
An Exception Handling Construct for 
Functional Languages 

Manfred Bretz, Jfirgen Ebert 

EWH Koblenz, Informatik 

D-5400 Koblenz/West Germany 

1. Introduction and Overview 

Exception handling is a way of dealing with situations at program runtime, which could affect program 

rehability. Exception handling covers error handling and error recovery, as well as programming 

techniques for dealing with legal but presumably rare, thus "exceptional", situations. 

Even for conventional (yon Neumann-) languages there are relatively few workable approaches to this 

problem, compared to the overwhelming number of papers on other program constructs. Only a few 

languages have a construct for exception handling, the most important being PL/I [19], ADA [16] and 

CLU [15]. Basic conceptual work on exception handling has been done by Cristiau [4,5], Goodenough [9] 

and Yemini&Berry [21,22]. 

The so-called replacement model of Yemini and Berry seems to be the most powerful approach, since it 

allows a variety of handling options, like resuming the interrupted operation, retrying the interrupted 

operation in a changed state, or terminating the interrupted operation in a defined way. The model 

adopts an expression-oriented yon Neumann view, using ALGOL 68 as the host language to carry the 

proposed constructs. 

If a language is conformant to the paradigm of functional programming, there are some additional basic 

problems, when an exception handling construct.is to be introduced: 

a) There is a fundamental conflict between parallel/nondeterrninistic function evaluation on one 

hand and sequential/deterndnistic evaluation on the other hand (independent of wtfich 

evaluation strategy is followed). If there are (e.g.) two exceptional points inside a given 

function the result of a corresponding parallel function application could be different, 

depending on which signal operation is executed first (e.g. using the language described below, 

the function 
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deff : -  kx.(sigual 1 3) + (signal I 5) 

signals I; 

in an application like 

f(1) handle I:= kx.x terminate 

could yield 3 or 5 as its result). 

b) Exception handling might cause side effects in expression evaluation and hence might violate 

the property of referential transparency. Anything done by a handler to remove an exception 

occurrence within an expression is a side effect, since it depends on the environment in which 

the exception is evaluated instead of where it is defined. 

c) Since there may be higher order functions, which yield functions as their results, an unrestricted 

use of exceptions may lead to situations where knowledge of which exceptions might be 

signalled inside a given expression might be lost. 

Because of these difficulties today's functional programming languages do not have strong exception 

handling facilities, the only major exception being ML [18] where there is a raise/handle construct. But 

ML allows only for termination as the single handler response. 

In this paper, we show how the approach of Yemird and Berry can be brought into the context of 

functional programming, thus allowing resume, retry and terminate as handier responses. While problem 

a) is intrinsic to exception handling (thus, ML has a sequential semantics, too), we solve problem b) by 

introducing handlers (to a certain extent) as additional function parameters where exceptions can only 

explicitly be transferred into a different environment, and deal with problem c) by using a strong but 

polymorphic typing approach to restrict the use of exception handling to those cases, where security can 

be achieved. 

In section 2, we define a language construct for exception handling, by introducing a sample ISWIM-like 

[12] language, called ALEX, as the basis of the discussion. We give some examples to show the usefulness 

of the approach and to explain informally the meaning and intentions of the construct. In section 3, we 

give the concrete semantics of ALEX using the operational SECD approach of [11]. Section 4 contains the 

type inference rules, which are an extension of the usual (polymorphic) type system for functional 

languages by an additional exception type and its consistency conditions. We finish the paper with a 

detailed example. 

ALEX has been implemented on a UNIX-based system using graph technology according to [8]. The 

translator, which translates a given ALEX program into an internal graph representation, is built using 

the compiler tools LEX and YACC [13,10]. The representation is a directed, attributed and ordered graph 

which represents the abstract syntax as well as the dataflow of the given functional program, also being 

the internal code on which the evaluator operates [6]. Type inference, derived from the rules below, is 

done by building an additional type subgraph to the functional graph using the same approach. The 
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(functional) graph is taken as an input for a SECD-like graph interpreter which attributes va/ues to its 

vertices according to [7]. 

