
An Exception Handling Construct for
Functional Languages

Manfred Bretz, Jfirgen Ebert

EWH Koblenz, Informatik

D-5400 Koblenz/West Germany

1. Introduction and Overview

Exception handling is a way of dealing with situations at program runtime, which could affect program

rehability. Exception handling covers error handling and error recovery, as well as programming

techniques for dealing with legal but presumably rare, thus "exceptional", situations.

Even for conventional (yon Neumann-) languages there are relatively few workable approaches to this

problem, compared to the overwhelming number of papers on other program constructs. Only a few

languages have a construct for exception handling, the most important being PL/I [19], ADA [16] and

CLU [15]. Basic conceptual work on exception handling has been done by Cristiau [4,5], Goodenough [9]

and Yemini&Berry [21,22].

The so-called replacement model of Yemini and Berry seems to be the most powerful approach, since it

allows a variety of handling options, like resuming the interrupted operation, retrying the interrupted

operation in a changed state, or terminating the interrupted operation in a defined way. The model

adopts an expression-oriented yon Neumann view, using ALGOL 68 as the host language to carry the

proposed constructs.

If a language is conformant to the paradigm of functional programming, there are some additional basic

problems, when an exception handling construct.is to be introduced:

a) There is a fundamental conflict between parallel/nondeterrninistic function evaluation on one

hand and sequential/deterndnistic evaluation on the other hand (independent of wtfich

evaluation strategy is followed). If there are (e.g.) two exceptional points inside a given

function the result of a corresponding parallel function application could be different,

depending on which signal operation is executed first (e.g. using the language described below,

the function

161

deff : - kx.(sigual 1 3) + (signal I 5)

signals I;

in an application like

f(1) handle I:= kx.x terminate

could yield 3 or 5 as its result).

b) Exception handling might cause side effects in expression evaluation and hence might violate

the property of referential transparency. Anything done by a handler to remove an exception

occurrence within an expression is a side effect, since it depends on the environment in which

the exception is evaluated instead of where it is defined.

c) Since there may be higher order functions, which yield functions as their results, an unrestricted

use of exceptions may lead to situations where knowledge of which exceptions might be

signalled inside a given expression might be lost.

Because of these difficulties today's functional programming languages do not have strong exception

handling facilities, the only major exception being ML [18] where there is a raise/handle construct. But

ML allows only for termination as the single handler response.

In this paper, we show how the approach of Yemird and Berry can be brought into the context of

functional programming, thus allowing resume, retry and terminate as handier responses. While problem

a) is intrinsic to exception handling (thus, ML has a sequential semantics, too), we solve problem b) by

introducing handlers (to a certain extent) as additional function parameters where exceptions can only

explicitly be transferred into a different environment, and deal with problem c) by using a strong but

polymorphic typing approach to restrict the use of exception handling to those cases, where security can

be achieved.

In section 2, we define a language construct for exception handling, by introducing a sample ISWIM-like

[12] language, called ALEX, as the basis of the discussion. We give some examples to show the usefulness

of the approach and to explain informally the meaning and intentions of the construct. In section 3, we

give the concrete semantics of ALEX using the operational SECD approach of [11]. Section 4 contains the

type inference rules, which are an extension of the usual (polymorphic) type system for functional

languages by an additional exception type and its consistency conditions. We finish the paper with a

detailed example.

ALEX has been implemented on a UNIX-based system using graph technology according to [8]. The

translator, which translates a given ALEX program into an internal graph representation, is built using

the compiler tools LEX and YACC [13,10]. The representation is a directed, attributed and ordered graph

which represents the abstract syntax as well as the dataflow of the given functional program, also being

the internal code on which the evaluator operates [6]. Type inference, derived from the rules below, is

done by building an additional type subgraph to the functional graph using the same approach. The

162

(functional) graph is taken as an input for a SECD-like graph interpreter which attributes va/ues to its

vertices according to [7].

ALEX, as described in the paper~ is kept as simple as possible, since it is only used as a vehicle for

describing the fundamental concepts and its formal background. Thus, the focus is not on pragmatics

which are somewhat verbose for clarity% sake. But several practical extensions to ALEX are quite easy~

some of which like

• multiple handlers

• default exception clauses

• unparameterized exceptions

have also been sucessfully added to the prototype implementation.

