Google Scholar 

  • Wu X, Hoffstedt J, Deeb W, Singh R, Sedkova N, Zilbering A, Zhu L, Park PK, Arner P, Goldstein B (2001) Depot-specific variation in protein-tyrosine phosphatase activities in human omental and subcutaneous adipose tissue: a potential contribution to differential insulin sensitivity. J Clin Endocrinol Metab 86:5973–5980

    PubMed  CAS  Google Scholar 

  • Yamada K, Ishiyama-Shigemoto S, Ichikawa F, Yuan X, Koyanagi A, Koyama W, Nonaka K (1999) Polymorphismin the 5′-leader cistron of the beta2-adrenergic receptor gene associated with obesity and type 2 diabetes. J Clin Endocrinol Metab 84:1754–1757

    PubMed  CAS  Google Scholar 

  • Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R (2005) Lipolysis: pathway under construction. Curr Opin Lipidol 16:333–340

    PubMed  CAS  Google Scholar 

  • Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS (2002) Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51:2929–2935

    PubMed  CAS  Google Scholar 

  • Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY (2005) Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature 437:569–573

    PubMed  CAS  Google Scholar 

  • Zierath J, Livingston J, Thorne A, Bolinder J, Reynisdottir S, Lonnqvist F, Arner P (1998) Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41:1343–1354

    PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    PubMed  CAS  Google Scholar 

  • Zurlo F, Lillioja S, Puente AED, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 259:E650–E657

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lafontan, M., Berlan, M., Sengenes, C., Moro, C., Crampes, F., Galitzky, J. (2006). cAMP- and cGMP-dependent control of lipolysis and lipid mobilization in humans: putative targets for fat cell management. In: Conn, M., Kordon, C., Christen, Y. (eds) Insights into Receptor Function and New Drug Development Targets. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34447-0_4

Download citation

Publish with us

Policies and ethics