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Abstract RNA interference is a natural mechanism by which small interfering (si)RNA
operates to specifically and potently down-regulate the expression of a target gene. This
down-regulation has been thought to predominantly function at the level of the messenger
(m)RNA, post-transcriptional gene silencing (PTGS). Recently, the discovery that siRNAs
can function to suppress a gene’s expression at the level of transcription, i.e., transcriptional
gene silencing (TGS), has created a major paradigm shift in mammalian RNAi. These
recent findings significantly broaden the role RNA, specifically siRNAs and potentially
microRNAs, plays in the regulation of gene expression as well as the breadth of potential
siRNA target sites. Indeed, the specificity and simplicity of design makes the use of siRNAs
to target and suppress virtually any gene or gene promoter of interest a realized technology.
Furthermore, since siRNAs are a small nucleic acid reagent, they are unlikely to elicit an
immune response, making them a theoretically good future therapeutic. This review will
focus on the development, delivery, and potential therapeutic use of antiviral siRNAs in
treating viral infections as well as emerging viral threats.
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1
RNA Interference

RNA interference (RNAi), first described in plants and termed cosuppression
(reviewed in Tijsterman et al. 2002), is a process in which double-stranded
(ds)RNA induces homology-dependent degradation of mRNA (Montgomery
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1998;Nishikura2001; Sharp2001).RNAi is aprocess involving small interfering
double-stranded (si)RNAs 21–22 bp in length, with 3′ overhanging ends that
can induce a homology-dependent degradation of cognate messenger (m)RNA
(Nishikura 2001). The generation of siRNA is the result of a multistep process
that involves the action of RNase III endonuclease Dicer (Bernstein et al. 2001,
2003; Sui 2002; Fig. 1). The approximately 22-bp siRNAs that is processed by
Dicer provide much of the specificity in the silencing process. However, the
necessity for an exact sequence match in the sense strand of siRNA duplexes
has been questioned, as single stranded antisense siRNAs can guide target RNA
cleavage (Martinez et al. 2002) and as many as five mismatches in the sense
strand RNA may be tolerated (Sumimoto 2003). In contrast, a single base pair
mismatch relative to the target RNA on the antisense strand has been shown
to significantly reduce siRNA-mediated message degradation (Hamada et al.
2002). Following the action of Dicer, the ∼21-bp siRNAs are incorporated into
the RNA-induced silencing complex (RISC), which identifies and silences by
slicing the mRNAs complementary to the 21-bp siRNA through interactions
with Argonaute 2 (Liu et al. 2004; Fig. 1). The specificity juxtaposed with potent
suppression of target genes by siRNA has truly adopted RNAi as a standard
methodology for gene specific silencing in mammalian cells.

Mechanistically, RNAi can suppress gene expression via two distinct path-
ways: transcriptional (TGS) and post-transcriptional (PTGS) gene silencing.
PTGS involves siRNAs targeting of either mRNA or pre-mRNA, including
intronic sequences in Caenorhabditis elegans and yeast (Bosher 1999). TGS
involves silencing at the chromatin and was first observed when doubly trans-
formed tobacco plants exhibited a suppressed phenotype of the transformed
transgene. Careful analysis indicated that methylation of the targeted gene
was involved in the suppression (Matzke 1989). TGS mediated by dsRNAs was
further substantiated in viroid-infected plants and was shown to be due to
RNA-dependent methylation of DNA (RdDM) (Wassenegger 1994). The ob-
served TGS in viroid-infected plants contained viral promoters expressing
integrated transgenes. Interestingly, these promoters became methylated at
sites matching the small double stranded viral RNAs, and transcription of the
viral promoters was suppressed as a result of these homologous viral RNAs
entering the nucleus and inducing TGS (Wassenegger 1994, 2000), i.e., RNA
directed suppression of gene expression at the promoter. In human cells, gene
silencing induced by RNAi was initially thought to be restricted to action on
cytoplasmic mRNA or RNA at the nuclear pore (Zeng 2002), similar to most
reports in C. elegans and Trypanosoma brucei (Fire 1998; Montgomery 1998;
Ngo 1998). To date, TGS has been found to occur in plants, Drosophila, and
in Schizosaccharomyces pombe in centromeric regulation (Volpe 2002). Re-
cently, TGS was reported to be operable in mammalian cells and appeared to
rely on the delivery of the siRNA to the nucleus (Kawasaki et al. 2005; Morris
et al. 2004a). However, the strict requirements of nuclear delivery may not be
necessary if temporal factors are included in the analysis (Kawasaki and Taira
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Fig. 1 Post-transcriptional RNAi in mammalian cells. Synthetic siRNAs or those generated
by Dicer ex vivo can be transfected directly into cells using lipid-based transfection reagents
or with siRNAs expressed from within the cell from lentiviral or other gene therapy-based
vector systems (1). A cell can be stably transduced with a lentiviral vector that expresses
siRNAs either from two independent promoters (U6, Pol III) or a single promoter driving
the expression of a hairpin shRNA targeting a particular gene of interest (1). The vector-
expressed siRNAs are probably bound by Exportin 5 and Drosha (2; Lee et al. 2003; Lund
et al. 2004), and then get shuttled out of the nucleus and handed off to Dicer, which then
cleaves the loop from the hairpin (3) producing the siRNA that is then loaded into RISC,
ultimately leading to slicing of the target mRNA (4), essentially driving post-transcriptional
gene silencing (PTGS)