2. ALEX - An Applicative Language with a Language Construct for Exception Handling

This paper uses the applicative language ISWIM [12] to carry its exception handling proposal. The

sample language is called ALEX. We present a decorated abstract syntax of ALEX, summarize the

essentials of the exception handling construct and give three examples involving the construct.

2.1 Syntax

The language of ALEX expressions ezpr is given by the following decorated abstract syntax. The

comments should help the reader to understand the intended meaning of the rules.

expr =

(al)

(a2) I

(a4) I

£

/* cons~;an~ */

id

/* identifier */

~i~ expr 1%hen ~ expr 2 %tse ~ expr~

/* conditional */

expr 1 expr~

/* application */

163

(aS)

(aS)

(aT)

(as)

(a0)

handler =

expr 1 expr2 "handle" handler

/* application with handler; associated with empr l may be an

exception id in which case there must be a handler for id. */

"X" id ". ' expr

/* abstraction */

"k" idl %" expr "signals" id2

/* abstraction with exception; the specified function may signal

the exception id 2 i.e. may be a signaller. */

"fix" id %" expr

/* fixpoint */

"signal" id expr

/* signal; the exception id is signalled and

parameter of the signalled exception */

empr is the

idl ~:=" ~k" id2 %" expr star

/* kid2.ezpr denotes the k-expression (handler body) which

is the paramerterized handler for the exception id 1 */

s t a r =

"resume"

J "retry"

l "terminate"

Remark:

We extend our no ta t ion by adding the abil i ty to name ALEX-expressions. The syntax for definitions is:

"de/" id ":=" empr ";". The definition facility is only in t roduced for abbrevat ion (and not for the

definition of recursive functions).

2.2 Essen t ia l s of E x c e p t i o n H a n d l i n g

The essential characterist ics of the ALEX exception handl ing mechanism are [8,15,21]:

• Exceptions mus t be declared within the funct ions ' interfaces.

• Handlers are stat ically bound to exceptions.

• The immedia te invoker of a funct ion is considered responsible to handle tha t function's

exceptions.

t64

Exceptions can be propagated explicitly along the dynamic invocation chain.

Resume, retry and terminate are the possible handler responses.

Exceptions can be pararneterized.

2.3 Examples

As an introduction to the exception handling mechanism we consider the following simple

function abstraction:

deff := kx.if x<0 then (signal I x)>l

else true fi
signals I;

Then, the function applications (a)-(c) yield the following results

(a) f(-5) handle I := kx.x+4 resume

The handler value (kz.z-/-,~)(-5) = -I is calculated, and then the function f is resumed

where it left off. Hence the result is false.

(h) f(-5) handle I := Xx.x+4 retry

The handler value (k z . z+$) (-5) = -1 is calculated, and then the function f is invoked

again with -1 as new argument. This again leads to a signalling. Finally the result is true

where two retries are done.

(c) f(-5) handle I := kx.false terminate

The handler value (kz . false)(-5) = false is calculated and is used as the value of the

function application. Hence the result is false.

As a second, more instructive example the well-known curried while-functional

&r while:= ~ while.),p.×f.~.x.lf p(,:) the= (while p f) (fx)

else x fi

may also be rewritten as a (filnctional) expression using the exception handling constructs:

def whilel:= kp.(kx.if p(x) then (signal I x)

else x fi

signals I);

Assume that pa denotes an arbitrary predicate and fa an arbitrary function. Then, for all arguments z

the evaluation of the expression

165

(while pa fa) (x)

yields the same result as the evaluation of the expression

(while1 pa) (x) handle I:= fa retry

As a third, more practical example, we develop a recursive ALEX function which converts a given

sequence of integer numbers into a sequence of ASCH-characters [21,22]. The function takes as its input a

list of integer numbers. For every list element the function tests whether there exists a corresponding

ASCH-character. If the test yields true then the number's character representation is appended to the

result list; otherwise the exception Bad_code is signalled:

def Convert :=

fix Convert.

kl.if null(1) then <> /*empty list */

else

~r (0-<head(0) and (he~(0~127)

then chr(head(1))/* chr is the transfer function in ALEX */

else (signal Bad_code head(l))

fi :: Convert(tail(l)) handle Bad code := ky.(slgnal Bad_code y) resume

fi

signals Bad_code;

Since for a function with a $ignal$-clause a handler has to be given for every application of that function

in this prototype language, at least a "dummy" handler for propagating the exception Bad_code has to be

added in Convert'$ body. (This is forced by the typing rifles, see section 4.)