ALEX, as described in the paper~ is kept as simple as possible, since it is only used as a vehicle for 

describing the fundamental concepts and its formal background. Thus, the focus is not on pragmatics 

which are somewhat verbose for clarity% sake. But several practical extensions to ALEX are quite easy~ 

some of which like 

• multiple handlers 

• default exception clauses 

• unparameterized exceptions 

have also been sucessfully added to the prototype implementation. 

2. ALEX - An Applicative Language with a Language Construct for Exception Handling 

This paper uses the applicative language ISWIM [12] to carry its exception handling proposal. The 

sample language is called ALEX. We present a decorated abstract syntax of ALEX, summarize the 

essentials of the exception handling construct and give three examples involving the construct. 

2.1 Syntax 

The language of ALEX expressions ezpr is given by the following decorated abstract syntax. The 

comments should help the reader to understand the intended meaning of the rules. 

expr = 

(al) 

(a2) I 

(a4) I 

£ 

/* cons~;an~ */ 

id 

/* identifier */ 

~i~ expr 1%hen ~ expr 2 %tse ~ expr~ 

/* conditional */ 

expr 1 expr~ 

/* application */ 
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(aS) 

(aS) 

(aT) 

(as) 

(a0) 

handler = 

expr 1 expr2 "handle" handler 

/* application with handler; associated with empr l may be an 

exception id in which case there must be a handler for id. */ 

"X" id ". '  expr 

/* abstraction */  

"k" idl %" expr "signals" id2 

/* abstraction with exception; the specified function may signal 

the exception id 2 i.e. may be a signaller. */  

"fix" id %" expr 

/* fixpoint */ 

"signal" id expr 

/* signal; the exception id is signalled and 

parameter of the signalled exception */ 

empr is the 

idl ~:=" ~k" id2 %" expr star 

/* kid2.ezpr denotes the k-expression (handler body) which 

is the paramerterized handler for the exception id 1 */ 

s t a r =  

"resume" 

J "retry" 

l "terminate" 

Remark: 

We extend our no ta t ion  by adding the  abil i ty to  name  ALEX-expressions. The  syntax for definitions is: 

"de/" id ":=" empr ";". The definition facility is only in t roduced for abbrevat ion (and not  for the 

definition of recursive functions).  

2.2 Essen t ia l s  of  E x c e p t i o n  H a n d l i n g  

The  essential characterist ics of the ALEX exception handl ing mechanism are [8,15,21]: 

• Exceptions mus t  be declared within the  funct ions '  interfaces. 

• Handlers are stat ically bound  to exceptions. 

• The  immedia te  invoker of a funct ion is considered responsible to  handle  tha t  function's  

exceptions. 
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Exceptions can be propagated explicitly along the dynamic invocation chain. 

Resume, retry and terminate are the possible handler responses. 

Exceptions can be pararneterized. 

2.3 Examples 

As an introduction to the exception handling mechanism we consider the following simple 

function abstraction: 

deff := kx.if x<0 then (signal I x)>l 

else true fi 
signals I; 

Then, the function applications (a)-(c) yield the following results 

(a) f(-5) handle I := kx.x+4 resume 

The handler value (kz.z-/-,~)(-5) = -I is calculated, and then the function f is resumed 

where it left off. Hence the result is false. 

(h) f(-5) handle I := Xx.x+4 retry 

The handler value ( k z . z+$) ( -5 )  = -1 is calculated, and then the function f is invoked 

again with -1 as new argument. This again leads to a signalling. Finally the result is true 

where two retries are done. 

(c) f(-5) handle I := kx.false terminate 

The handler value (kz . false)(-5)  = false is calculated and is used as the value of the 

function application. Hence the result is false. 

