
SPEKIIFYING AND PROTOTYPIN~
SOME THOUGHI~ ON WHY THEY ARE S U ~

{lyaael M. Berry * , Jeamette M. VCmS~

Computer Science Department Computer Science Delmrtment
University of California Orfiversity of Southern CaliforvJa
Los Angeles, CA 90024 Los Angeles, CA 90089

U.S .A.

Abstract

© Copyright 1984 by Daniel M. Berry and learmette M. Wing

Two methods that have been successful in produ~_g good software are 1) spedfying and then implementing
and 2) prototyping and then implementing. This paper identifies what the two methods have in common, namely
that the implementation is the second time through carefully thSnldng about the problem. It proposes that perhaps
this common aspect is more important to the successes of the methods than other aspects of the methods.

1. Introduction

1.1. Our Background

We both work actively in the fields of specification and verification. In addition to doing research in these
fields, we both consult for a company, SDC, which slxxializes in implementing secure systems by fast formally
specifying them, then verifying that the specifications meet some of the desired properties, and then finally imple-
minting the systems. We both also have implemented software by first proto~n._g it and then implemen~g it a
second time.

1.2. Purpose of this Paper

Tim purpose of this paper is to promote some needed disoassion of the reasons why projects are successful
when they are s ~ u l * . Since it is diffiaflt to conduct controlled experiments on such projects, our conclusions
are at best conjectures. We hope that we can provoke ~fficient debate so that more aecttrate condusiom can be
reached by a consensus of the actual workers in such projects. Regardless of what the ultimate eondusiom, the
thoughts presented in this paper impact the choice of methods for software devdopment, project management, and
tool development. In this paper, we are thinking in print with hopes that the ocanmunity joins us.

1.3. Our C/a/ra

We have observed a number of s ~ f u l software development projects. Some were developed by a method
that we call specifying, some others were developed by a method that we call prototyping, and still others were
developed by other methods which are not discussed here. These terms are defined in more detail in the next sec-
tion. For now, it suffices to say that in each method, the method is named by what is done in the in-st stage. In
this fast stage the product of the method, either a specification or a prototype, is thoroughly checMed with the help

1 This w~t'k was supported in part by the University of Califamia MICRO Program, SDC, A Ik~'oughs Company, and NCR
~rporatiorL

2 T~I work was suPlY~ed in part by the National Scieme F~mdati~ under Grant No. EC~84(Bg05.

* Note that we are not attempting to determine why projects fail. We hope that in determinm" g why s~ce~-f~ projects s ~ l ,
the ideas can be applied to increase the probability of success in all projects. Examinatic~a of the reasons for project failure is
also necessary, but space simply does not permit it.

!18

of automated tools and pos.~b!y ~cn executed. The second stage in both is the implementation stage, m which
what is learned in the f~t stage is applied to produce a suitable production version of the software. What is com-
mon to the two methods is what we ~ the second time pheneraenon. That is, the delivered, production quarry
software is a second pass through the problem which follows a formally stated and machine-checked fn'st pass. In
the spedfying case, the spedfication is formal and it can be checked by verifying, with the aid of a verification pro-
gram, that it meets desired properties and that it is consistent. In the prototy#ng case, the prototype, i.e., the
program, is formal and it can be cheeked by a o3mpil~ or interpreter, the run.time environment, and the users
when rm~ the program.

We wonder if the most i~por~'lt factor in the success of these pro~ts is the fact that the delivered software
is a second pass after a formal, madfin~checked first pass. That is, we wonder if this second time phenomenon is
more critical to the successes than any other factors arising from the particulars of specifying and pmtotyping per
ge.

1.4. Outline of Rest of Paper

In Section 2, we clarify what we mean by the terms "specifyin$" and "prototy#ng." In Section 3, we ela-
b~ate on our claim by focusing on the similarities between the two methods mad enumerating some successful ap-
plications of both methods. In Section 4, we explore the implications of our claim as it impacts on software
methods, languages, tools, and project management. In Section 5, we present arguments that favor one method
over the other by focusing on some differences between the two. Finally, in Section 6, we briefly state our conclu.

sions.

