Skip to main content

Summary

Mutant gonadotropin-releasing hormone (GnRH) receptors isolated from patients with GnRH-resistant hypogonadotropic hypogonadism are frequently proteins that are misrouted in the cell. Such mutant receptors are retained in the endoplasmic reticulum and can be rescued by pharmacological chaperones. This understanding contrasts with the view that these mutant receptors lose the ability to bind ligand or effect signal transduction. Pharmacological chaperones, or “pharmacoperones,” bind specifically to GnRH receptors and allow them to escape retention by the cellular quality control systems and route to the plasma membrane, where they function normally. This observation suggests that pharmacoperones have the potential to be used to treat a number of human diseases characterized by misrouted proteins, among these, hypogonadotropic hypogonadism, cystic fibrosis and nephrogenic diabetes insipidus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton WT, Sisco RM, Yang YT, Lo JL, Yudkovitz JB, Gibbons PH, Mount GR, Ren RN, Butler BS, Cheng K, Goulet MT (2001) Potent nonpeptide GnRH receptor antagonists derived from substituted indole-5-carboxamides and-acetamides bearing a pyridine side-chain terminus. Bioorg Med Chem Lett 11:1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Benedek GB, Pande J, Thurston GM, Clark JI (1999) Theoretical and experimental basis for the inhibition of cataract. Prog Retin Eye Res 18:391–402

    Article  PubMed  CAS  Google Scholar 

  • Brothers SP, Janovick JA, Conn PM (2003) Unexpected effects of epitope and chimeric tags on gonadotropin-releasing hormone receptors: implications for understanding the molecular etiology of hypogonadotropic hypogonadism. J Clin Endocrinol Metab 88:6107–6112

    Article  PubMed  CAS  Google Scholar 

  • Brothers SP, Cornea A, Janovick JA, Conn PM (2004) Human loss-of-function gonadotropin-releasing hormone receptor mutants retain wild-type receptors in the endoplasmic reticulum: molecular basis of the dominant-negative effect. Mol Endocrinol 18:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Brugnara C (2003) Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration. J Pediatr Hematol Oncol 25:927–933

    Article  PubMed  Google Scholar 

  • Burrows JA, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: A potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 97:1796–1801

    Article  PubMed  CAS  Google Scholar 

  • Castro-Fernandez C, Maya-Nunez G, Conn PM (2005) Beyond the signal sequence: protein routing in health and disease. Endocr Rev 26:479–503

    Article  PubMed  CAS  Google Scholar 

  • Cheng CK, Leung PC (2005) Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnR H-II, and their receptors in humans. Endocr Rev 26:283–306

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, Rogers DC, Stewart JM, Niedel J, Sheffield T (1982) Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature 296:653–655

    Article  PubMed  CAS  Google Scholar 

  • Cornea A, Janovick JA, Maya-Nunez G, Conn PM (2001) Gonadotropin-releasing hormone receptor microaggregation. Rate monitored by fluorescence resonance energy transfer. J Biol Chem 276:2153–2158

    Article  PubMed  CAS  Google Scholar 

  • de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337:1597–1602

    Article  PubMed  Google Scholar 

  • Filicori M, Santoro N, Merriam GR, Crowley WF Jr (1986) Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab 62:1136–1144

    PubMed  CAS  Google Scholar 

  • Forloni G, Terreni L, Bertani I, Fogliarino S, Invernizzi R, Assini A, Ribizzi G, Negro A, Calabrese E, Volonte MA, Mariani C, Franceschi M, Tabaton M, Bertoli A (2002) Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol Aging 23:957–976

    Article  PubMed  CAS  Google Scholar 

  • Friedler A, DeDecker BS, Freund SM, Blair C, Rudiger S, Fersht AR (2004) Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for “mutant conformation”. J Mol Biol 336:187–196

    Article  PubMed  CAS  Google Scholar 

  • Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 97:6739–6744

    Article  PubMed  CAS  Google Scholar 

  • Iovane A, Aumas C, de Roux N (2004) New insights in the genetics of isolated hypogonadotropic hypogonadism. Eur J Endocrinol 151:U83–88

    Article  PubMed  CAS  Google Scholar 

  • Janovick JA, Maya-Nunez G, Conn PM (2002) Rescue of hypogonadotropic hypogonadism-causing and manufactured GnRH receptor mutants by a specific protein-folding template: misrouted proteins as a novel disease etiology and therapeutic target. J Clin Endocrinol Metab 87:3255–3262