As a second, more instructive example the well-known curried while-functional 

&r  while:= ~ while.),p.×f.~.x.lf p(,:) the= (while p f) (fx) 

else x fi 

may also be rewritten as a (filnctional) expression using the exception handling constructs: 

def whilel:= kp.(kx.if p(x) then (signal I x) 

else x fi 

signals I); 

Assume that  pa denotes an arbitrary predicate and fa  an arbitrary function. Then, for all arguments z 

the evaluation of the expression 
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(while pa fa) (x) 

yields the same result as the evaluation of the expression 

(while1 pa) (x) handle I:= fa retry 

As a third, more practical example, we develop a recursive ALEX function which converts a given 

sequence of integer numbers into a sequence of ASCH-characters [21,22]. The function takes as its input a 

list of integer numbers. For every list element the function tests whether there exists a corresponding 

ASCH-character. If  the test yields true then the number's character representation is appended to the 

result list; otherwise the exception Bad_code is signalled: 

def Convert := 

fix Convert. 

kl.if null(1) then <> /*empty list */ 

else 

~r (0-<head(0) and (he~(0~127) 

then chr(head(1))/* chr is the transfer function in ALEX */ 

else (signal Bad_code head(l)) 

fi :: Convert(tail(l)) handle Bad code := ky.(slgnal Bad_code y) resume 

fi 

signals Bad_code; 

Since for a function with a $ignal$-clause a handler has to be given for every application of that  function 

in this prototype language, at  least a "dummy" handler for propagating the exception Bad_code has to be 

added in Convert'$ body. (This is forced by the typing rifles, see section 4.) 

To complete this example Convert is applied to a list ll twice. 

Convert(ll) handle Bad.code := ki.lf i<0 then '-' else '+' fi resume 

The handler for Bad.code specifies that  negative numbers are represented as '-' and 

numbers greater then 127 as '+ ' .  

Convert(H) handle Bad_code := ki .<> terminate 

The handler for Bad_code specifies tha t  the result of the application is the empty list. 

3. Operational Semantics for ALEX 

An operational semantics specifies a language by defining an interpreter for the abstract syntax of the 

language. For ALEX we develop a variant of the SECD machine proposed by Peter J. Landin in 1964 [11] 

as an interpreter for its abstract syntax. Our SECD machine supports lazy evaluation since our ALEX 

implementation is lazy. But tha t  is not essential. Here only those parts concerning exception handling are 
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described. A full description of the h~terpreter is given in [1]. If  the function N E X T _ S T A T E  yields no 

longer a new state, then h e a d ( S )  is the result. 

def NEXT_STATE:= 
X[S,E,C,D]. 

if is_empty (C) mad not is_empty (D) then 
/* an intermediate evaluation ha~ been terminated */ 

let S = =  res::S0 and 
D = =  IS1, El,  C1]::D1 in 

if is_su(res) then 
let res = =  [su, expr~ E2] in 
[<>,E2,<expr>,D] 

elsif is_sr(res) then 
let res ==  [sr, closure, [su, rand, E2]] in 
[<[su, rand, E2], closure>,<>,<ap>,D] 

else 
[res::Sl, El, CI, DI] 

fi 

elsifnot is_empty (C) then 
let C = =  X::C1 in 

(sI) if is_constant (X) or is_su (X) or is_st (X) then 
[X::S, E, Cl, D] 

(s2) elsif is_identifier (X) then 
[va/ue(X, E)::S, E, C1, D] 

(s5) elsif is_application_with_handler (X) then 
letrec X = =  rator rand "handle" handler and 

handler = =  excid ":=" =k'bv"."body star in 
[<>, El,<rator, [su, rand, El, ap>, D1] 
whereree D1 == [S, E, CI]::D mad 

E1 = =  (exc.id ~ [stat,[el,bv,body, E], D1, rator])::E 

(s7) elsif is_abstraction.with_exception (X) then 
let X = =  "k 'bv" . 'body "signals" exc_id in 
[[el, by, body, E]::S, E, C1, D] 

(sg) elsif is_signal (X) then 
letree X = =  %ignal" excjd rand and 

[star, closure, DI, rator] ==  value(exc_id, E) and 
D1 == [S0, EO, C0]::D0 in 

if star = =  ~resume ~ then/*  resumption */ 
[<[su~ rand, El, closure>, E, sp::Cl, D] 

elsif star == "retry" then /*  retrying */ 
[<>, El, <rator,[sr, closure, [su, rand, E]], ap>, DI] 
where E1 == (exc.id ~ [star, closure, DI, rator])::E0 

else/*  termination */ 
[<[su, rand, El, closure>,<>,<ep>,D1] 

fi 

fi 

else 
/* no new state */ 
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The following explanations point out how the SECD machine processes the exception handling constructs. 

