Skip to main content

Double Fertilization — A Defining Feature of Flowering Plants

  • Chapter
Double Fertilization
  • 883 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoine AF, Faure J-E, Cordeiro S, Dumas C, Rougier M, Feijó JA (2000) A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proc Natl Acad Sci USA 97:10643–10648

    Article  PubMed  CAS  Google Scholar 

  • Antoine A-F, Faure J-E, Dumas C, Feijó JA (2001) Differential contribution of cytoplasmic C2+ and Ca2+ influx to gamete fusion and egg activation in maize. Nat Cell Biol 3:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Arekal GD, Nagendran CR (1975) Embryo sac of Hydrobryopsis sessilis (Podostemaceae) — origin, organization and significance. Bot Not 128:332–338

    Google Scholar 

  • Battaglia E (1971) The embryo sac of Podostemacae — an interpretation. Caryologia 24:403–420

    Google Scholar 

  • Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  PubMed  CAS  Google Scholar 

  • Carmichael JS, Friedman WE (1995) Double fertilization in Gnetum gnemon: the relationship between the cell cycle and sexual reproduction. Plant Cell 7:1975–1988

    Article  PubMed  CAS  Google Scholar 

  • Carmichael JS, Friedman WE (1996) Double fertilization in Gnetum gnemon (Gnetaceae): its bearing on the evolution of sexual reproduction within the Gnetales and the Anthophyte clade. Am J Bot 83:767–780

    Google Scholar 

  • Cass DD (1973) An ultrastructural and Nomarski-interference study of the sperms of barley. Can J Bot 51:601–605

    Google Scholar 

  • Cass DD, Jensen WA (1970) Fertilization in barley. Am J Bot 57:62–70

    Google Scholar 

  • Cass DD, Laurie JD (2001) Embryo sac. Isolation and manipulation. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 89–100

    Google Scholar 

  • Chaubal R, Reger BJ (1990) Relatively high calcium is localized in synergid cells of wheat ovaries. Sex Plant Reprod 3:98–102

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1992) Calcium in the synergid cells and other regions of pearl millet ovaries. Sex Plant Reprod 5:34–46

    Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  PubMed  CAS  Google Scholar 

  • Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from Conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN, Mukkada AJ (1966) Gametogenesis and pseudo-embryo sac in Indotristicha ramosissima (Wight) van Royen. Phytomorphology 16:182–188

    Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Article  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3:935–951

    Article  PubMed  Google Scholar 

  • Cocucci A, Jensen WA (1969) Orchid embryology: megagametophyte of Epidendrum scutella following fertilization. Am J Bot 56:629–640

    Google Scholar 

  • Cordts S, Bantin J, Wittich PE, Kranz E, Lörz H, Dresselhaus T (2001) ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize. Plant J 25:103–114

    Article  PubMed  CAS  Google Scholar 

  • Coulter JM, Chamberlain CJ (1912) Morphology of angiosperms (Morphology of spermatophytes. Part II). Appleton, New York

    Google Scholar 

  • d’Alascio Deschamps R (1974) Etude ultrastructurale de la double fécondation chez le Linum catharticum L. C R Acad Sci Paris 279D:263–265

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Diboll AG (1968) Fine structural development of the megagametophyte of Zea mays following fertilization. Am J Bot 55:797–806

    Google Scholar 

  • Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M (1997) First evidence of a calcium transient in flowering plants at fertilization. Development 124:2867–2874

    PubMed  CAS  Google Scholar 

  • Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431

    Google Scholar 

  • Dresselhaus T, Hagel C, Lörz H, Kranz E (1996) Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol Biol 31:23–34

    Article  PubMed  CAS  Google Scholar 

  • Dresselhaus T, Cordts S, Lörz H (1999a) A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize. Plant Mol Biol 39:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Dresselhaus T, Cordts S, Heuer S, Sauter M, Lörz H, Kranz E (1999b) Novel ribosomal genes from maize are differentially expressed in the zygotic and somatic cell cycles. Mol Gen Genet 261:416–427

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  PubMed  CAS  Google Scholar 

  • Dumas C, Knox RB, McConchie CA, Russell SD (1984) Emerging physiological concepts in fertilization. What’s New Plant Physiol 15:17–20