To complete this example Convert is applied to a list ll twice.

Convert(ll) handle Bad.code := ki.lf i<0 then '-' else '+' fi resume

The handler for Bad.code specifies that negative numbers are represented as '-' and

numbers greater then 127 as '+ ' .

Convert(H) handle Bad_code := ki .<> terminate

The handler for Bad_code specifies tha t the result of the application is the empty list.

3. Operational Semantics for ALEX

An operational semantics specifies a language by defining an interpreter for the abstract syntax of the

language. For ALEX we develop a variant of the SECD machine proposed by Peter J. Landin in 1964 [11]

as an interpreter for its abstract syntax. Our SECD machine supports lazy evaluation since our ALEX

implementation is lazy. But tha t is not essential. Here only those parts concerning exception handling are

166

described. A full description of the h~terpreter is given in [1]. If the function N E X T _ S T A T E yields no

longer a new state, then h e a d (S) is the result.

def NEXT_STATE:=
X[S,E,C,D].

if is_empty (C) mad not is_empty (D) then
/* an intermediate evaluation ha~ been terminated */

let S = = res::S0 and
D = = IS1, El, C1]::D1 in

if is_su(res) then
let res = = [su, expr~ E2] in
[<>,E2,<expr>,D]

elsif is_sr(res) then
let res == [sr, closure, [su, rand, E2]] in
[<[su, rand, E2], closure>,<>,<ap>,D]

else
[res::Sl, El, CI, DI]

fi

elsifnot is_empty (C) then
let C = = X::C1 in

(sI) if is_constant (X) or is_su (X) or is_st (X) then
[X::S, E, Cl, D]

(s2) elsif is_identifier (X) then
[va/ue(X, E)::S, E, C1, D]

(s5) elsif is_application_with_handler (X) then
letrec X = = rator rand "handle" handler and

handler = = excid ":=" =k'bv"."body star in
[<>, El,<rator, [su, rand, El, ap>, D1]
whereree D1 == [S, E, CI]::D mad

E1 = = (exc.id ~ [stat,[el,bv,body, E], D1, rator])::E

(s7) elsif is_abstraction.with_exception (X) then
let X = = "k 'bv" . 'body "signals" exc_id in
[[el, by, body, E]::S, E, C1, D]

(sg) elsif is_signal (X) then
letree X = = %ignal" excjd rand and

[star, closure, DI, rator] == value(exc_id, E) and
D1 == [S0, EO, C0]::D0 in

if star = = ~resume ~ then/* resumption */
[<[su~ rand, El, closure>, E, sp::Cl, D]

elsif star == "retry" then /* retrying */
[<>, El, <rator,[sr, closure, [su, rand, E]], ap>, DI]
where E1 == (exc.id ~ [star, closure, DI, rator])::E0

else/* termination */
[<[su, rand, El, closure>,<>,<ep>,D1]

fi

fi

else
/* no new state */

167

The following explanations point out how the SECD machine processes the exception handling constructs.

The exception handling mechanism leads to two different kinds of activities at run time:

c a s e (sS):

When an application with a handler is executed, the handler body has to be bound to the exception

identifier together with the information needed to compute associated signal-expressions

appropriately. Thus, execution continues with an enlarged environment. Since for the terminate- and

retry-actions the computation has to continue from the current state, we associate the state in the

form of a dump D1 with the identifier. Retry-actions also need the current operator rator. Thus, we

decided to associate also this information to exc_id.

case (sT):

An abstraction with exception does not

signals-elanse is only used for type inference.

lead to additional actions at execution time. The

case (s9):

When an exception ¢zcjd is signalled, different actions have to be done depending on the handler's

status star:

(s9a) resume means: the handler body should be applied and with that result execution continues.

(s9b) retry means: the handler body should be applied~ but then execution should continue with the

handler 's application using the new result value as the new rand.

(s9c) terminate means: the handler body should be applied and the execution should continue with

that result as the result of the handler's application.

Note also, tha t to make the re-application at retry really lazy we need a structure to suspend el/su-pairs.

This is done by a new intermediate result, a st-suspension, in the implementation.

As another example, note that the overall discipline of the SECD machine could be described using the

exception handling constructs of ALEX, a~ well.

SECD_MACHINE:=

kexpr. NEXT_STATEI([<>,<>,<expr>,<>])

haudlefinish:= k[S,E,C,D].head(S) terminate

In this case the state-transition function NEXT.STATE1 should call itself recursively and signal an

exception finish, ff there is no successor state.