2004). The observed TGS in mammalian cells appears to involve DNA methyla-
tion, specifically DNMT1, DNMT3b (Kawasaki and Taira 2004), and DNMT3a
(Jeffery and Nakielny 2004), as well as histone deacetylation, as the observed
inhibition of gene expression was reversible with the addition of 5-azacytidine
(5′Aza-C, 4 µM) and trichostatin A (TSA, 0.05 mM; Morris et al. 2004a).
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2
Diversity of Viral Targets

Targeted suppression of human immunodeficiency virus (HIV)-1 has been
achieved through siRNAs directed against HIV-1 tat and rev (Coburn 2002;
Lee 2002; Novina 2002; Surabhi and Gaynor 2002), reverse transcriptase (Mor-
ris 2004; Surabhi and Gaynor 2002), trans-activating response region (TAR),
and the 3′-untranslated region (UTR), Vif (Jacque 2002), as well as gag and
the HIV-1 co-receptor CD4 (Novina 2002) and co-receptor CCR5 (Qin 2002;
reviewed in Lee and Rossi 2004).

Viruses other than HIV-1 have also been successfully targeted by siRNAs
in vitro with some success, including Semliki forest virus (SFV), poliovirus,
dengue virus, influenza virus, hepatitis C virus, and many others (reviewed
in Radhakrishnan et al. 2004). The fact that such a wide berth of varying
viruses can be successfully targeted by siRNAs suggests that these nucleic acid
molecules can be used to theoretically target virtually any emerging or present-
day infectious agent. However, despite the excitement and the early proofs-
of-principle in the literature, there are important issues and concerns about
therapeutic application of this technology, including difficulties with efficient
delivery, uncertainty about potential toxicity, and the emergence of siRNA-
resistant viruses. In particular, certain viruses encode proteins that block one
or more steps in the RNAi pathway (Bennasser et al. 2005; Hamilton et al.
2002; Johansen and Carrington 2001; Li et al. 2002; Llave et al. 2000; Mallory
et al. 2001, 2002). Indeed resistance to siRNA occurs rather rapidly and is
only contingent on a single nucleotide substitution (Gitlin 2002), and recently
HIV-1 was shown to elude siRNA targeting by the evolution of alternative
splice variants for the siRNA-targeted transcripts (Westerhout et al. 2005).
A possible way to circumvent such a conclusion in siRNA-mediated therapies
for human viral infections could be to (1) design siRNAs to best fit targets from
anextensive database of the variants in the particular target virus (Morris 2004)
and (2) incorporate these best-fit siRNAs into a multiple anti-viral siRNA-
expressing transgene vector. Undeniably, the multiplexing of several different
siRNAs targeting different sites in the HIV genome along with non-essential
cellular targets such as CCR5 should be utilized to harness the full potential
of this mechanism in treating HIV-1 with siRNA technology. Alternatively,
siRNAs designed to more conserved regions, such as to target viral intron/exon
splice junctions, might also prove more resistant to the emergence of variant
viral strains as the result of siRNA-mediated targeting.