    Google Scholar 

  • Engel ML, Chaboud A, Dumas C, McCormick S (2003) Sperm cells of Zea mays have a complex complement of mRNAs. Plant J 34:697–707

    Article  PubMed  CAS  Google Scholar 

  • Erdelská O (1974) Contribution to the study of fertilization in the living embryo sac. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 191–195

    Google Scholar 

  • Erdelská O (1983) Microcinematographical investigation of the female gametophyte, fertilization and early embryo and endosperm development. In: Erdelská O (ed) Fertilization and embryogenesis in ovulated plants. VEDA, Bratislava, pp 49–54

    Google Scholar 

  • Erdelská O, Dubová J (2000) Double fertilisation of angiosperms 1889–2000 (the origin and the significance of flowering plants double fertilisation). Biologia 55:311–319

    Google Scholar 

  • Fang K-F, Sun M-X, Kranz E, Zhou C (2003) In vitro and in situ localization of concanavalin A and wheat germ agglutinin binding sites on the surface of female cells in Torenia fournieri L. Isr J Plant Sci 51:83–90

    CAS  Google Scholar 

  • Faure J-E (2001) Double fertilization in flowering plants: discovery, study methods and mechanisms. C R Acad Sci Paris Sci de la vie 324:551–558

    CAS  Google Scholar 

  • Faure J-E, Dumas C (2001) Fertilization in flowering plants. New approaches for an old story. Plant Physiol 125:102–104

    Article  PubMed  CAS  Google Scholar 

  • Faure J-E, Mogensen HL, Dumas C, Lörz H, Kranz E (1993) Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5:747–755

    Article  PubMed  Google Scholar 

  • Faure J-E, Digonnet C, Dumas C (1994) An in vitro system for adhesion and fusion of maize gametes. Science 263:1598–1600

    PubMed  Google Scholar 

  • Faure J-E, Rotman N, Fortune P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30:481–488

    Article  PubMed  Google Scholar 

  • Faure J-E, Rusche ML, Thomas A, Keim P, Dumas C, Mogensen HL, Rougier M, Chaboud A (2003) Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J 33:1051–1062

    Article  PubMed  Google Scholar 

  • Floyd SK, Friedman WE (2000) Evolution of endosperm developmental patterns among basal flowering plants. Int J Plant Sci 161:S57–S81

    Article  Google Scholar 

  • Floyd SK, Friedman WE (2001) Developmental evolution of endosperm in basal angiosperms: evidence from Amborella (Amborellaceae), Nuphar (Nymphaeaceae), and Illicium (Illiciaceae). Plant Syst Evol 228:153–169

    Article  Google Scholar 

  • Friedman WE (1990a) Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247:951–954

    PubMed  Google Scholar 

  • Friedman WE (1990b) Sexual reproduction in Ephedra nevadensis (Ephedraceae): further evidence of double fertilization in a nonflowering seed plant. Am J Bot 77:1582–1598

    Google Scholar 

  • Friedman WE (1991) Double fertilization in Ephedra trifurca, a non-flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165:106–120

    Article  Google Scholar 

  • Friedman WE (1992a) Double fertilization in nonflowering seed plants and its relevance to the origin of flowering plants. Int Rev Cytol 140:319–355

    Google Scholar 

  • Friedman WE (1992b) Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. Science 255:336–339

    PubMed  Google Scholar 

  • Friedman WE (1994) The evolution of embryogeny in seed plants and the developmental origin and early history of the endosperm. Am J Bot 81:1468–1486

    Google Scholar 

  • Friedman WE (1995) Organismal duplication, inclusive fitness theory, and altruism: understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc Natl Acad Sci USA 92:3913–3917

    PubMed  CAS  Google Scholar 

  • Friedman WE (1998) The evolution of double fertilization and endosperm: an “historical” perspective. Sex Plant Reprod 11:6–16

    Article  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    PubMed  CAS  Google Scholar 

  • Friedman WE (2001a) Comparative embryology of basal angiosperms. Curr Opin Plant Biol 4:14–20

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (2001b) Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C R Acad Sci Paris Sci de la vie 324:59–567