2. Clarmca~on of Terms

The two methods, specifyta$ and protetypin$, both sta~ with informal requirements and have two major
development stages. They have the same second stage, which is the implementation stage, and differ only in *.heir
respective first stages. In this section, we define what we mean by the terms "spedfylng" and "protm'yping" by
describing what ~ in their first stag~. Timse definitions are important because if any ingredient is left out,
then the implementation cannot rightfully be called a second formal and machine-ahecked pass through the prob-
fern.

By specifying, we mean the following process:

!. writing a formal spcdfication of the proposed software using some prcdsely defined and machine-processable
spcdfication language such as Affirm [Aft'S1], Gypsy [GypT8], Ina 1o@ [InaS0], Larch [GI-m3], and SPECIAL

[I-lMm79], and
2. diecking this spedfication with the aid of its language processor and other tools. This checking includes as

much of the following as possible

a. syntax c h ~ ,
b. type checking,
Co verifying that the spcdfication is formally consistent,
d. verifying that the spedfication meets stated correctness criteria such as invariants, and
e. (possibly) exercising the specification on actual or symbolic data with the hdp of a symbolic evaluator,

such as UNISEX for the Ina Io language [KE83] and the symbolic evaluator of McMullin and Gannon

Typically, the first two of the.c, checks are done by the language's processor. The conjccr~cs for the two ve-
rification checks are generated by this processor, and the conjectures are proved to be theorems with the aid of
an associated, possibly interactive, theorem prover.

By protoO,t,ing, we mean the follo~ng process:

1. writing a first version of the software and bringing this version to a running state using an implemented pro-

~Ina Jo is it trademark ~ SDC, A Bttrroughs Company.

119

grammin~ language, which may be different from that used to write the production version,
2. checking this first version with the language's processors and tools, and
3. subjecting this first version to the end-users' acceptance tests.

By first version, we indude also possibly incomplete versions written for exploration and experiraentation by the
programmers and clients [F1o84].

The checks done during the second and third steps of this process include syntax checking, type checking, and
interface checking, and run-time checking. The first three checks are typically done by a compiler of the language
and the fourth done with the code generated by this compiler perhaps in conjunction with a special debugging run-
time system. Alternatively, these checks may be done by an interpreter of the language.

Observe that a programmin~ language is a formal language; it has predse syntax and semantics jest as any oth-
er language more traditionally considered to be a specification language. In the same light, it is dear that a pro-
gram is just as much a formal statement of an algorithm as is a more traditional first-order predicate calculus
specification of the algorithm.

3. Elaboration of Our Claim

3.1. Similarities Between Specifying and Prototyping

Close examination of the two methods shows that they have much in common and one wonders if what they
have in common is the major reason for their success. In both cases, one must write a complete formal descrilYdon
of the system before beginning to code the system in its deliverable, production form. In the specifying case, the
formal description is written typically in a first-order predicate calculus language, in a set theoretic language, or in
an algebraic framework. In the prototypin8 case, the formal description is the first implementation, possibly i:,, a
language other than the production version language, i.e., in a so-caUod very high level language. Thus, in either
case, one crucial result is a formal description of the software.

In both cases, the formal description is then subjected to a thorough battery of machine checks. These include
syntax and type checking. These include interface consistency checks. In addition, in the specifying case, these may
include the generation and subsequent verification of theorems that assert the consistency of the spedfication and
that it meets stated requirements. These checks may also include execution with test data with the aid of a sym-
bolic evaiuator. In the prototyping case, the program is run with test data. Besides this tes~qg against the data,
given a suitable language implementation, the run-time system also performs a number of run-time semantic tests
such as checking that variables are initialized before use, subranges and array bounds are observed, nil pointers are
not dereferencod, etc. In addition, there may be symbolic evaluators, execution tracers, snapshot generators, etc.
that nllow the testers to observe the details of the program's, execution. In either case, by the time the specifica-
tion or prototype is accepted as done, the writers have had to eliminate many, many bugs and to iron out many,
many wrinkles.

