
Systems Exhibition 

R. Bahlke and G. Snelting : The PSG System: From Formal 
Language Def'mitions to Interactive Programming Environments 374 

D. Bert, D. Drabik, R. Echahed, O. Declerfayt, B. Demeuse, 
P-Y. Schobbens and F. Wautier: LPG: A Generic, Logic and 
Functional Programming Language 376 

H. Bertling, H. Ganzinger and R. Schiifers: CEC: A System for the 
Completion of Conditional Equational Specifications 378 

R. Heckmann: A Functional Language for the Specification of Complex 
Tree Transformations 

380 

L. Augustsson and Th. Johnsson: The Lazy-ML Compiler * 

G. Kahn and P. Klint: The GIPE Prototype System for Generating 
Programming Environments * 

C. Kirchner and H. Kirchner: OBJ-3: An Equational Language Incorporating 
Parameterization, Typing and Overloading, and its Environment * 

J. Souquidres andN. L~vy: SACSO: Methods and Tool for Constructing 
and Validating Requirement Specifications * 

* Abstract not received in time for publication 



The PSG System: From Formal Language Definitions 
to Interactive Programming Environments 

Rolf Bahlke, Gregor Snelting 

Fachgebiet Praktische Informatik 

Fachbereich tnformatik 

Tech nische Hochschule Darmstadt 

Magdalenenstr. 1 lc, D-6100 Darmstadt 

Overview 

The PSG system developed at the University of Darmstadt generates interactive, 

language-specific programming environments from formal language defini- 

tions. All language-dependent parts of the environment are generated from an 

entirely nonprocedural specification of the language's syntax, context conditions 

and dynamic semantics. The generated environment consists of a language- 

specific hybrid editor, an interpreter and debugging system, and a library system. 

The editor allows structure editing as well as text editing. Both modes are fully 

integrated and may be mixed freely. The user determines the granularity of 

incremental analysis: at one end of the spectrum there is pure text editing, while 

pure structure editing is the other extreme. When analysing textual input, PSG 

editors guarantee immediate detection of syntactic and static semantic errors. In 

structure mode, they even guarantee prevention of such errors. The editor wilt 

however not insist on immediate error correction; it tolerates incorrect or 

inconsistent programs. The user interface heavily utilizes raster graphics and 

mouse in order to achieve fast and ergonomic interaction. 

PSG editors employ a novel algorithm for incremental semantic analysis, namely 

the concept of context relations. This concept is based on type inference rather 

than type checking. The context conditions of the language are described by 

inference rules. During editing, these rules are evaluated using a unification 

algorithm for order-sorted algebras. Change propagation is used to achieve fast 

incremental behaviour, and structure sharing avoids excessive memory require- 

ments. The algorithm is language independent and guarantees immediate error 

detection in arbitrary incomplete program fragments. Error prevention is 
achieved by dynamically filtering all menus with respect to inferred context 

information. 



375 

The interactive interpreter is generated from a denotational semantics 

definition. It allows execution of incomplete program fragments. In order to 

generate an interpreter, semantic functions must be written in a functional 

language. The terms of this language are compiled into abstract machine code. 

This code is interpreted during fragment execution. 

The debugger, which is currently available only as a prototype, is generated from 

an extension of the semantics definition. It offers additional features such as 

tracing, single-stepping, displaying variable values, setting condit ional 

breakpoints etc. Interaction with the debugger is always on language level 

rather than on machine level. 

The library is language-independent and stores programs as abstract trees. 

Usually, interaction with the library is invoked automatically by the editor resp. 

the interpreter. It is possible to import and export external text files into/from 

the environment. 

PSG has been used to generate environments for Fortran 77, Lisp, Modula-2, 

Pascal, and the formal language definition language itself. PSG is also used to 

generate the programming environments of the German supercomputer 

SUPRENUM. 

The PSG system is currently available on PCS Cadmus and SUN Workstations. 

Research institutions may obtain a copy for a nominal fee. 

References 

Bahlke, R., Snetting, G. • The PSG System: From Formal Language Definitions to 
Interactive Programming Environments. ACM TOPLAS, Vot. 8, No. 4 (October 
1986), pp. 547-576. 

Bahlke, R., Snelting, G.: Context-Sensitive Editing with PSG Environments. Proc. 
Advanced Programming Environments, Trondheim, June t986, Springer Lecture 
Notes in Computer Science, Vol. 244, pp. 26-38. 

Bahlke, R., Moritz, B., Snelting, G.: A Generator for Language-Specific 
Debugging Systems. Proc. SIGPLAN '87 Symposium on Interpreters and 
Interpretive Techniques, ACM Sigplan Notices, Vol. 22, No.7, July 1987, pp. 92- 
101. 

Bahlke, R., Hunkel, M.: The User interface of PSG Programming Environments. 
Proc. 2nd IFIP Conference on Human-Computer Interaction, September 1987, 
North Holland, pp. 311-315. 


