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Overview 

The PSG system developed at the University of Darmstadt generates interactive, 

language-specific programming environments from formal language defini- 

tions. All language-dependent parts of the environment are generated from an 

entirely nonprocedural specification of the language's syntax, context conditions 

and dynamic semantics. The generated environment consists of a language- 

specific hybrid editor, an interpreter and debugging system, and a library system. 

The editor allows structure editing as well as text editing. Both modes are fully 

integrated and may be mixed freely. The user determines the granularity of 

incremental analysis: at one end of the spectrum there is pure text editing, while 

pure structure editing is the other extreme. When analysing textual input, PSG 

editors guarantee immediate detection of syntactic and static semantic errors. In 

structure mode, they even guarantee prevention of such errors. The editor wilt 

however not insist on immediate error correction; it tolerates incorrect or 

inconsistent programs. The user interface heavily utilizes raster graphics and 

mouse in order to achieve fast and ergonomic interaction. 

PSG editors employ a novel algorithm for incremental semantic analysis, namely 

the concept of context relations. This concept is based on type inference rather 

than type checking. The context conditions of the language are described by 

inference rules. During editing, these rules are evaluated using a unification 

algorithm for order-sorted algebras. Change propagation is used to achieve fast 

incremental behaviour, and structure sharing avoids excessive memory require- 

ments. The algorithm is language independent and guarantees immediate error 

detection in arbitrary incomplete program fragments. Error prevention is 
achieved by dynamically filtering all menus with respect to inferred context 

information. 
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The interactive interpreter is generated from a denotational semantics 

definition. It allows execution of incomplete program fragments. In order to 

generate an interpreter, semantic functions must be written in a functional 

language. The terms of this language are compiled into abstract machine code. 

This code is interpreted during fragment execution. 

The debugger, which is currently available only as a prototype, is generated from 

an extension of the semantics definition. It offers additional features such as 

tracing, single-stepping, displaying variable values, setting condit ional 

breakpoints etc. Interaction with the debugger is always on language level 

rather than on machine level. 

The library is language-independent and stores programs as abstract trees. 

Usually, interaction with the library is invoked automatically by the editor resp. 

the interpreter. It is possible to import and export external text files into/from 

the environment. 

PSG has been used to generate environments for Fortran 77, Lisp, Modula-2, 

Pascal, and the formal language definition language itself. PSG is also used to 

generate the programming environments of the German supercomputer 

SUPRENUM. 

The PSG system is currently available on PCS Cadmus and SUN Workstations. 

Research institutions may obtain a copy for a nominal fee. 
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