Skip to main content

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 495 Accesses

Summary

Recent advances in understanding the mechanisms underlying pituitary tumorigenesis will allow identification of novel targets for therapy for these common but often incurable tumors. Pituitary tumor initiation and progression are associated with multiple and acquired disorders. The pituitary gland responds to central and peripheral signals by undergoing reversible hormonal secretory changes and plastic cell growth changes. Underlying pituitary hyperplasia, with or without excess hormone production, or, in contrast, involution or hyposecretion in pituitary cells correlates with pituitary tumor development. Transgenic mouse models of tumor suppressor gene inactivation lead largely to the development of intermediate lobe tumors whereas pituitary-directed growth factor activation predisposes to anterior pituitary tumor development. Results of pituitary-directed pituitary tumor transforming gene (PTTG) inactivation or over-expression support the notion that the trophic environment is permissive for pituitary tumor formation. Understanding the mechanisms underlying pituitary plasticity and their relationship to tumor development will provide subcellular targets for treating both the development and growth of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbud RA, Takumi I, Barker EM, Ren SG, Chen DY, Wawrowsky K, Melmed S (2005) Early multipotential pituitary focal hyperplasic in αGSU-driven pituitary tumor transforming gene (PTTG) transgenic mice. Mol Endocrinol 19:1383–1391

    Article  PubMed  CAS  Google Scholar 

  • Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzalez-Manchon C, Vale W (1992) Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 131:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Pei XH, Godfrey VL, Xiong Y (2003) Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 23:1269–1277

    Article  PubMed  CAS  Google Scholar 

  • Cai A, Hayes JD, Patel N, Hyde JF (1999) Targeted overexpression of galanin in lactotrophs of transgenic mice induces hyperprolactinemia and pituitary hyperplasia. Endocrinology 140:4955–4964

    Article  PubMed  CAS  Google Scholar 

  • Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S (2005) Pituitary hypoplasia in Pttg-/-mice is protective for Rb+/-pituitary tumorigenesis. Mol Endocrinol 19:2371–2379

    Article  PubMed  CAS  Google Scholar 

  • Clayton RN, Farrell WE (2004) Pituitary tumour clonality revisited. Front Horm Res 32:186–204

    PubMed  CAS  Google Scholar 

  • Coogan PF, Baron JA, Lambe M (1995) Parity and pituitary adenoma risk. J Natl Cancer Inst 87:1410–1411

    PubMed  CAS  Google Scholar 

  • Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C, Hager JH, Hanahan D, Edlund H, Magnuson MA, Garrett-Beal L, Burns AL, Ried T (2001) A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 98:1118–1123

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Soto ME, Scheiber MD, Gregerson KA, Boivin GP, Horseman ND (2002) Pituitary tumorigenesis in prolactin gene-disrupted mice. Endocrinology 143:4429–4436

    Article  PubMed  CAS  Google Scholar 

  • Cushman LJ, Burrows HL, Seasholtz AF, Lewandoski M, Muzyczka N, Camper SA (2000) Cremediated recombination in the pituitary gland. Genesis 28:167–174

    Article  PubMed  CAS  Google Scholar 

  • De Menis E, Roncaroli F, Calvari V, Chiarini V, Pauletto P, Camerino G, Cremonini N (2005) Corticotroph adenoma of the pituitary in a patient with X-linked adrenal hypoplasia congenita due to a novel mutation of the DAX-1 gene. Eur J Endocrinol 153:211–215

    Article  PubMed  CAS  Google Scholar 

  • Donangelo I, Melmed S (2005) Pathophysiology of pituitary adenomas. J Endocrinol Invest 28(Suppl 11):102–107

    Google Scholar 

  • Farrell WE, Clayton RN (2003) Epigenetic change in pituitary tumorigenesis. Endocr Relat Cancer 10:323–330

    Article  PubMed  CAS  Google Scholar 

  • Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, Santoro M, Croce CM, Fusco A (2002) Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198

    Article  PubMed  CAS  Google Scholar 

  • Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ, Kenyon L, Visone R, De Martino I, Ciarmiello A, Arra C, Viglietto G, Croce CM, Fusco A (2005) Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24:3427–3435

    Article  PubMed  CAS  Google Scholar 

  • Ghannam NN, Hammami MM, Muttair Z, Bakheet SM (1999) Primary hypothyroidism-associated TSH-secreting pituitary adenoma/hyperplasia presenting as a bleeding nasal mass and extremely elevated TSH level. J Endocrinol Invest 22:419–423

    PubMed  CAS  Google Scholar 

  • Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999a) Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Med 5:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999b) Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Med 5:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S (2000) Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 355:716–719

    Article  PubMed  CAS  Google Scholar 

  • Heaney AP, Nelson V, Fernando M, Horwitz G (2001) Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab 86:5025–5032

    Article  PubMed  CAS  Google Scholar 

  • Horvath E, Kovacs K, Scheithauer BW (1999) Pituitary hyperplasia. Pituitary 1:169–179