These machine-aided tests are crucial. They help to eliminate conceptual errors in the understanding of the
problem that lead to serious design flaws. Anyone who has written a specification or prototype to completion
knows how picky the machine tests are. Anyone who has written one of these without the benefit of machine pro-
cessing knows how easy it is to handwave one's way into overlooking major design flaws and major processing er-
rors. Machine-processing and checking help prevent cheating.

Furthermore, formality of the language used in spedfying or prototyping is critical. If the language were not
formal, then it could not be machine-processed and checked. The language's semantics would remain sufficiently
fuzzy to permit human ambiguity. This ambiguity is useful for human-to-humAn contact, but is potentially disas-
trous to the completion of a software project.

Therefore, with either method, the writing of the production version of the software, i.e., what is done in the
second stage of each method, constitutes a second pass through the problem, in which the first pass has had the

of finding many, if not all, of the tricky corners of the problem. We believe that the fact that this is the

120

second pass through ehe problem is more ir-~rt~nt to the su~ess of software projec~ t.ha~ in what Language file
first pass was written and whether the machine processing involved provhag theorems or executing the program on
test data.

3.2. In Support of Our Claim

To substantiate our claim, we list in this section some successful examples of spcdfying and prototypingo In
addition to these examples of s ~ u l projects, some documented "folklore" also lend support to our observa-
tion of the second time phenomenon and the commonality between spedfying and prototyping. Many books on
software engineering, e.g., [CL76, 1hiNT9, KP74], admonish the programmer not to be afraid to throw programs
out and start all over. Brooks [Bro75] even suggests planning to throw early versJom away.

3.2.]. Some Successful Applications of Specifying

The successful projects that have used specifying as its method include the LSI Guard done at I,P. Sharp
ISrael], the COS/NFE project done at Compion [SW82], the SCOMP project done at Honeywell [Fra83], the s IFr
project done at SRI [MSK2], the Message Flow Modulator done at Austin [GSS82], the Secure Release Terminal
done at SDC [HAK83], and the signalling system done at the General Electric Company [CL-781]. In each case the
system was formally spcdfied and the resulting specification was verified to meet its requirements with the help of
an automatic or interactive theorem prover. The system was then implemented and is now running. Landwehr has
a longer list of all such projects, successful and not so successful [Lan83].

3.2.2. Some Successfid Applications of ProtoOping

The successful prototyping projc~s are too numerous to list completely and include the following well-known
(at least to the authors) examples: the UNIX~ operating system done at Bell Labs and at UC Berkeley [Unix], the
Device Independent TROFF done at Bell Labs [Ker82], the Cedar system at done at Xerox Pare [Tci84], the
REVE term rewriting system generator done at M1T and th~ University of Nancy [LesS3, FG83], the Affirm
specification and verification system done at USC's Information Sciences Institute [Aft81], the EMAS operating
system done at the University of Edinburgh [SRSY77, SYRSS0, RS82], and the S-port portable version of SDa'~d-
LA done at the Norwegian Computing Center [NCC??]. In each case the current delivered version of the software
is at least the second, or is built based on experiences with at least one other, earlier system.

Furthex disc~sions of p r o t o ~ g may be found in the Software Engineering Notes issue containing the work-
ing papers submitted to the ACM SIGSOFT Rapid Protoryping Workshop ~o82]. Of relevant interest is the
healthy dosage of papers relaling prototyping with spcdfying, including those on excaltable specifications which
are therefore prototypes [Smo82, GM82, Day82, Fea82, BGW82] and the process of prototyping specifications
[Mac82, KK82, HH82]. Also, the recent proce~ings, Approaches to erototyping [BKMZ84], thoroughly explores
many aspects of prototypi~. Of relevant interest, the first m-tide by Floyd [F1o84] att~npts to reconcile the wide
variety of views as to what is prototy#ng; in all of these views of prototyping, tbe prototype is a first version of at
least a two-version pro~ession.

3.3. Qualificat~r~ to Our Claim

We do not mean to imply that two times is necessary or even suffident for success. There are and win be

first-time projects done we~ and there are and will be second-tlme projects done poorly even if the first pass is
done well. All we are doing is trying to identify the major reason for success in the two methods and the dtcd

pro~x~s.