168

def NEXT_STATEI:=

fix NEXT_STATE1.

k[S,E,C,D].

NEXT_STATEI(

ff is_empty (C) and not is_empty (D) then

/* an intermediate evaluation has been terminated */

elslfnet is_empty (C) then

else

/* no new state */

signal finish [S,E,C,D]

fi)

handle finish:-- hx.(s|gnal finish x) resume

signals finish;

4. Type Inference in ALEX

Since there are higher order functions in hmctional languages, in an expression (ezprl ezpr2) the operator

exprl can itself be an application expression whose evaluation yields a function which can signal an

exception ezc_id (cf. example 2 above). In this case there must a handler definition for ezc_id be attached

to the expression (ezprl ezprz) because for our language construct we have required that the immediate

invoker Of a function handles that function's exceptions. We propose to check tiffs by a polymorphic

typechecking algorithm [3¢14,17]. The type system of ALEX is formalized as a type deduction system [2]

that prescribes how to establish the type of an expression from the types of its subexpressions. The

following is a list of the inference rules ordered to parallel the abstract syntax of ALEX.

Let e be an expression and let 7r be a type assignment (i.e. a mapping from the identifiers occurring

free in e into type expressions). The notation ~r r- e : v means that ~ven 7r we can deduce that e

has type v. The horizontal bar reads as "implies"; # is the overwrite operator for mappings. To force

the correct use of the exception handling constructs, all neccessary information is collected in an

exception type, which is constructed from

1) the exception identifier ezc_id
2) the resume-handler type

3) the retry-handler type

4) the terminate-handler type

by using the type constructor ext.

169

Since e x c e p t i o n s a re a s s o c i a t e d w i t h a b s t r a c t i o n s , we a lso use a t y p e c o n s t r u c t o r to m o d e l func t ions of t he

t y p e " f rom v~ to ";2 w i t h an e x c e p t i o n t y p e ";3" a n d w r i t e i n mix f ix n o t a t i o n "v~ ® vs ~ T~".

Typ~rules:

(rl) /* constant; c is a constant of type b */

"rr ~- c : b

(r2) /* identifier * /

"n" e i d : "rr(id)

(r3) /* condit ional */

k e I : b o o l , "IT I- e2 : "r~

(r4)

(r~a)

(rSb)

(r~c)

t- "if" e I "then" e 2 "else" e 3 : "r

/* applicat ion * /

qT ~- e 1 : q'l'~T2~ 'It l- e 2 : T 1

"~ ~ e l e 2 : ' ; 2

/* appl icat ion wi th handier */

~ e l : wl ® exe({idl},v3,v4,~'5) "*

• 'rr t- e~ : ";2~ ";f P "~" id2 "-" e3 : "t3

l- e 3 : T

,r 2

~- e 1 e 2 "handle" id 1 " :=" ~k" id2 "." e3 "resume" : "r 2

~" F e l : "r 1 ® eXC({idl},TS,T4,VS) ~ ~'2

I- e2 :T2 , ~ ~- "k" i d 2 " . " e 3 : ";4

~- el e2 "handle" id l " :=" "k" id2 "." e~ "retry" : "r 2

~r ~ e l : n ® exc({idl},Ts,~4,~s) "" T2

• t ~ e2 :T2 , ~r 1- ")~" id 2 " . " e 3 : -r s

• r k e 1 e 2 "handle" id 1 ":=" "k" id2 4., e3 "terminate" : ";2

(r6) /* abstract ion * /

[id:';1] I - e : ";2

~r I- "k" i d " . " e : " r l ~ ' ; 2

(r7) /* abstract ion with exception * /

[idl :vl , id2:exe({id2},T3, v4-* ' r t ,T4~v2)] e e : ~2

(rS)

w ~- "k" id 1 " 2 e "signals" id 2 . vl®exc({id2},';s, 74--~ 71,';4-~ T2)

/* recursive functions */

lid:T] ~ e : T

~ - " f i x ' i d " . ' e : v

T2

170

/* signal */

~r ~- id : exc({id}, ~'1 "*'rz,vl "*'rS~ 'rl "*v4)

F- e : T 1

¢r F "signal" id e : v:~

A bo t tom-up typing a lgor i thm can be ext rac ted from the rules in a s t raightforward way [2].