    Google Scholar 

  • Friedman WE, Carmichael JS (1996) Double fertilization in Gnetales: implications for understanding reproductive diversification among seed plants. Int J Plant Sci 157: S77–S94

    Google Scholar 

  • Friedman WE, Floyd SK (2001) The origin of flowering plants and their reproductive biology — a tale of two phylogenies. Evolution 55:217–231

    PubMed  CAS  Google Scholar 

  • Friedman WE, Williams JH (2003) Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. Evolution 57:216–230

    PubMed  Google Scholar 

  • Friedman WE, Gallup WN, Williams JH (2003) Female gametophyte development in Kadsura: implications for Schisandraceae, Austrobaileyales, and the early evolution of flowering plants. Int J Plant Sci 164:S293–S305

    Article  Google Scholar 

  • Frye TC (1902) A morphological study of certain Asclepiadaceae. Bot Gaz 34:389–413

    Article  Google Scholar 

  • Fu Y, Yuan M, Huang B-Q, Yang H-Y, Zee S-Y, O’Brien TP (2000) Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex Plant Reprod 12:315–322

    Article  CAS  Google Scholar 

  • Gao X, Francis D, Ormrod JC, Bennett MD (1992) An electron microscopic study of double fertilization in allohexaploid wheat Triticum aestivum L. Ann Bot 70:561–568

    Google Scholar 

  • Gerassimova-Navashina H (1960) A contribution to the cytology of fertilization in flowering plants. Nucleus 3:111–120

    Google Scholar 

  • Graham SW, Olmstead RG (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 87:1712–1730

    PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Spillane C, Page DR, Köhler C (2001) Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 4:1–27

    Article  Google Scholar 

  • Guérin P (1904) Les connaissances actuelles sur la fécondation chez les phanérogames. Joanin, Paris

    Google Scholar 

  • Guignard L (1899a) Sur les anthérozoïdes et la double copulation sexuelle chez les végétaux angiospermes. C R Acad Sci Paris 128:864–871

    Google Scholar 

  • Guignard L (1899b) Sur les anthérozoïdes et la double copulation sexuelle chez les végétaux angiospermes. Rev Gén Bot 11:129–135

    Google Scholar 

  • Guignard L (1899c) Les découvertes récentes sur la fécondation chez les végétaux angiospermes. In: Cinquantenaire de la Société de Biologie, vol Jubilaire. Masson, Paris, pp 189–198

    Google Scholar 

  • Guignard L (1900a) Nouvelles recherches sur la double fécondation chez les végétaux angiospermes. C R Acad Sci Paris 131:153–160

    Google Scholar 

  • Guignard L (1900b) L’appareil sexuel et la double fécondation dans les tulipes. Ann Sci Nat Bot Ser 8, 11:365–387

    Google Scholar 

  • Guignard L (1901a) La double fécondation dans le maïs. J Bot 15:37–50

    Google Scholar 

  • Guignard L (1901b) La double fécondation dans le Naias major. J Bot 15: 205–213

    Google Scholar 

  • Guignard L (1901c) La double fécondation chez les Renonculacées. J Bot 15: 394–408

    Google Scholar 

  • Guignard L (1901d) Sur la double fécondation chez les Solanées et les Gentianées. C R Acad Sci Paris 133:1268–1272

    Google Scholar 

  • Guignard L (1902) La double fécondation chez les Crucifères. J Bot 16:361–368

    Google Scholar 

  • Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50–91

    Google Scholar 

  • Hannig E (1904) Zur Physiologie pflanzlicher Embryonen. I. Ueber die Cultur von Cruciferen-Embryonen ausserhalb des Embryosacks. Bot Zeit 62:45–80

    Google Scholar 

  • Hanstein J (1870) Die Entwicklung des Keimes der Monokotylen und Dikotylen. Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie, I. Marcus, Bonn

    Google Scholar 

  • Hause G, Schröder M-B (1987) Reproduction in Triticale. 2. Karyogamy. Protoplasma 139:100–104

    Article  Google Scholar 

  • Hayashi Y (1963) The embryology of the family Magnoliaceae sens. lat. I. Megasporogenesis, female gametophyte and embryogeny in Illicium anisatum L. Sci Rep Tôhoku Univ Ser IV 29:27–33