We acknowledge that the perception of success via either specifying or prototyping may be more psychological
and attributable to learning than anything else. For instance, some successful applications of prototyping may not
even have started off as atterapts to prototype. They may have been projects in which the software was done twice
because the first effca% though satisfactory, was not perfect and because other desired cnhancernents were

~UNIX i~ a ~xadcmark of AT&T BcIl Laboratorlcs.

121

discovered or requested..~imilarly, in [GHW82], the authors stair that the process of spedfying, i.e., understand-
ing and learning about the problem to be specified, is at least as or often more bencfidal than having the resulting

specification.

This section describes some implications of accepting the validity of our claim. These are offered to explain the
methodological impact of the claim.

4.1. What Should Not Work

The reader should correctly infer that we do not believe that a first pass that is done without the benefit of
machine-processing is likely to lead to as successful an end-product. Thus, for example, the use of non-processed
specifications Or specifications involving secoud-order logic (which is not processable) should be discouraged. IAke-
wise, we disvourage prototyping that is too rapid or haphazard. More spedtically, the following two activities are
less useful than the activities of spedfying and prototyping as defined in Section 2.

I. Using non-machine checked formal specifications. A non-machine checked formal specification is as good as
an informal spcdfication. Although both may be useful pieces of documentation, tO prevent the spedficx from
"cheating" and to ensure at least the consist~cy of the specification, it is more valuable to use and rely on
machine-checked spcdfications. We maintain that the process of specifying is still valuable, whvther or not the
product is eventually checked. With the proper social proo~ses [DLP79], i.e., many people carefully poring
over such specifications, these too can lead to successful projects, e.g., the Ada@ compiler done with the help
of the Vienna Definition Method [CO84]. A specification, however, must be written at least with the intention
that it be checked, and ideally with tools that help perform the checks.

2. Rapid prototyping when done too haphazardly or with the intention of throwing out versions. Probably no
one would advocate non-systematic approaches to software development. A prototype should be written with
as much attention paid to good planning and design as that paid in any implementation effort, even if it is not
intended to be the final version. Makln~ modifications made to a well<iesigned prototype should go lastex
than making them to a poorly.designed one. Also, systematic plarmin~ and recording of what modifications
are mac~. at each stage can speed up the entire process itself.

4.2. What Should Work: Combining Specifying and Prototypin&

4.2.1. Methods

The traditional software life cycle method i~udes one or more specification phases in which specifications in
varying degrees of formality are written. In practice, however, rapid prototyping is a method often used to get a
working system up quickly. Ao~rding to our claim these two methods are not incompatible since one can view
w r i t ~ a formal specification as writing a first prototype. Instead of choosing one method over another, it may
prove benefidal either to follow both in parallel or to interleave the two activities and to compare intermediate
result~ at their intersecting formal specification/first prototype step.

4.2.2= Languages

In order to support s , l ~ i f ~ and prototyping as compaEdle activities, the problem of which languages to use
arises. There are tinge languages for which choices must be made: the specification language, the prototyplng
language, and the (eventual) implementation language. One must choose which parfio.dar language to use for each
and whether any should be the same. These deddous can greatly influence the speed and cost of software
development.

¢l~Ada is a trademark of the U. S. Department of Defev.~ (AIPO).

122

Traditionally, spedficafioaa ~ d implementation language~ were differem, but cmrenfly the d i s f i n ~ between
the two is blurring. Executable spedfieation languages, such as OBJ [GT79] anti GISt [BGW82], can be used as
hlgh-level programming languages~ Very b.igh level programrn'__mg Imaguages, such as SETL [KS84], and applicative
programming languages, such as Ptolog [CMS1] and b'P [Bac78], can be used as stxxificaticrn languages. More
cxn'¢,istent with our claim, however, is to use an execut~te specification language as a protoryping language,
though not necessarily as the eventual implementation lansuage. Thus, specifications must be executable, a
viewpoint which many designers of specification languages currently advocate [GM82, Zav84, 0r184], or at least be
subject to madaine-aided semantic checks [GH83]. Furthermore, if the spedfication and prototyping languages are
daosen to be the same, but different from the implementation language, the transition from the
spedticafion/prototyping language to the implementation language must still be made.