    Article  PubMed  CAS  Google Scholar 

  • Janovick JA, Ulloa-Aguirre A, Conn PM (2003) Evolved regulation of gonadotropin-releasing hormone receptor cell surface expression. Endocrine 22:317–327

    Article  PubMed  CAS  Google Scholar 

  • Karges B, Karges W, de Roux N (2003) Clinical and molecular genetics of the human GnRH receptor. Human Reprod Update 9:523–530

    Article  CAS  Google Scholar 

  • Kerem E (2005) Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy. Pediatr Pulmonol 40:183–196

    Article  PubMed  Google Scholar 

  • Kottler ML, Chauvin S, Lahlou N, Harris CE, Johnston CJ, Lagarde JP, Bouchard P, Farid NR, Counis R (2000) A new compound heterozygous mutation of the gonadotropin-releasing hormone receptor (L314X, Q106R) in a woman with complete hypogonadotropic hypogonadism: chronic estrogen administration amplifies the gonadotropin defect. J Clin Endocrinol Metab 85:3002–3008

    Article  PubMed  CAS  Google Scholar 

  • Leanos-Miranda A, Janovick JA, Conn PM (2002) Receptor-misrouting: an unexpectedly prevalent and rescuable etiology in gonadotropin-releasing hormone receptor-mediated hypogonadotropic hypogonadism. J Clin Endocrinol Metab 87:4825–4828

    Article  PubMed  CAS  Google Scholar 

  • Leanos-Miranda A, Ulloa-Aguirre A, Ji TH, Janovick JA, Conn PM (2003) Dominant-negative action of disease-causing gonadotropin-releasing hormone receptor (GnRHR) mutants: a trait that potentially coevolved with decreased plasma membrane expression of GnRHR in humans. J Clin Endocrinol Metab 88:3360–3367

    Article  PubMed  CAS  Google Scholar 

  • Lim M, Zeitlin PL (2001) Therapeutic strategies to correct malfunction of CFTR. Paediatr Respir Rev 2:159–164

    Article  PubMed  CAS  Google Scholar 

  • Maya-Nunez G, Janovick JA, Ulloa-Aguirre A, Soderlund D, Conn PM, Mendez JP (2002) Molecular basis of hypogonadotropic hypogonadism: restoration of mutant (E(90)K) GnRH receptor function by a deletion at a distant site. J Clin Endocrinol Metab 87:2144–2149

    Article  PubMed  CAS  Google Scholar 

  • Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895

    PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nature Rev Neurosci 6:11–22

    Article  CAS  Google Scholar 

  • Noorwez SM, Malhotra R, McDowell JH, Smith KA, Krebs MP, Kaushal S (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279:16278–16284

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Li C, Chen L, Sebti S, Chen J (2003) Rescue of mutant p53 transcription function by ellipticine. Oncogene 22:4478–4487

    Article  PubMed  CAS  Google Scholar 

  • Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Van Dorpe J, Dewachter I, Banks WA, Van Leuven F, Soto C (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a beta-sheet breaker peptide. FASEB J 16:860–2

    PubMed  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  • Sealfon SC (2005) G protein-coupled receptors. Sci STKE 279:tr11

    Article  Google Scholar 

  • Silveira LF, Stewart PM, Thomas M, Clark DA, Bouloux PM, MacColl GS (2002) Novel homozygous splice acceptor site GnRH receptor (GnRHR) mutation: human GnRHR “knockout”. J Clin Endocrinol Metab 87:2973–2977

    Article  PubMed  CAS  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Kascsak RJ, Saborio GP, Aucouturier P, Wisniewski T, Prelli F, Kascsak R, Mendez E, Harris DA, Ironside J, Tagliavini F, Carp RI, Frangione B (2000) Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 355:192–197

    Article  PubMed  CAS  Google Scholar 

  • Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267

    Article  PubMed  CAS  Google Scholar 

  • Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM (2004) Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5:821–837

    Article  PubMed  CAS  Google Scholar 

  • Wildt L, Hausler A, Marshall G, Hutchison JS, Plant TM, Belchetz PE, Knobil E (1981) Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109:376–385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brothers, S.P., Conn, P.M. (2006). Functional Rescue of Misfolded Receptor Mutants. In: Conn, M., Kordon, C., Christen, Y. (eds) Insights into Receptor Function and New Drug Development Targets. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34447-0_2

Download citation

Publish with us

Policies and ethics