    Google Scholar 

  • Herr JM Jr (1984) Embryology and taxonomy. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 647–696

    Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1997) Kinetics of double fertilization in Torenia fournieri based on direct observations of the naked embryo sac. Planta 203:101–110

    Article  CAS  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kuroiwa T (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr Opin Plant Biol 6:36–41

    Article  PubMed  Google Scholar 

  • Hoefert LL (1969) Fine structure of sperm cells in pollen grains of Beta. Protoplasma 68:237–240

    Article  Google Scholar 

  • Hong S-K, Aoki T, Kitano H, Satoh H, Nagato Y (1995) Phenotypic diversity of 188 rice embryo mutants. Dev Genet 16:298–310

    Article  Google Scholar 

  • Hoshino Y, Scholten S, von Wiegen P, Lörz H, Kranz E (2004) Fertilization-induced changes in the microtubular architecture of the maize egg cell and zygote — an immunocytochemical approach adapted to single cells. Sex Plant Reprod 17:89–95

    Article  CAS  Google Scholar 

  • Huang B-Q, Russell SD (1992) Synergid degeneration in Nicotiana: a quantitative, fluorochromatic and chlorotetra-cycline study. Sex Plant Reprod 5:151–155

    Google Scholar 

  • Huang B-Q, Russell SD (1994) Fertilization in Nicotiana tabacum: cytoskeletal modifications in the embryo sac during synergid degeneration. Planta 194:200–214

    CAS  Google Scholar 

  • Huang, B-Q, Sheridan WF (1998) Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize. Sex Plant Reprod 11:257–264

    Article  Google Scholar 

  • Huang B-Q, Pierson ES, Russell SD, Tiezzi A, Cresti M (1993a) Cytoskeletal organisation and modification during pollen tube arrival, gamete delivery and fertilisation in Plumbago zeylanica. Zygote 1:143–154

    PubMed  CAS  Google Scholar 

  • Huang B-Q, Strout GW, Russell SD (1993b) Fertilization in Nicotiana tabacum: ultrastructural organization of propane-jet-frozen embryo sacs in vivo. Planta 191:256–264

    Article  Google Scholar 

  • Huang B-Q, Fu Y, Zee SY, Hepler PK (1999) Three-dimensional organization and dynamic changes of the actin cytoskeleton in embryo sacs of Zea mays and Torenia fournieri. Protoplasma 209:105–119

    CAS  PubMed  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  PubMed  CAS  Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    PubMed  Google Scholar 

  • Ikeda T (1902) Studies in the physiological functions of antipodals and the phenomena of fertilization in Liliaceae. I. Tricyrtis hirta. Bull Coll Agric Tōkyō Imp Univ 5:41–72

    Google Scholar 

  • Jensen WA (1964) Observations on the fusion of nuclei in plants. J Cell Biol 23:669–672

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA (1998) Double fertilization: a personal view. Sex Plant Reprod 11:1–5

    Article  CAS  Google Scholar 

  • Jensen WA, Fisher DB (1967) Cotton embryogenesis: double fertilization. Phytomorphology 17:261–269

    Google Scholar 

  • Jensen WA, Fisher DB (1968a) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78:158–183

    Google Scholar 

  • Jensen WA, Fisher DB (1968b) Cotton embryogenesis: the sperm. Protoplasma 65:277–286

    Article  Google Scholar 

  • Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q, Yang W-C, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–595

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1950) Plant embryology. Embryology of the spermatophyta. Chronica Botanica, Waltham

    Google Scholar 

  • Johnson MA, Preuss D (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev Cell 2:273–281

    Article  PubMed  CAS  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1 and 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kanta K, Ranga Swamy NS, Maheshwari P (1962) Test-tube fertilization in a flowering plant. Nature 194:1214–1217

    Google Scholar 

  • Kapil RN (1970) Podostemaceae. Bull Indian Natl Sci Acad 41:104–109

    Google Scholar 

  • Karsten G (1902) Ueber die Entwickelung der weiblichen Blüthen bei einigen Juglandaceen. Flora 90:316–333