4.2.3. Project Organization

Given that methods and lang,,mges overlap, one needs to rethink how to organize a p ro~ t to obtain reliable
and correct software as effidez~tly and exxmomically as posslble. Most software projects are organized along a
traditional life cycle approada. If prototyphag is to be ac~pted as a viable parallel activity or otherwise somehow
integrated into the life cycle approach, then guidelines for managing, controlling, and budgeting for prototyping
need to be made with the same concern as for the other activities in the life cycle. In any project in which refiab/h'-
ty, security, safety, eorrec~ess, or user-friendliness is important, i.e., all but the most trivial or private programs,
the project must be organized and budgeted to allow for the two times through the problem.

5. D i f f ~ B~nnm S p e d f y ~ =nd P r e ~

So far, we lmve focused on the ~mrnonah~ between the two activities of specifying and prototyping as ways
of systematically developing software. Now, in order discharge our duty to attempt to fred an absurdum of an
tmverifiable hypothesis, we ~ di~JLss some of their differerL'es. We have made the distinctiom between specify-
tag (the activity) and a specificatioa (the product of specifying), and between prototyping and a prototype. The
important differences between specifying and prototyping are not differences between performing the two different
activities, but are differences ~ 'ween the products of having performed them, i.e., specifications and prototypes,
and their intended uses.

As stated in Section 1,2, we wish to promote some needed disoz~on on why spedfying and prototyping are
both sutxe~ut methods. To provide grounds for further discussion, in this section we examir~e argumeats first in
favor of specifying and then in favor of prototyping. The arguments for specifying are the traditional ones pro-
potmded by the spedfication eommttmty; those for prototyping are taken from comlusiom from dooamented ex-
periments, which were conducted to ~mpm'e specifying and p r o t o t y ~ . For each of the arguments, we prolx~
counterarguments to show how the argument either does not hold in practice or presumes defir, ltions of specifying
or prototyping different from those we gave in Section 2.

5.1. In Favor of Specifying

5.1.1. Main Argument

5.1.].1. SpecO~cations are Independent of lmp~menta6ons

A specification ~ wrltten irdependmfly of any of its implementations. Comequently, specitications ~-rve
more easily than prototypes do for the foll~ing two uses. Ftrst, a speclfu~tion is a ~at~net between a user and
an implementor. On one side of the ~rtraet, a user need be conceded with only the specification and not with
any of its possible hnplementatlom. In pri~ple, to understand the behavior of an implementation, the user need
look only at its spe~fication m~d neither look at the implementation nor execute it. On the other side of the con-
tract, the ir~lementor need be ~ with only satisfying a specification without any knowledge about any of
the users of the implementation. ~ argument holds for whether a user is a person or another piece of software.

123

The second use is that a specification is a common reference point among the several implementors on the
same project. "/his use is especially important for large software p r o ~ where implementation work is divided
araong a team of programmers and a specification is ~rnposed of specifications of pieces of the software~ E a ~
member of the team is thus concerned only with implemenliag and maintai~i~ a piece of the software and making
sure that it satisfies a piece of the entire spedfication.

5.1.1.2. A Counterargument

On the other hand, the above advenmges can be asa'it~d to a wen-written prograra that is taken to be a
specification. The point is that the above main argument presumes the following three beliefs:

1. It is better to understand the behavior of a system by reading a specification of its behavior than by running
the system~

2. It is easier to understand the behavior of a sys~'.m by reading a specification than by reading an implementa-
tion, i.e., the program text.