3
siRNA Selection

There are many commercially available reagents as well as PCR-based method-
ologies (Castanotto and Rossi 2004) for use in the generation of synthetic



Antiviral Applications of RNAi 109

siRNAs. The usefulness of first generating and testing siRNA on a particular
target prior to construction and generation of a vector system for the delivery
and expression of a particular siRNA species (Morris 2004) cannot be over-
stated. Specific targeting of siRNAs is extremely important, as slight positional
changes in the siRNA relative to the mRNA can have drastic effects on silenc-
ing (Holen 2002), indicating that the target mRNA secondary structure plays
a role in the siRNA accessibility. Indeed not all siRNAs are functional, and
a computational design or algorithm that provides 100% successful selection
of efficacious siRNAs has not, to our knowledge, been developed. However,
a set of common rules has begun to emerge from many of the studies done.
SiRNAs in which the helix at the 5′-end of the antisense strand has a lower
stability than the 3′-end of the siRNA are generally more effective than those
with the opposite arrangement. A biochemical basis for the thermodynamic
arrangement of effective siRNAs was provided by biochemical studies of the
mRNA cleavage complex RISC in Drosophila embryo extracts, which showed
unequal incorporation of the two strands of the siRNA into RISC (Schwarz
et al. 2003). Strand biases could be manipulated by altering the thermody-
namic stability of the terminal nucleotides in a way that precisely matched the
rules that were derived from empirical studies. Finally, an examination of mi-
croRNAs (miRNAs), most of which produce RISC-like complexes containing
only one strand of the precursor, showed the same pattern of thermodynamic
asymmetry as did effective siRNAs (reviewed in Meissner 2001).

Another important factor in siRNA-mediated RNAi is based on cell type.
siRNA-transfected cells that are actively dividing lose transcriptional silencing
over roughly 96 h (Novina 2002; Tuschl 2002), possibly due to the cell divi-
sion and subsequent loss of the required template mRNA (Holen 2002). In
non-dividing cells, siRNA silencing has been retained long-term and corre-
lates well with the presence of the mRNA target (Song 2003). Consequently,
successful targeting of a desired transcript should involve prior attempts to
model the siRNA accessibility to the template mRNA, similar to approaches
employed with ribozyme and antisense RNA targeting (Scherr 1998). Further-
more, when targeting the RNA of a virus, conserved regions that cannot accom-
modate evolved point mutations should be preferentially selected. Certainly
the sequence-specific ability of siRNAto inhibit gene expression suggests broad
applications, including targeting of viral infections such as HIV-1. However, the
sensitivity of siRNA to single base pair mismatches, coupled with extant data
on the rapidity of evolution of drug resistance (Richman 1994) in the face of se-
lective pressure, may limit the overall target selection in some viral infections.

4
Delivery of siRNAs to Target Cells

Once an siRNA or multiple siRNAs targeting a particular viral RNA have been
designed and tested in vitro with transient-based transfection assays (Fig. 1),
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it may prove necessary to express the siRNA from the context of the cell. The
introduction of siRNAs into mammalian cells can be achieved through a va-
riety of standard transfection methods (Fig. 1). The strength and duration
of the silencing response delivered in the context of such transfection meth-
ods, however, is determined or limited (or both determined and limited) by
several factors. On a population basis, the overall efficiency of transfection is
a major determinant, which must be addressed by optimizing conditions. In
each individual cell, silencing depends upon a combination of the amount of
siRNA that is delivered and the potential of the siRNA to suppress its target
(the potency). Even a relatively poor siRNA can silence its target provided
that sufficient quantities are delivered. However, overloading the system with
a high-concentration of siRNAs is likely to lead to undesired effects, including
off-target suppression as well as the induction of a PKR response (Sledz et al.
2003). Indeed, there are innumerable methodologies available for expressing
siRNAs from the context of the cell, including transient transfection of the syn-
thesized or plasmid-expressed siRNA and stable expression of the particular
siRNA by lentiviral vector delivery (Banerjea et al. 2003; Fig. 1).