    Google Scholar 

  • Khanna P (1964) Morphological and embryological studies in Nymphaeaceae I. Euryale ferox Salisb. Proc Indian Acad Sci 59B:237–243

    Google Scholar 

  • Khanna P (1965) Morphological and embryological studies in Nymphaeaceae II. Brasenia schreberei Gmel and Nelumbo nucifera Gaertn. Aust J Bot 13:379–387

    Article  Google Scholar 

  • Khanna P (1967) Morphological and embryological studies in Nymphaeaceae III. Victoria cruziana D’Orb, and Nymphaea stellata Willd. Bot Mag Tokyo 80:305–312

    Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Kluger J (1999) The suicide seeds. Time 153(4):44–45

    Google Scholar 

  • Knox RB, Singh MB (1987) New perspectives in pollen biology and fertilization. Ann Bot 60[Suppl 4]: 15–37

    Google Scholar 

  • Koltunow AM, Vivian-Smith A, Tucker MR, Paech N (2002) The central role of the ovule in apomixis and parthenocarpy. In: O’Neill SD, Roberts JA (eds) Plant reproduction. Annual Plant Reviews vol 6. Sheffield Academic Press, Sheffield, pp 221–256

    Google Scholar 

  • Koul AK (2001) Double fertilization: changing frontiers. In: Rangaswamy NS (ed) Phytomorphology Golden Jubilee issue 2001: Trends in plant sciences. International Society of Plant Morphologists, Delhi, pp 237–250

    Google Scholar 

  • Kovács M, Barnabás B, Kranz E (1995) Electro-fused isolated wheat (Triticum aestivum L.) gametes develop into multicellular structures. Plant Cell Rep 15:178–180

    Google Scholar 

  • Kranz E (2001) In vitro fertilization. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 143–166

    Google Scholar 

  • Kranz E, Kumlehn J (1999) Angiosperm fertilisation, embryo and endosperm development in vitro. Plant Sci 142:183–197

    Article  CAS  Google Scholar 

  • Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    Article  PubMed  Google Scholar 

  • Kranz E, Lörz H (1994) In vitro fertilisation of maize by single egg and sperm cell protoplast fusion mediated by high calcium and high pH. Zygote 2:125–128

    PubMed  CAS  Google Scholar 

  • Kranz E, Bautor J, Lörz H (1991) In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Reprod 4:12–16

    Google Scholar 

  • Kranz E, von Wiegen P, Lörz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8:9–23

    Article  Google Scholar 

  • Kranz E, von Wiegen P, Quader H, Lörz H (1998) Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell 10:511–524

    Article  PubMed  CAS  Google Scholar 

  • Land WJG (1900) Double fertilization in Compositae. Bot Gaz 30:252–260

    Article  Google Scholar 

  • Land WJG (1904) Spermatogenesis and oogenesis in Ephedra trifurca. Bot Gaz 38:1–18

    Article  Google Scholar 

  • Lersten NR (2004) Flowering plant embryology. Blackwell, Ames, IA

    Google Scholar 

  • Liu C-M, Johnson S, Hedley CL, Wang TL (1996) The generation of a legume embryo: morphological and cellular defects in pea mutants. In: Wang TL, Cuming A (eds) Embryogenesis. The generation of a plant. Bios, Oxford, pp 191–213

    Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    PubMed  CAS  Google Scholar 

  • Lush WM (1999) Whither chemotropism and pollen tube guidance? Trends Plant Sci 4:413–418

    Article  PubMed  Google Scholar 

  • Magallón S, Sanderson MJ (2002) Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York.

    Google Scholar 

  • Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    PubMed  Google Scholar 

  • Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950

    Article  PubMed  CAS  Google Scholar 

  • Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482–2485

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1994) Seed development in Arabidopsis thaliana. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 253–295

    Google Scholar 

  • Mogensen HL (1972) Fine structure and composition of the egg apparatus before and after fertilization in Quercus gambelii: the functional ovule. Am J Bot 59:931–941

    Google Scholar 

  • Mogensen HL (1982) Double fertilization in barley and the cytological explanation for haploid embryo formation, embryoless caryopses, and ovule abortion. Carlsberg Res Commun 47:313–354