The exception handling mechanism leads to two different kinds of activities at run time: 

c a s e  (sS): 

When an application with a handler is executed, the handler body has to be bound to the exception 

identifier together with the information needed to compute associated signal-expressions 

appropriately. Thus, execution continues with an enlarged environment. Since for the terminate- and 

retry-actions the computation has to continue from the current state, we associate the state in the 

form of a dump D1 with the identifier. Retry-actions also need the current operator rator. Thus, we 

decided to associate also this information to exc_id. 

case (sT): 

An abstraction with exception does not 

signals-elanse is only used for type inference. 

lead to additional actions at execution time. The 

case (s9): 

When an exception ¢zcjd is signalled, different actions have to be done depending on the handler's 

status star: 

(s9a) resume means: the handler body should be applied and with that  result execution continues. 

(s9b) retry means: the handler body should be applied~ but  then execution should continue with the 

handler 's application using the new result value as the new rand. 

(s9c) terminate means: the handler body should be applied and the execution should continue with 

that  result as the result of the handler's application. 

Note also, tha t  to make the re-application at retry really lazy we need a structure to suspend el/su-pairs. 

This is done by a new intermediate result, a st-suspension, in the implementation. 

As another example, note that  the overall discipline of the SECD machine could be described using the 

exception handling constructs of ALEX, a~ well. 

SECD_MACHINE:= 

kexpr. NEXT_STATEI([<>,<>,<expr>,<>] ) 

haudlefinish:= k[S,E,C,D].head(S) terminate 

In this case the state-transition function NEXT.STATE1 should call itself recursively and signal an 

exception finish, ff there is no successor state. 
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def NEXT_STATEI:= 

fix NEXT_STATE1. 

k[S,E,C,D]. 

NEXT_STATEI( 

ff is_empty (C) and not is_empty (D) then 

/* an intermediate evaluation has been terminated */ 

elslfnet is_empty (C) then 

else 

/* no new state */ 

signal finish [S,E,C,D] 

fi) 

handle finish:-- hx.(s|gnal finish x) resume 

signals finish; 

4. Type Inference in ALEX 

Since there are higher order functions in hmctional languages, in an expression (ezprl  ezpr2) the operator 

exprl can itself be an application expression whose evaluation yields a function which can signal an 

exception ezc_id (cf. example 2 above). In this case there must a handler definition for ezc_id be attached 

to the expression (ezprl ezprz) because for our language construct we have required that  the immediate 

invoker Of a function handles that  function's exceptions. We propose to check tiffs by a polymorphic 

typechecking algorithm [3¢14,17]. The type system of ALEX is formalized as a type deduction system [2] 

that  prescribes how to establish the type of an expression from the types of its subexpressions. The 

following is a list of the inference rules ordered to parallel the abstract syntax of ALEX. 

Let e be an expression and let 7r be a type assignment (i.e. a mapping from the identifiers occurring 

free in e into type expressions). The notation ~r r- e : v means that  ~ven  7r we can deduce that  e 

has type v. The horizontal bar  reads as "implies"; # is the overwrite operator for mappings. To force 

the correct use of the exception handling constructs, all neccessary information is collected in an 

exception type, which is constructed from 

1) the exception identifier ezc_id 
2) the resume-handler type 

3) the retry-handler type 

4) the terminate-handler type 

by using the type constructor ext. 
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Since e x c e p t i o n s  a re  a s s o c i a t e d  w i t h  a b s t r a c t i o n s ,  we  a lso  use  a t y p e  c o n s t r u c t o r  to  m o d e l  func t ions  of  t he  

t y p e  " f rom v~ to  ";2 w i t h  an  e x c e p t i o n  t y p e  ";3" a n d  w r i t e  i n  mix f ix  n o t a t i o n  "v~ ® vs ~ T~". 

