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Abstract : The LCF of two words u and v is the maximal length of a common 

factor of u and v. A linear time algorithm to compute LCF is given, based on a 

linear time algorithm to build the minimal suffix automaton of a word. The 

algorithm naturally turns into a real-time string-matching algorithm. 
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Inside each string-matching algorithm is involved a notion of distance 

letween words. For instance c lassicalk string-matching algorithms often use a 

distance related to the longest common prefix of the two strings [KMP 77]. In 

this paper we show that the use of the f-distance [Ch 83] which is defined from 

the maximal length of common factors (LCF) of the two strings yields to more 

powerful algorithms, say, to real-time string-matching algorithms, provided the 

alphabet is fixed. 

The basic structure that is used to deal with the above questions is 

the minimal deterministic automaton which accepts as language all the suffixes 

of a word. The size of such on automaton is linear in the length of the word as 

it was first noted by Blumer and al.. The construction of a suffix automaton 

also takes a linear time. Suffix automata can be complemented to transducers 

that produce as output the position of the recognized word. The first two 

sections contain the results on suffix transducers that are needed to compute 

the LCF of two words. The material of these sections comes essentially from 

[BBEHCS 85] and [Cr 86]. 

Suffix transducers (or factor transducers) are an extension of position 

trees or suffix trees considered, among others, by Weiner, McCreight and 

Slisenko [Sl 83]. However the construction given in the second section is in 

the same vein as those of [KMP 77]. Suffix transducers or related structures 

have a wide range of applications among which are : string-matching problems 

including inverted file questions, data compression, decipherability, search 

for repetitions. In each case linear and optimal algorithms are obtained. 

The two last sections of this paper are concerned with the computation 

of LCF and a transformation of the algorithm which leads to a real-time 

string-matching algorithm. 
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Words that are considered here are elements of the free monoid A* which 

empty word is denoted'by i. The free semi-group A*-{I} is denoted by A +. 

Given a word x in A*, its set of factors is 

F (x) ={u£A*/3y,z£A * x=yuz } 

and its set of suffixes (or right factors) is 

S(x) = {u6A*/3y6A* x=yu}. 

Being finite S(x) can be recognized by a finite state automaton. We only 

consider incomplete deterministic automata i.e. deterministic automata without 

sink state. Then, not all the transitions by letters of the alphabet are 

defined on a given state. Let ~(x) be the minimal such automaton recognizing 

S (x) : 

~(X)=(Q×,i,T×,F x , 

where Q× is the set of states, Tx is the set of terminal states, Fx is the set 

of transitions and i is the initial state. Reading a letter a6A from a state q6 

Qx leads to a state q', noted q.a, if (q,a,q')6Fx. If u6A*q.u is the state 

reached, if any, after u has been read from state q. 

One of the most important properties satisfied by minimal suffix 

automata ~(w) is the fact that their size is linear in the length of x, lxl. 

Exact bounds are known together with those words that reach the upper bounds 

[CM 86]. 

PROPOSITION i: The set Qx of states of the minimal suffix automaton ~(x) 

satisfies : 

if Ixl ~ 2 then IQxl = Ixl+l, 

if Ixl > 2 then Ixl+l ~ [Qxl ~ 21xl-l. 

Furthermore, in the second case : 

IQxI=21xl-i iff x6ab* 

where a and h are two distinct letters of A. 

PROPOSITION 2, The set F x of transitions of the minimal suffix 

automaton ~(x) satisfies : 

if Ixt ~< 3 then Ixl ~ IFxl ~ 21xl-l, 

if Ixl > 3 then Ixl ~< IFxI ~ IFxl ~ 31xi -4- 

Furthermore, in the second case : 

IF x I=3 Ix I-4 iff xqab* c 

where a,b and c are three distinct letters of A. 
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Automata ~(x) can be transformed in transducers which output positions 

of the input factor of x. First~ let p be a function defined on F(x) by : 

p(u) = rain {lyl/3z6A* x = yz et u6F(y) l. 

The function p is compatible with the right syntactic congruence associated 

with S(x), which means that, If u and v are factors of x, i.u=i.v implies 

p(u)=p(v). The function p can thus be defined on states of ~(x) and we get a 

first transducer where the output associated with a word u is linked to the 

state i.u. 

Another more interesting way to get a transducer is to consider the 

function pos on F(x) : 

pos(u) = p(u) - !ul. 

This function is still a sequential function [Be 79]. As p(u) only depends on 

i.u, with each transition (q,a,q')£F x is associated the output 

q*a = p(q') - p(q) - i. 

Reading a word u = a a ~o. a in ~(x) from its initial state i produces the 
I 2 j 

total output : 

i*a1+(i'al)*a2+'''+(i'ala2"''aj-1 )*aj. 

When u is a suffix of x its position is Ixu-1 I which is also 

pos (u) + Ix I-P (u). 
~(X) becomes a subsequential transducer [Be 79] if, in addition to outputs on 

transitions, is defined on terminal states q of ~(x) : 

out (q) -- Ixl- p(q). 