5. A Detailed Example

Suppose 1 is a sorted list. We develop a recursive funct ion which inserts an element x in to 1 in case tha t x

is not already a member of 1; otherwise the exception Muir@Is is signalled. (The reader might excuse

tha t we use mul t i -a rgument functions wi thout introducing t hem formally, too.):

def Insert:=

fix Insert.

x[x,1].
if null(I) then <x>

else

if x<head(l) then x :: 1

elsifx=head(1) then (signal Multiple (x, head(l))) II 1

else

head(l) :: Insert(x, tail(l))

handle Multiple:= k[x,yJ.(slgnal Multiple(x,y)) resume

fi

fi

signals Multiple;

We proceed as follows: first we focus on the bo t tom-up derivation of the type of Insert (or more correctly

of the type of the ALEX-expression which we have named Insert); second we present some reasonable

applications of Insert.

The bo t tom-up derivat ion of the type of Insert can be unders tood by looldng at the following principal

snapshots of the derivation, where an a priori typing of the list handl ing operat ions is assumed:

1. The type of the else-part of the inner conditional is derived using the typing rules (r5a) and (r9),

together wi th some other rules. The result ing type of it is

and the type assignment ,~ contains the following types for the free identifiers:

171

~." {X ~

l: alist

Multiple: exc({MultipIe}, 13xt3'-* % ~x~3'-.*~, 1 3 x ~ ' ~)

Insert: (ctxalist) ® exc({Multiple}, ~x[3"*~/, K, t) ~ cdist

2, Next~ we type the body of the abstraction with exception by using the rules (r3) and (r9) espedally.

Thus,

"~list"

is also the type of the abstraction's body and the free identifiers have types as follows:

l: cdist

Multiple: ex¢({Multiple}, axct--,ctlist, ~xct--,g, c~x~-,~)

Insert: (etxalist) ® exc({Multiple}, ~xt3 '~- / , K, ~) ~ alist

3. According to rule (r7), then the abstraction with exception has type

"(ctxcdist)®exc({Multiple}, c txa~a l i s t , c~xct~axctlist, axc~cdis t) -*cdis t ~

where ~r contains for Insert the type

Insert: (ctxalist) ® exc({Multlple}, ~x13 '~ % K, B) --* alist

4. Finally, the nile for recursive function definitions (rS) yields for the whole expression the type

"(axalist)®exc({Multiple}, axe--*alist, c~Xa-~axalist, axet--*ctllst)--,a!ist"

where the type assignment ~r is empty.

There axe several possibilities for handlers for an application of Insert. Assume, nl is a sorted list and n

is a new entry. The following applications with handler are only some significant examples out of a variety

of possibilities:

(i) Insert(n,nl) handle Multiple:= k[new,otdl.<new> resume

/* replaces old entry by new entry */

(2) Insert(n,nl) handle Multiple:--- k[new,old].<old> resume

/* keeps old entry only */

172

(3) Insert(n,nl) handle Multiple:= k[new,old].<new,old> resume

/* stores new entry in front of old one */

(4) Insert(n,nl) handle Multiple:= k[new,old].<> resume

/* deletes both entries */

(5) Insert(n,nl) handle Multiple:= k[new,old].nl terminate

/* same as case (2) */

(6) Insert(n,nl) handle Multiple:= k[new,old].[modlfy(new),nl] retry

/* tries to insert a modified entry into nl */

Conclusion

An exception handling proposal for applicative languages which seems quite powerful and conceptually

simple has been presented. The appropriate language construct was defined by introducing an ISWIM-like

language, called ALEX. Its abstract syntax and its operational semantics were specified, for the latter

using a variant of the SECD maschine. A type system for ALEX has been developed to restrict the use of

the exception handling constructs, whereby security can be achieved.

Finally, a brief comparison between the ML exception handling mechanism [18] and our mechanism may

show the benefits of our proposal:

(a) ML only supports the handler response "terminate the signaller". The signalling expression is

terminated and the handler's result replaces the result of the (signalling) expression. ALEX supports

with resume, retry and terminate three different possible handler responses.

(b) In ML exceptions are propagated automatically along the dynamic invocation chain as long as no

handler is found. As was pointed out in [15] multilevel mechanisms are in contrast to the hieractdcal

program design methodology. In ALEX exceptions must be propagated explicitly along the dynamic

invocation chain and handlers are bound statically to exceptions.

(c) In both, ML and ALEX, exceptions can be parameterized.