    Article  Google Scholar 

  • Mogensen HL (1988) Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc Natl Acad Sci USA 85:2594–2597

    PubMed  Google Scholar 

  • Mogensen HL (1992) The male germ unit: concept, composition, and significance. Int Rev Cytol 140:129–147

    Google Scholar 

  • Mogensen HL, Holm PB (1995) Dynamics of nuclear DNA quantities during zygote development in barley. Plant Cell 7:487–494

    Article  PubMed  CAS  Google Scholar 

  • Mogensen HL, Leduc N, Matthys-Rochon E, Dumas C (1995) Nuclear DNA amounts in the egg and zygote of maize (Zea mays L.). Planta 197:641–645

    Article  CAS  Google Scholar 

  • Mohan Ram HY, Sehgal A (2001) Biology of Indian Podostemaceae. In: Rangaswamy NS (ed) Phytomorphology Golden Jubilee issue 2001: Trends in plant sciences. International Society of Plant Morphologists, Delhi, pp 365–391

    Google Scholar 

  • Mukkada AJ (1963) Some observations on the embryology of Dicraea stylosa Wight. In: Plant embryology — a symposium. Council of Scientific & Industrial Research, New Delhi, pp 139–145

    Google Scholar 

  • Mukkada AJ (1964) An addition to the bisporic embryo sacs — the Dicraea type. New Phytol 63:289–292

    Google Scholar 

  • Mukkada AJ (1969) Some aspects of the morphology, embryology and biology of Terniola zeylanica (Gardner) Tulasne. New Phytol 68:1145–1158

    Google Scholar 

  • Nagendran CR, Subramanyam K, Arekal GD (1976) Development of the female gametophyte in Hydrobryum griffithii (Podostemaceae). Ann Bot 40:511–513

    Google Scholar 

  • Nagendran CR, Anand VV, Arekal GD (1980) The embryo sac of Podostemum subulatus (Podostemaceae) — a reinvestigation. Plant Syst Evol 134:121–125

    Article  Google Scholar 

  • Nash JM (2000) Grains of hope. Time 156(5):39–46

    Google Scholar 

  • Nawaschin S (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp Sci St-Pétersbourg Ser 5, 9:377–382

    Google Scholar 

  • Nawaschin S (1899) Neuen Beobachtungen über Befruchtung bei Fritillaria tenella und Lilium martagon. Bot Centralbl 77:62

    Google Scholar 

  • Nawaschin S (1900a) Ueber die Befruchtungsvorgänge bei einigen Dicotyledoneen. Ber Dtsch Bot Ges 18:224–230

    Google Scholar 

  • Nawaschin S (1900b) On fertilization in Compositae and Orchidaceae. Bull Acad Imp Sci St-Pétersbourg Ser 5, 13:335–340

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Ohad N, Margossian L, Hsu Y, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Parkinson CL, Adams KL, Palmer JD (1999) Multigene analyses identify the three earliest lineages of extant flowering plants. Curr Biol 9:1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Poddubnaya-Arnoldi VA (1960) Studies of fertilization in the living material of some angiosperms. Phytomorphology 10:185–198

    Google Scholar 

  • Prado AM, Porterfield DM, Feijó JA (2004) Nitrous oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (1976) Experimental embryogenesis in vascular plants. Academic Press, London

    Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms. A developmental and experimental study. Cambridge University Press, New York

    Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, New York

    Google Scholar 

  • Raghavan V (2000) Embryogenesis at the crossroads — some perspectives on over a century of plant embryo research. Acta Biol Cracov Ser Bot 42:31–38

    Google Scholar 

  • Raghavan V (2001) The coming of age of plant embryology. Curr Sci 80:244–251

    Google Scholar 

  • Raghavan V (2003a) One hundred years of zygotic embryo culture investigations. In Vitro Cell Dev Biol — Plant 39:437–442

    Google Scholar 

  • Raghavan V (2003b) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    Article  CAS  Google Scholar 

  • Ramachandran C, Raghavan V (1992) Apomixis in distant hybridization. In: Kalloo G, Chowdhury JB (eds) Distant hybridization in crop plants. Springer, Berlin Heidelberg New York, pp 106–121