    Article  PubMed  CAS  Google Scholar 

  • Hu N, Gutsmann A, Herbert DC, Bradley A, Lee W-H, Lee EY-HP (1994) Heterozygous Rb-1Δ20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9:1021–1027

    PubMed  CAS  Google Scholar 

  • Huhtaniemi I, Rulli S, Ahtiainen P, Poutanen M (2005) Multiple sites of tumorigenesis in transgenic mice overproducing hCG. Mol Cell Endocrinol 234:117–126

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schimitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732

    Article  PubMed  CAS  Google Scholar 

  • Kovacs K, Stefaneanu L, Ezzat S, Smyth HS (1994) Primary hypothyroidism-associated TSH-secreting pituitary adenoma/hyperplasia presenting as a bleeding nasal mass and extremely elevated TSH level. Arch Pathol Lab Med 118:562–565

    PubMed  CAS  Google Scholar 

  • Levy A, Lightman S (2003) Molecular defects in the pathogenesis of pituitary tumours. Front Neuroendocrinol 24, 94–127

    Article  PubMed  CAS  Google Scholar 

  • McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE (1995) Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 136:4479–4488

    Article  PubMed  CAS  Google Scholar 

  • Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618

    Article  PubMed  CAS  Google Scholar 

  • Melmed S, Kleinberg K (2003) Anterior pituitary. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS (eds) Williams’ textbook of endocrinology 10th ed. Philadelphia Elsevier, p 177–280

    Google Scholar 

  • Mohammad HP, Abbud RA, Parlow AF, Lewin JS, Nilson JH (2003) Targeted overexpression of luteinizing hormone causes ovary-dependent functional adenomas restricted to cells of the Pit-1 lineage. Endocrinology 144:4626–4636

    Article  PubMed  CAS  Google Scholar 

  • Musat M, Vax VV, Borboli N, Gueorguiev M, Bonner S, Korbonits M, Grossman AB (2004) Cell cycle dysregulation in pituitary oncogenesis. Front Horm Res 32:34–62

    PubMed  CAS  Google Scholar 

  • Nikitin AY, Juárez-Pérez MI, Li S, Huang L, Lee W-H (1999) RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/-mice. Proc Natl Acad Aci USA 96:3916–3921

    Article  CAS  Google Scholar 

  • Parent AD, Bebin J, Smith RR (1981) Incidental pituitary adenomas. J Neurosurg 54:228–231

    Article  PubMed  CAS  Google Scholar 

  • Pei L (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Melmed S (1997) Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11:433–441

    Article  PubMed  CAS  Google Scholar 

  • Perumal P, Vrontakis ME (2003) Transgenic mice over-expressing galanin exhibit pituitary adenomas and increased secretion of galanin, prolactin and growth hormone. J Endocrinol 179:145–154

    Article  PubMed  CAS  Google Scholar 

  • Sanno N, Oyama K, Tahara S, Teramoto A, Kato Y (2003) A survey of pituitary incidentaloma in Japan. Eur J Endocrinol 149:123–127

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Asa SL, Kovacs K (1988) Growth hormone releasing hormone producing tumors: clinical, biochemical and morphological manifestations. Endocr Rev 9:357–373 (6)

    Article  PubMed  CAS  Google Scholar 

  • Shintani Y, Yoshimoto K, Horie H, Kanesaki Y, Hosoi E, Yokogoshi Y, Bando H, Iwahana H, Kannuki S, Matsumoto K, Itakura M, Saito S (1995) Two different pituitary adenomas in a patient with multiple endocrine neoplasia type. 1 associated with growth hormone-releasing hormone-producing pancreatic tumor: clinical and genetic features. Endocr J 42:331–340

    PubMed  CAS  Google Scholar 

  • Siqueira MG, Guembarovski AL (1984) Subclinical pituitary microadenomas. SurgNeurol 22:134–140

    CAS  Google Scholar 

  • Solbach C, Roller M, Fellbaum C, Nicoletti M, Kaufmann M (2004) PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast 13:80–81

    Article  PubMed  Google Scholar 

  • Teramoto A, Hirakawa K, Sanno N, Osamura Y (1994) Incidental pituitary lesions in 1,000 unselected autopsy specimens. Radiology 193:161–164

    PubMed  CAS  Google Scholar 

  • Tomita T, Gates E (1999) Pituitary adenomas and granular cell tumors. Incidence, cell type, and location of tumor in 100 pituitary glands at autopsy. Am J Clin Pathol 111:817–825

    PubMed  CAS  Google Scholar 

  • Wang Z, Yu R, Melmed S (2001) Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol 15:1870–1879

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Lu W, Chen J, McCabe CJ, Melmed S (2003) Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology 144:4991–4998

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S (1999) Pituitary tumor transforming gene (PTTG) expressionin pituitary adenomas. J Clin Endocrinol Metab 84:761–767

    Article  PubMed  CAS  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melmed, S. (2006). Targets for pituitary tumor therapy. In: Conn, M., Kordon, C., Christen, Y. (eds) Insights into Receptor Function and New Drug Development Targets. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34447-0_12

Download citation

Publish with us

Policies and ethics