Typ~rules: 

(rl) /* constant; c is a constant of type b */ 

"rr ~- c : b  

(r2) /*  identifier * /  

"n" e i d :  "rr(id) 

(r3) /*  condit ional */  

k e I : b o o l ,  "IT I- e2  : "r~ 

(r4) 

(r~a) 

(rSb) 

(r~c) 

t- "if" e I "then" e 2 "else" e 3 : "r 

/*  applicat ion * /  

qT ~- e 1 : q'l'~T2~ 'It l- e 2 : T 1 

"~ ~ e l e 2 : ' ; 2  

/*  appl icat ion wi th  handier */  

~ e l :  wl ® exe({idl},v3,v4,~'5) "* 

• 'rr t- e~ : ";2~ ";f P "~" id2 "-" e3 : "t3 

l- e 3 : T 

,r 2 

~- e 1 e 2 "handle" id 1 " :=" ~k" id2 "." e3 "resume" : "r 2 

~" F e l :  "r 1 ® eXC({idl},TS,T4,VS) ~ ~'2 

I- e2 :T2 ,  ~ ~- "k"  i d 2 " . " e 3 :  ";4 

~- el  e2 "handle" id l  " :=" "k" id2 "." e~ "retry" : "r 2 

~r ~ e l :  n ® exc({idl},Ts,~4,~s) "" T2 

• t ~ e2 :T2 ,  ~r 1- ")~" id 2 " . "  e 3 :  -r s 

• r k e 1 e 2 "handle" id 1 ":=" "k"  id2 4., e3 "terminate" : ";2 

(r6) /*  abstract ion * /  

# [id:';1] I - e :  ";2 

~r I- "k"  i d " . "  e :  " r l ~ ' ; 2  

(r7) /*  abstract ion with exception * /  

# [ idl :vl ,  id2:exe({id2},T3, v4-* ' r t ,T4~v2) ]  e e : ~2 

(rS) 

w ~- "k"  id 1 " 2  e "signals" id 2 . vl®exc({id2},';s, 74--~ 71,';4-~ T2) 

/*  recursive functions */  

# lid:T] ~ e :  T 

~ - " f i x ' i d " . ' e :  v 

T2 
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/* signal */  

~r ~- id : exc({id}, ~'1 "*'rz,vl "*'rS~ 'rl "*v4) 

F- e :  T 1 

¢r F "signal" id e : v:~ 

A bo t tom-up  typing a lgor i thm can be  ext rac ted  from the  rules in  a s t raightforward way [2]. 

5. A Detailed Example 

Suppose 1 is a sorted list. We develop a recursive funct ion which inserts  an  element x in to  1 in  case tha t  x 

is not  already a member  of 1; otherwise the  exception Muir@Is is signalled. (The reader might  excuse 

tha t  we use mul t i -a rgument  functions wi thout  introducing t hem formally, too.): 

def Insert:= 

fix Insert. 

x[x,1]. 
if null(I) then <x> 

else 

if x<head(l) then x :: 1 

elsifx=head(1) then (signal Multiple (x, head(l))) II 1 

else 

head(l) :: Insert(x, tail(l)) 

handle Multiple:= k[x,yJ.(slgnal Multiple(x,y)) resume 

fi 

fi 

signals Multiple; 

We proceed as follows: first we focus on  the  bo t tom-up  derivation of the  type of Insert (or more correctly 

of the type of the  ALEX-expression which we have named Insert); second we present some reasonable 

applications of Insert. 