3. Specifications are wriRen in a more abstract manner thai3 are in~lenlentations.

The fLrSt belief is always true under circumstances in which running the system is either clang~OUS or prohibi-
tively expensive. Examples of such systems are re~-time systems with potential consequences of loss or destruc-
tion of life. It is also true under circumstano~ where the user of a system is ¢oncemed with the properties a sys-
tem guarantees and not with the operational details of the system. Examples of such properties are security
[HAK83], reliabih'ty ~qS82], and performance [Zav82]. This first belief, however, is not necessarily true in othe~
circumstances. There may be problem domalre in ~4fich it is better to run the system than to read its specification
because R would be easier for the user to understand the system by observing Rs behavior than by reading about
it. For example, users may rather ran a series of acceptance tests over systems that are heavily dependent on hu-
man interaction, e.g., interfaces to text editors, database query systems, or CAD/CAM systems, instead of (or in
addition tO) reading their specifications.

The second belief is not always true. Many specifications are hard to read because of the language they are
written in, their size, or lack of machine support to aid in understanding them. Conversely, many implementations
are easy to read because of the language they are written in, their design (their modular decomposition and proper
choice of data types), and tidiness of machine support (s trm~ed editors, libraries).

Similarly, the third belief is not always tree. An ~skilled specifier may expose implementation details or
make premature design decisions in his or her specification. Conversely, a highly skilled programmer who makes
use of the abs1~-'tion power of the implementation language may hide implementation details in order to raalre the
resulting software more easily modified [1'ar72, Mye79].

5.1.2. Three Other Arguments

One: One can deduce properties of a system from a specification without running the system. As argued pre-
viously, there are some circumstances in which one cannot or should not run a system. Also, one may want to
check for desired (or undesired) properties of a system even before implementation has begun in order to see how
design decisions interact. In both cases, a specification can be used to derive properties that may or may not have
been originally desired by the user. Such feedback can be used to accept or reject the system, or it may induce a
d ~ g e to the system or to the specification i t s~ [Wm84]. In practice, however, only a few experiments have
been performed on non.trivial examples where non-trivial properties were derived If-lenT9, MS79, ~] . In
some cases, it is even difficult to know what properties one might want to deduce [WinS0]. F'many, this difference
between specifications and prototypes can be counted as an advantage only if the speafication is small enough to
do proofs by hand or if there is sufficient software SUplXa-t to do proofs by maddne.

Two: A specification is intended to be a consistent and complete description of a system whereas a prototype is
intended to be art approximation of the eventual system. This difference points out that a prototype is typically
written with intentional incompletenesses in mind and even with intentional inconsistencies. A prototype may

124

leave the implementation of cer~u features of the desired ~-~tem for future versiom; it may even differ ha con°
tradictory ways fTom the fm~ system. This differetme between a spe~fication and a prototype counts as an advan-
tage for specifications if one views a specification as system documentation. A prototype that is incomplete or in-
consistent cannot be used as a reliable piece of system documentation. However, at least for the reason of tory
s i s t ~ , we exclude this sort of prototype as a basis for the method we described. Furthermore, a specification
can easily be written, perhaps intentionally, with the same incomplete coverage as the above described prototype.
Thus again, the argumem boils down to how the specification or prototype is actually written.

Three: Specifications can be written ha a language that is more abstract than any programming language and
that is possibly non-executable. Not bolmd to t~aditiomd programming languages, a specifier is free to write
specifications with assertions that take full advantage of the power of set operatiom or that quantify over infinite
sets. The properties of expressibility and understandabih'ty should guide the choice of a specification language.

various brandies of mathematics provide their own languages for expressing properties of their systems.
Hence, mathematics provide a rich set of languages from which to base specification languages. On the other
hand, mathematical languages are not easily understood, espexially by those not trained in mathematics, Edu~fing
non-mathematidans* in specification languages reanaim an important practical problem. In addition, a skillful pro-
totyper can modularize an implementation using the same high l ~ d abstraetiom with well.named functiom so that
its structure is identical to that of a highly abstract mathematical specification.

5.2. In Favor of Prototyp(ng

In order to argue in favor of prototyping and to present cotmterargtmaents, we begin by summarizing the main
results of two experiments dooJmented in the literature.