    Google Scholar 

  • Ray S, Park S-S, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498

    PubMed  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida, L, Dumas C, Berger F, Faure J-E (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1982) Fertilization in Plumbago zeylanica: entry and discharge of the pollen tube in the embryo sac. Can J Bot 60:2219–2230

    Google Scholar 

  • Russell SD (1983) Fertilization in Plumbago zeylanica: gametic fusion and the fate of the male cytoplasm. Am J Bot 70:416–434

    Google Scholar 

  • Russell SD (1984) Ultrastructure of the sperm of Plumbago zeylanica II. Quantitative cytology and three-dimensional organization. Planta 162:385–391

    Article  Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago: ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82:6129–6132

    CAS  PubMed  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388

    Google Scholar 

  • Russell SD (1997) Male germ unit. In: Batygina TB (ed) Embryology of flowering plants. Terminology and concepts, vol 2. Seed. World & Family-95, St. Petersburg, pp 127–135

    Google Scholar 

  • Russell SD, Cass DD (1981) Ultrastructure of the sperms of Plumbago zeylanica 1. Cytology and association with the vegetative nucleus. Protoplasma 107:85–107

    Article  Google Scholar 

  • Russell SD, Rougier M, Dumas C (1990) Organization of the early post-fertilization megagametophyte of Populus deltoides. Ultrastructure and implications for male cytoplasmic transmission. Protoplasma 155:153–165

    Article  Google Scholar 

  • Saito C, Nagata N, Sakai A, Mori K, Kuroiwa H, Kuroiwa T (2000) Unequal distribution of DNA-containing organelles in generative and sperm cells of Erythrina cristagalli (Fabaceae). Sex Plant Reprod 12:296–301

    Article  Google Scholar 

  • Sargant E (1899) On the presence of two vermiform nuclei in the fertilised embryo-sac of Lilium martagon. Proc R Soc London 65:163–165

    Google Scholar 

  • Sargant E (1900) Recent work on the results of fertilization in angiosperms. Ann Bot 14:689–712

    Google Scholar 

  • Sauter M, von Wiegen P, Lörz H, Kranz E (1998) Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division. Sex Plant Reprod 11:41–48

    Article  CAS  Google Scholar 

  • Schnarf K (1929) Embryologie der Angiospermen. Handbuch der Pflanzenanatomie II. Abteilung 2. Teil: Archegoniaten. Bd X/2. Borntraeger-verlag, Berlin

    Google Scholar 

  • Scholten S, Kranz E (2001) In vitro fertilization and expression of transgenes in gametes and zygotes. Sex Plant Reprod 14:35–40

    Article  Google Scholar 

  • Schulz R, Jensen WA (1968) Capsella embryogenesis: the synergids before and after fertilization. Am J Bot 55:541–552

    Google Scholar 

  • Shibata K (1902) Die Doppelbefruchtung bei Monotropa uniflora L. Flora 90:61–66

    Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    PubMed  CAS  Google Scholar 

  • Singh MB, Xu H, Bhalla PL, Zhang Z, Swoboda I, Russell SD (2002) Developmental expression of polyubiquitin genes and distribution of ubiquinated proteins in generative and sperm cells. Sex Plant Reprod 14:325–329

    CAS  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281

    PubMed  Google Scholar 

  • Southworth D (2001) Sperm and generative cell. Isolation and manipulation. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 17–32

    Google Scholar 

  • Southworth D, Russell SD (2001) Male gametogenesis. Development and structure of sperm. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 1–16

    Google Scholar 

  • Strasburger E (1884) Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage fur eine Theorie der Zeugung. Fischer-verlag, Jena

    Google Scholar 

  • Strasburger E (1900) Einige Bemerkungen zur Frage nach der “doppelten Befruchtung” bei den Angiospermen. Bot Zeit 58:293–316

    Google Scholar 

  • Strasburger E (1902) Ein Beitrag zur Kenntniss von Ceratophyllum submersum und phylogenetische Erörterungen. Jahrb Wiss Bot 37:477–526

    Google Scholar 

  • Sumner MJ (1992) Embryology of Brassica campestris: the entrance and discharge of the pollen tube in the synergid and the formation of the zygote. Can J Bot 70:1577–1590