1"7 a / O  a / O  b /O b l O  a / O  b /O b /O ~'0 
0 ~ 1 ~, 2 ~ 3 ~ 4 ~ 5 - - ~  7 ---- ,  9 

b/2 T4 
6 

b/1 

b/0 

a/1 

b/0 
8 , i0 

$3 

a/O 

Figure I. Minimal suffix transducer for aabbabb 

(terminal states are 0,6,9 and i0). 
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CONSTRUCTION 

The second important point concerning minimal suffix automata ~(x) is 

that their construction can be achieved in time linear in the length of word x. 

Figure 2 contains an algorithm that builds ~(x). The first 'while' loop is an 

on-line construction of ~(x) except for the terminal states which are marked 

with the function 'out' during the last 'while' loop. Note that one or two 

states are created during each pass through instructions of the first 'while' 

loop. 

The main point in the algorithm is the use of a function s defined on 

states of ~(x) and which is called suffix link. Its role is analogue to the 

'failure' function of the Knuth, Morris and Pratt's string-matching algorithm 

[KMP 77]. 

Function s is first defined on non empty factors u of x by : 

s(u)=iongest suffix w of u such that i.u/i.w. 

This means that s(u) is the longest suffix of u which appears in a different 

right context inside x. 

PROPOSITION 3. Function s is compatible with the right syntactic congruence 

associated with S(x), i.e. : 

b~/,vqF(x)-{l} i.u=i.v ~ s(u)=s{v). 

Proposition 3 shows that s can be defined on states of ~(x) except on 

the initial state i. From that point of view, s behaves like a default state 

function for ~(x). 
During execution of the algorithm in figure 2, each time a new state q 

is created (except at initialization) the value of s(q) is computed with the 

help of function 'suffix'. Its writing has been made simpler by introducing an 

artificial state on which are defined transitions to the initial state i by all 

the letters occurring in x. The function 'suffix', called with parameters r and 

a, climbs up the suffix links starting from r until is encountered a state on 

which a transition by a is defined. 

Using side effect, function 'suffix' creates or updates transitions. 

Tests in the algorithm and function 'suffix' are done by looking at the 

value of the function 1 defined on states q of ~(x) : 

l(q)=max{lwl/w6A* and i.w=q}. 
One of the properties that brings all its simplicity to the algorithm is the 

fact that suffix links on words are of maximal length inside their right 

syntactic congruence class. This partly explains why function 'suffix' does not 

have to create states. 

PROPOSITION ~. Let y6F(x)-{l} and q be that state $(x) such that i.y=q- 

u=s(y). Then 
~v6F(x) i.v=i.u ~ Ivl ~ lul, 

which may be translated as 
lul : l(s(q)). 

Let 
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On a given finite alphabet, all instructions of the algorithm in figure 

2 take a constant time, except calls to 'suffix'. To conclude on the 0(Ixl) 

global time complexity, observe that that each recursive call to suffix 

strictly decreases l(s(last)) which is increased by at most 1 unit for each new 

letter. 

Theorem 5. The construction of the minimal suffix transducer ~(x) by the 

algorithm in figure 2 is achieved in time O(Ixl). 

Almost the same results as those related in this section and the 

preceeding one remain true when one deals with factor automata instead of 

suffix automata. But minimal factor automata are of no use to compute LCF 

because they do not satisfy proposition 5. 



32 

begin create state 'art'; l(art)~p(art)e-i ; 

creat state i ; l(i)~p(i)~-O ; s(i)~art ; 

last e i ; 

while not end of input do 

read next letter a ; art.a~i ; 

create state q ; 

l(q)el(last)+l; p(q)ep(last)+l ; 

last.aeq ; last*ae 0 ; 

resuffix (last,a) ; 

if l(r.a) > l(r)+l then 

create state r ; with same transitions as r.a ; 

l(r) e l(r)+l ; p(r)~p(r.a) ; s(r.a)er ; 

r.a e r ; r*a e p -p(r)-i ; 

s(r)esuffix (r,a).a ; 

end if ; 

s(q)er.a ; last ~q ; 

end while ; 

qelast ; out (q)eO ; 

while q#i do 

qes(q) ; out (q)ep(last)-p(q) ; 

end while ; 

end. 

function suffix (r,a) ; 

if s(r).a not defined o_rr l(s(r).a)~l(r.a) then 

s(r).aer.a ; s(r)*a~p(s(r).a)-p(s(r))-i ; 

return (suffix (s(r),a)) ; 

else return (s(r)) ; 

end if ; 

end function. 

Figure 2 - Construction of minimal suffix tranducers. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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F - DISTANCE AND LCF. 

This section deals with string-matching questions of the kind : search 

a text t for an occurrence of a word x. The suffix transducer of text t brings 

an interesting solution to this problem since any further search for a word x 

takes a time 0(Ixl). 