The bo t tom-up  derivat ion of  the  type  of Insert can be  unders tood by  looldng at the  following principal 

snapshots  of the  derivation,  where an  a priori  typing of the  list handl ing operat ions is assumed: 

1. The type of the  else-part of the  inner conditional is derived using the  typing rules (r5a) and (r9), 

together  wi th  some other  rules. The result ing type of it is 

and the  type assignment ,~ contains the  following types for the  free identifiers: 
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~." {X ~ 

l: alist 

Multiple: exc({MultipIe}, 13xt3'-* % ~x~3'-.*~, 1 3 x ~ ' ~ )  

Insert: (ctxalist) ® exc({Multiple}, ~x[3"*~/, K, t) ~ cdist 

2, Next~ we type the body of the abstraction with exception by using the rules (r3) and (r9) espedally. 

Thus, 

"~list" 

is also the type of the abstraction's body and the free identifiers have types as follows: 

l: cdist 

Multiple: ex¢({Multiple}, axct--,ctlist, ~xct--,g, c~x~-,~) 

Insert: (etxalist) ® exc({Multiple}, ~xt3 '~- / ,  K, ~) ~ alist 

3. According to rule (r7), then the abstraction with exception has type 

"(ctxcdist)®exc({Multiple}, c txa~a l i s t ,  c~xct~axctlist, axc~cdis t ) -*cdis t  ~ 

where ~r contains for Insert the type 

Insert: (ctxalist) ® exc({Multlple}, ~x13 '~  % K, B) --* alist 

4. Finally, the nile for recursive function definitions (rS) yields for the whole expression the type 

"(axalist)®exc({Multiple}, axe--*alist, c~Xa-~axalist, axet--*ctllst)--,a!ist" 

where the type assignment ~r is empty. 

There axe several possibilities for handlers for an application of Insert. Assume, nl is a sorted list and n 

is a new entry. The following applications with handler are only some significant examples out of a variety 

of possibilities: 

(i) Insert(n,nl) handle Multiple:= k[new,otdl.<new> resume 

/* replaces old entry by new entry */ 

(2) Insert(n,nl) handle Multiple:--- k[new,old].<old> resume 

/* keeps old entry only */ 
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(3) Insert(n,nl) handle Multiple:= k[new,old].<new,old> resume 

/* stores new entry in front of old one */ 

(4) Insert(n,nl) handle Multiple:= k[new,old].<> resume 

/* deletes both entries */ 

(5) Insert(n,nl) handle Multiple:= k[new,old].nl terminate 

/* same as case (2) */ 

(6) Insert(n,nl) handle Multiple:= k[new,old].[modlfy(new),nl] retry 

/* tries to insert a modified entry into nl */ 

Conclusion 

An exception handling proposal for applicative languages which seems quite powerful and conceptually 

simple has been presented. The appropriate language construct was defined by introducing an ISWIM-like 

language, called ALEX. Its abstract syntax and its operational semantics were specified, for the latter 

using a variant of the SECD maschine. A type system for ALEX has been developed to restrict the use of 

the exception handling constructs, whereby security can be achieved. 

Finally, a brief comparison between the ML exception handling mechanism [18] and our mechanism may 

show the benefits of our proposal: 

(a) ML only supports the handler response "terminate the signaller". The signalling expression is 

terminated and the handler's result replaces the result of the (signalling) expression. ALEX supports 

with resume, retry and terminate three different possible handler responses. 

(b) In ML exceptions are propagated automatically along the dynamic invocation chain as long as no 

handler is found. As was pointed out in [15] multilevel mechanisms are in contrast to the hieractdcal 

program design methodology. In ALEX exceptions must be propagated explicitly along the dynamic 

invocation chain and handlers are bound statically to exceptions. 

(c) In both, ML and ALEX, exceptions can be parameterized. 

On the other hand, the algorithmic language Scheme [20] provides the possibility to program with 

continuations, which allows management of control in a general and powerful manner. Scheme's 

"call-with-current-continuation" feature is useful for implementing a wide variety of control structures, 

including exception handling. To us this possibility seems to general whereas the proposal in this paper 

was meant to be specific to exception handling. We hope, it could become a practical and versatile help 

for prograrnmiug. 
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