Lentiviral vectors are emerging as one of the best candidates currently avail-
able for delivering and stably expressing short hairpin (sh)RNAs or siRNAs in
target cells (Fig. 2). Lentiviruses, unlike retroviruses such as Moloney murine
leukemia virus (MoMuLV), tend to preferentially integrate downstream of ac-
tive promoters within the active transcriptional unit, potentially limiting their
overall oncogenicity (Wu et al. 2003). Moreover, lentiviral-based vectors are
capable of transducing non-dividing cells (Buchschacher 2000) and specifically
targeting the nucleus. HIV-1-, HIV-2/SIV-, and feline immunodeficiency virus
(FIV)-based lentiviral vectors are produced by co-transfecting vector, packag-
ing, and envelope into producer cells, and collecting the resultant supernatants
that contain the packaged vector 48 h later (Fig. 2). Lentiviral vectors are capa-
ble of stably transducing many cell types, including hematopoietic stem cells
(Gervaix et al. 1997), integrating into the target genome, and expressing desired
transgenes (Poeschla 1996; Price 2002; Quinonez 2002; Yam 2002). Lentiviruses
have also been shown to cross-package one another (Browning 2001; Goujon
2003; White 1999). This observation has been carried over experimentally with
HIV-1 and HIV-2 vectors being cross-packaged by FIV and capable of stably
transducing and protecting human primary blood mononuclear cells from
HIV-1 infection (Morris et al. 2004b). The cross-packaging of lentiviral vectors
such as HIV-1 with an FIV packaging system offers a unique and possibly
safer method for delivering anti-viral vectors to target cells in HIV-1-infected
individuals. For instance,FIV-packagedHIV-1orHIV-2vectors reduce the like-
lihood of immune recognition, or seroconversion, due to exposure to HIV-1
structural proteins. Finally, lentiviral vectors can be specifically pseudotyped
(Kobinger 2001; Sandrin 2003) or designed with a receptor-ligand bridge to
target specific cell types (Boerger 1999).
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Fig. 2 Production of lentiviral vectors. Lentiviral vectors are produced by (1) transfecting
293T producer cells with the lentiviral vector, packaging, and envelope plasmids. Next,
the transfected cell transcribes the respective plasmids (2 and 3) subsequently producing
the packaging co-factors (4) and vector RNA which is then packaged into the budding
particles (4). The culture supernatants are collected 48–72 h later, and vector concentration
is determined by titering on target cells

Therapeutically, the use of lentiviral or other stable integrating vector sys-
tems may not prove useful in the application of siRNAs in treating transient
infections such as influenza or severe acute respiratory syndrome (SARS). One
alternative is the use of cationic lipid complexes to systemically or locally de-
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liver the viral or disease-specific shRNA or siRNA to the infected individual.
Systemic delivery of siRNAs have been shown in mice and could be used to aid
or augment the immune response during times of duress (Sioud and Sorensen
2003; Sorensen et al. 2003).

5
siRNA Challenges

Indubitably, one of the advantages of using siRNAs to treat emerging infectious
agents such as viral infections is the relative ease of design, construction, and
testing. The emerging field of RNAi—and siRNAs in particular—provides
a potentially cost-effective and relatively quick methodology to treating some
of the worlds most deadly emerging viral infections, such as Ebola and SARS,
or to even deal with theoretical threats of smallpox or other viruses. Moreover,
RNAi technology can also be used beyond the scope of human disease to
treat agricultural, horticultural, and wildlife diseases. However, there are two
important issues currently facing RNAi-mediated technologies that must be
circumvented prior to the realization of RNAi in human therapeutics. These
two constraints are the avoidance of off-target effects and the delivery of the
siRNA to the target cell.

Steady progress has been made with regards to gene therapy-based deliv-
ery systems, specifically lentiviral-based vector systems. Regarding off-target
effects, the use of siRNAs to target specific cellular or viral transcripts relies es-
sentially on hijacking the endogenous RNAi machinery, of which we know very
little, i.e., what is the potential for saturating the RNAi pathway. Indeed there
is evidence that RISC can be saturated at least in the context of cultured cells
(Pasquinelli 2002; Pasquinelli and Ruvkun 2002). Consequently, endogenous
RNAi pathways appear to be susceptible to high concentrations of exogenous
siRNA, suggesting that it will probably be imperative to not only quantitate
siRNA-mediated silencing but to also monitor other genes in siRNA-treated
cultures for untoward off-target effects. Indeed a thorough understanding of
the mechanism(s) leading to nonspecific off-target effects as the result of siRNA
treatment is essential before siRNAs or shRNAs can become realized in human
therapies to treat viral infections.
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