We concentrate on another solution which is more convenient when text t 

often changes as it is the case under a text editor. This time the suffix 

transducer ~(x) is used in a particular way by means of its suffix link s and 

the function 1 which gives, for a state q in ~(x), the length of a longest 

word that reaches q from i. 

Given x,tEA*, we introduce the function 

LCF(x,t)=max{lwl/w6F(x) and w6F(t)}. 

From LCF is defined a distance d between words of A*, called the f-distance [Oh 

83] : 

d(x, t)= Ix I + it I-2LCF (x, t). 

Searching t for an occurrence of x translates to searching for a factor 

u of t such that lul=Itl and LCF(x,u)=Ix I or d(x,u)=0. 

The algorithm in figure 3 is the basic algorithm to compute LCF(x,t) or 

d(x,t). It may readily be adapted to do string-matching or even approximative 

string-matching. The algorithm uses the suffix automaton ~(x) already built. 

So, ~(x) can be considered as one of the inputs of the algorithm. The other 

input is the text t. 

If t=t t2...t, where the ti's belongs to A, the output of algorithm in figure 

3 is the sequence i0,I i ..... i, defined by 

Ik=max{lwl/w~F(x) and w~S(t ...tk)}. 

With this notation we get 

LCF(x,t)=max{Ik/k=0 ..... n}. 

The proof that the algorithm works well lies on proposition 5 which 

contains a property of function I on states that are images by the suffix link s. 

To see why the time complexity of the algorithm is globally 0(Itl), it 

is enough to note that the instruction 'qes(q)' of the internal 'while' loop 

strictly decreases l(q) from its value i k, and besides, this latter quantity 

increases by at most 1 for each letter of t. 

Theorem 6. Algorithm in figure 3 compute the lengthes of the common factors of 

x and t in time 0(itl) (when ~(x) is already built). 

COROLLARY 7. Given two words x and t on a finite alphabet A, LCF(x,t) can be 

computed in time and space complexities 0(Ixtl). 

The use of suffix transducers instead of suffix automata allows to 

memorize an occurrence of a longest common factor, the first for instance. 
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begin {states (q and i) and transitions are those of ~(x). 

On states are defined functions sans i} 

keO ; loeO ; qei ; 

while not end of input t d__oo 

read next letter a ; k~k+l ; 

if q.a defined then 
ikelk_z+l ; q~-q.a ; 

else 

while qwi and q.a not defined d__oo 

qes(q) ; 

end while ; 

i_ff q.a not defined then ik@O ; 

else 

1 el(q)+l ; qeq.a ; 

end if ; 

end if ; 

end while ; 

end. 

FIGURE 3. Computing l e n g t h e s  of  f a c t o r s  common to  x and t .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



REAL-TIME STRING-MATCHING~ 

The algorithm of the preceeding section has a linear time complexity 

but the delay between the reading of two consecutive letters of the input text 

t depends on the word x and is even 0(Ix I) in the worst case. By considering a 

new suffix link, the delay can be bounded to 0(IAI). 

First define the immediate right context of a factor u of word x to be 

the set of letters that follow u : 

C(u)={a6A/ 3y,zqA* x=yuaz}. 

When v is a suffix of u we get C(u) ~ C(v) and in particular C(u) ~ C(s(u)) 

when u~l. 

When C(u)=C(s(u)) and if ub is encountered in the text t which is 

searched for x, then it is useless to come down to s(u)b. This gives the idea 

of a new suffix link noted sa and defined on non empty factors u of x : 

! 

sa(u) = I sk (u) if k is the smallest integer > 0 

[ such that C(s k (q))JC(u) 

1 otherwise 

Since C(w)~C(s(w)), the test C(sk(u))wC(u) can be done on the 

cardinalities of the two sets. The condition on immediate right context easily 

translates on automaton ~(x) in term of output degree de of its states. If q is 

a state of ~(w), let 

de(q)=i{a6A/q.a defined} I. 

Then the new suffix link sa on states of ~(w) (different from initial state i) 

is 

sa(q)= {i k (q) if k is the smallest integer > 0 such that de(s k (q))Ide(q), 

otherwise. 

PROPOSITION 8. Replacing instruction 'q,s(q)' by 'qesa(q)' in the algorithm of 

figure 3 leads to a real-time algorithm on any finite alphabet. 

To compute the suffix link sa~ states of ~(x) are visited in a 

breadth-first-search order and the following formula is applied which yields an 

0(Ix I) time complexity algorithm. 

sa(q)= 

I i if s (q)=i, 

s(q) if de (s (q))/de (q), 

~sa(s (q)) otherwise. 

Another way to get a real-time string-matching is to complete the 

transducer ~(x). In fact the aim of the internal 'while' loop of algorithm in 

figure 3 and the test hereafter is to compute missing transitions. With 

complete transducers the space complexity becomes 0({Ai.lxl) while it is 

0(ix I) in the previous algorithm° 
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