Experiment 1: C-ray, Boehm, and Seewaldt [tK3S84] describe an experiment comparing prototyping to the more
traditional life cycle approach, which includes specifying the soft-ware; this ~ , however, may be only infor-
mal. The purpose of their experiment is to determine which method produces the best software. They had several
student groups apply the two methods to the same software product development. They found that prototyping,
as opposed tO specifying,

1. tends to produce a smaller product with roughly equivalent performar~ with less effort,
2. tends to produce higher equivalent user satisfaction per person-hour but lower delivered source instructions per

person-hour,
3. tends to produce better human.mad2~ haterf&ce, continual availability of a rurming version, and reduced

deadline effects,
4. tends to produce software that is perceived to be easier to maintain, but
5. tends to lead to less planning and more testing and flxlno, and to more difficult integration.

F~erimem 2: Alavi [AlaS4] describes the results of interviewing groups of users and systems analysts to deter-
mine which method was more satisfying. ~ae finds that prototy#n$, as opposed to the more traditional life cycle
methods, is perceived to facih'tate better communication between users and designers during the design and imple-
mentation of the system and thus to facilitate better utilization of the system by the users. The users appeared
more satisfied with the actmrac3t and the helpfulra~s of the out~t of a prototyped system than of one developed
by life cycle methods. She ccnmhldes, however, that in designing innovative systems with fuzzy, not wdl-
understood requirements, prototyplng should be done by skitled people. ~ also concludes that in some cases
prototyping may not be useful.

Bodma reaches t l~ last conclusion on economic grounds [BoeS1]. He argu~ that for well-understood prob-
lems, it is wasteful to prototype.

* Even mathematicians trained in one ~ranch, e.g, numerical analysis, require additional training to understand languages used
in other hrmx:he~, e.g., numbe~ ~eC~l.

125

While the above described experiments dearly show the benefits of prototyping§ the results are strictly speak°
ing not applicable to our defmitiom of the terms, First, the specifying or traditional life cycle method tested does
not necessarily include machine-checkable fo rn~ specifications. Second, nc~ther ¢xpeIiment is carried out through
the second stage of the prototyping, i.e., when a production version is produced. It would b¢ intel~sfing to follow
up these experiments up with this consideration.

F'malIy, B~ooks points out (me advantage of prototyping that may not be obtainable if specifying is done: when

something gets running, the mccale of the workers goes sky high. We have observed, however, the same jump in
morale when an arduous effort in specifying finally results in a verified and consistc, nt specification.

To do a good job on any large complicated project, one must understand the problem - a lack of understand-
hag can lead to catastrophic failures. One is more likely to obtain this requiu'te understanding when building a
"complete" mod~ of the intended system, e.g., a formal specification or a prototype, than when simply handwav.
hag through an incomplete des/gn. "[he importance of mad,Ane.chec~n~ in this process is that it helps to ensure
that one's model is complete and to prevent overlooking or ignoring tricky details. Thus, when going through a
problem the second time, one can take advantage of the knowledge gained from having already gone through a
formal understanding of the problem once.

We have attempted to expose the issues while suggesting our own favored conclusions. Of course, until some
contro{l,~:l experimentation can be done to test our h y ~ t h e ~ , the condusiom can only be conjectures. We hope
that the conjectures are conviru~ng and that this discussion has promoted useful debate.

Acknowledg~m~ta

The authors have benefited from discmsiom with Oma Berry, Myron Hecht, Tom ITmke, Nancy Lever~a,
and Ben IAvson.

Bibliography

[AlaS4] Alavi, M., "An Assessment of the Prototyping Approach to Information Systems Development,"
CACM 27:6, June, 1984.

[Bac78] Baekus, J., "Can Programming Be Liberated from the yon Neumann Style? A Functional Style and
Its Algebra of Programs," CACM, 21:8, Aug., 1978.

fBGW82] Balzer, R.M., Goldman, N.M., and Wile, D.S., "Operational Specification as the Basis for Rapid Proto-
typing," "Special Issue on Rapid Prototyping, Working Papers from the ACM SIGSOFT Rapid Proto-
typing Workshop," SOFTWARE ENGINEERING NOTES 7:5, Dec., 1982.

[BGS84] Boehm, B.W., Gray, T.E., and Seewaldt, T., "Prototyping vs. Specifying: A Multi-Project Experi-
ment," Proceedings of the Seventh International Conference on Software Engineering, Orlando, FL,
May, 1984.