On the other hand, the algorithmic language Scheme [20] provides the possibility to program with

continuations, which allows management of control in a general and powerful manner. Scheme's

"call-with-current-continuation" feature is useful for implementing a wide variety of control structures,

including exception handling. To us this possibility seems to general whereas the proposal in this paper

was meant to be specific to exception handling. We hope, it could become a practical and versatile help

for prograrnmiug.

173

RererSnces:

[i]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[lO]

[11]

[12]

[13]

[14]

Bretz, M.:
Exception Handling in Functional Programs,
in: W.-M. Lippe (Hrsg.),

"4. Workshop - Alternative Konzepte ffir Sprachen und P~chner',
Universit~t Mfinster, Schriftenreihe "Angewandte Mathematik und Informatik', Band 2/87-I

Brets, M.; Ebert, J.:
Type Inference for Exception Handling,
Internal l~eport, EWH Koblenz, 1987

CardelIi~ L.:
Basic Polymorphic Typechecking,
Science of Computer Programming, 8(1987), pp. 14%172

Crlstian, F.:
Robust Data Types,
Acta Informatica, 17(1982), pp.365-397

Cristian, F.:
Dependable Programs: Concepts and Terminology,
IBM Research Laboratory, San Jose, CA, 1986 (Technical Report)

Ehert, J.:
Graph Implementation of a Functional Language,
in: H. Noltemeier (ed.),

Proceedings of the WG' 85,
Trauner, Linz, 1985, pp. 73-84

Ebert, J.:
Ein SECD-axtiger Graphenauswerter,
in: W.-M. Lippe (Hrsg.),

~4. Workshop - Alternative Konzepte ffir Sprachen und Rechner',
Universit~t Mfinster, Schriftenrdhe "Angewandte Mathematik und Informatik', Band 2/87-I

Ebert, J.:
A Versatile Data Structure for Edge-Oriented Graph Algorithms,
Comm. ACM, 30(6, 1987) (June 1987), pp. 513-519

Goodenough, J.B.:
Exception Handling: Issues and a Proposed Notation,
Comm. ACM, 18(12, 1975), (Dec. 1975), pp. 683-696

Johnson, S.C.:
YACC - Yet Another Compiler Compiler,
Bell Laboratories, Murray Hill, NJ, 1975 (CSTR 32)

Landln, P j . :
The Mechanical Evaluation of Expressions,
Computer Journal 6~ 1964, pp. 308-320

Landin, PJ.:
The Next 700 Programming Languages,
Comm. ACM, 9(3, 1966) (March 1966), pp. 157-166

Lesk, M.E.; Selurtidt E.:
LEX - A Lexical Analyzer Generator,
Bell Laboratories, Murray Hill, NJ, 1975 (CSTR 39)

Letschert, T.:
Type Inference in the Presence of Overloading, Polymorphism and Coercions,
in: Tagungsband der 8ten Fachtagung "Programmiersprachen und Programmentwicklung', Zfirich
1984, pp. 58-70

174

[15] Liskov, B.H.; Snyder, A."
Exception Handling in CLU,
IEEE Trans. on Soft. Eng, 5(6, 1979) (Nov. 1979)~ pp. 546-558

I16] Lucklmn~ D.C.; Yolak W.-
Ada Exception Handling - An Axiomatic Approach,
ACM Trans. on Prog. Lang. Syst., 2(2, 1980) (April 1980), pp. 225-233

[17] Mi]ner, R:
A Theory of Type Polymorphism in Programming,
Journal of Computer and System Sciences, 17(1978)~ pp. 348-375

[18] Milner, R.:
A Proposal for Standard ML,
ACM Conf. Record of the 1984 Symposium on Lisp and Functional Programming, 1984, pp.
184-197

[19] OS and DOS PL/I Language Reference Manual,
IBM Corporation, 1981

[20] Rees, J.; Clinger W. et. al.-
Revised Report on the Algorithmic Language Scheme,
SIGPLAN Notices, 21(12, 1986) (Dec. 1986), pp. 37-79

[21] Yernlni, S.; Berry, D.M.:
A Modular Verifiable Exception Handling Mechanism,
ACM Trans. on Prog. Lang. Syst., 7(2, 1985) (April 1985), pp. 214-243

[22] Yemlnl, S.; Berry, D.M.:
An Axiomatic Treatment of Exception Handling in an Expression-Orlented Language,
ACM Trans. on Prog. Lang. Syst., 9(3, 1987) (July 1987), pp. 390-407