    Google Scholar 

  • Sun M-X, Moscatelli A, Yang H-Y, Cresti M (2000) In vitro double fertilization in Nicotiana tabacum (L.): fusion behavior and gamete interaction by video-enhanced microscopy. Sex Plant Reprod 12:267–275

    Google Scholar 

  • Sun M-X, Kranz E, Moscatelli A, Yang H-Y, Lörz H, Cresti M (2002) A reliable protocol for direct detection of lectin binding sites on the plasma membrane of a single living sperm cell in maize. Sex Plant Reprod 15:53–55

    CAS  Google Scholar 

  • The Angiosperm Phylogeny Group (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thomas EN (1900) Double fertilization in a dicotyledon — Caltha palustris. Ann Bot 14:527–535

    Google Scholar 

  • Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 279–336

    Google Scholar 

  • Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum: II. Preliminary attempts for in vitro fertilization and egg cell culture. Plant Cell Rep 16:657–661

    CAS  Google Scholar 

  • Tian HQ, Yuan T, Russell SD (2005) Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex Plant Reprod 17:243–252

    Article  Google Scholar 

  • Tirlapur UK, Kranz E, Cresti M (1995) Characterisation of isolated egg cells, in vitro fusion products and zygotes of Zea mays L. using the technique of image analysis and confocal laser scanning microscopy. Zygote 3:57–64

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109

    Google Scholar 

  • van Lammeren AAM (1986) A comparative ultrastructural study of the megagametophytes in two strains of Zea mays L. before and after fertilization. Agric Univ Wageningen Papers 86-1:1–37

    Google Scholar 

  • van Went JL (1970) The ultrastructure of the fertilized embryo sac of Petunia. Acta Bot Neerl 19:468–480

    Google Scholar 

  • van Went J, Cresti M (1988) Pre-fertilization degeneration of both synergids in Brassica campestris ovules. Sex Plant Reprod 1:208–216

    Google Scholar 

  • Vazart J (1969) Organisation et ultrastructure du sac embryonnaire du lin (Linum usitatissimum L.). Rev Cytol Biol Vég 32:227–232

    Google Scholar 

  • Wagner VT, Dumas C, Mogensen HL (1989) Morphometric analysis of isolated Zea mays sperm. J Cell Sci 93:179–184

    Google Scholar 

  • Wardlaw CW (1955) Embryogenesis in plants. Methuen, London

    Google Scholar 

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature 415:522–526

    PubMed  Google Scholar 

  • Wilms HJ (1981) Pollen tube penetration and fertilization in spinach. Acta Bot Neerl 30:101–122

    Google Scholar 

  • Winter K-U, Becker A, Milnster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA 96:7342–7347

    PubMed  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific gene expression in flowering plants. Proc Natl Acad Sci USA 96:2554–2558

    PubMed  CAS  Google Scholar 

  • Yan H, Yang H-Y, Jensen WA (1991) Ultrastructure of the developing embryo sac of sunflower (Helianthus annuus) before and after fertilization. Can J Bot 69:191–202

    Google Scholar 

  • Ye X-L, Yeung EC, Zee S-Y (2002) Sperm movement during double fertilization of a flowering plant, Phaius tankervilliae. Planta 215:60–66

    Article  PubMed  CAS  Google Scholar 

  • You R, Jensen WA (1985) Ultrastructural observations of the mature megagametophyte and the fertilization in wheat (Triticum aestivum). Can J Bot 63:163–178

    Article  Google Scholar 

  • Yu H-S, Huang B-Q, Russell SD (1994) Transmission of male cytoplasm during fertilization in Nicotiana tabacum. Sex Plant Reprod 7:313–323

    Google Scholar 

  • Zenkteler M (1990) In vitro fertilization and wide hybridization in higher plants. Crit Rev Plant Sci 9:267–279

    Google Scholar 

  • Zhang Z, Russell SD (1999) Sperm cell surface characteristics of Plumbago zeylanica L. in relation to transport in the embryo sac. Planta 208:539–544

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Double Fertilization — A Defining Feature of Flowering Plants. In: Double Fertilization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27792-7_1

Download citation

Publish with us

Policies and ethics