Boehm, B.W, Software Engineering Economice, Prentice-Hall, Englewood Cliffs, N J, 1981.

Brooks, F.P., Jr., The Mythical Man Month, Essays on Software Engineering, Addison-Wesley, Read-
ing, MA, 1975.

Budde, R., Kuhlenkamp, K., Mathiassen, L., and Ziillighoven, H. (Eds.), Approaches to Prototyping,
Springer-Verlag, Berlin, 1984.

CCITT, "Specifications of Signalling System No. 7," Yellow Book, VI, Fascicle VI-6, Recommendations
Q.701-Q.741, 1981. Referenced in [Or184] by J. Woodcock.

[Boe81]

[BroTS{

[BKMZ841

[OtiS1]

i In ~ cases the benefits are only perceived, but the pcrceplinn is the benefit.

t26

[CL76]

[co841

[CM81]

[Dav82]

[DLP79]

[Fea82]

[Fin84]

[rr~81
lEGS3]

[GM82]

[GT791

[Gyp78]

IGSS821

iGHW821

[GH83]

[GHSOI

[Hen791

[rt~881

[rm821

IOr1841

Chmura, L.J. and Ledgard, H.F., COBOL with Styie, Programmin9 Proverbs, Heydea, Rochelle Pk.,
N J, 1976.

Clemmensen, G.B. and Oust, O.N. "Formal Specification and Development of an Ada Compiler - - A
VDM Case Study," Proceedinge of the Seventh International Conference on Software Engineerin#, Or-
lando, FL, May, 1984.

Cloeksin, W.F., and Mellish, C.S., Programmino in Proloo, Springer-Verlag, Berlin, 1981.

Davis, A.M. "Rapid Prototyping Using Executable Requirements Specification," "Special Issue on Ra-
pid Prototyping, Working Papers from the ACM SIGSOFT Rapid Prototyping Workshop,"
SOFTWARE ENGINEERING NOTES 7:5, Dee, 1982.

De Millo, R.A., Lipton, R.J., and Perils, A., "Social Processes and Proofs of Theorems and Programs,"
CACM, 22:5, pp. 271-288, 1979.

Feather, M. "Mappings for Rapid Prototyping," "Special Issue on Rapid Prototyping, Working Papers
from the ACM SIGSOFT Rapid Prototyping Workshop," SOFTWARE ENGINEERING NOTES 7:5,
Dec., 1982.

Floyd, C., "A Systematic Look at Prototyping," in [BKMZ84], pp. 1-18, 1984.

Fraim, L.J. "SCOMP: A Solution to the MLS Problem," Computer 16:7, July, 1983.

Forgaard, R., and Guttag, J.V., "REVE: A Term Rewriting System Generator with Failure-Resistant
Knuth-Bendix," in Proceeedin#e of an NSF Workshop on the Rewrite Rule Laboratory, September,
1983, J.V. Guttag, D. Kaput, and D.R. Musser, (editors), available as a General Electric Technical
Report No. 84GEN008, April, 1984.

Goguen, J.A° and Meseguer, J., "Rapid Prototyping in the OBJ Executable Specification Language,"
"Special Issue on Rapid Prototyping, Working Papers from the ACM SIGSOFT Rapid Prototyping
Workshop," SOFTWARE ENGINEERING NOTES 7:5, Dee., 1982.

Goguen, J.A., and Tardo, J., "An Introduction to OBJ: A Language for Writing and Testing Formal
Algebraic Program Specifications," Proceedings Conference on Specifications of Reliable Software, Bos-
ton, 1979.

Good, D.I., Cohen, R.M., Hoch, C.G., Hunter, L.W., and Hare, D.F., "Report on the Language Gypsy,
Version 2.0," Tech. Report ICSCA-CMP-10, University of Texas, Austin, Sept., 1978.

Good, D.L, Siebert, A.E., and Smith, L.M., "Message Flow Modulator," Final Report, Institute for
Computing Science TR-34, University of Texas, Austin, Dee., 1982.

Guttag, J.V., Homing, J.J., and Wing, J.M., "Some Notes on Putting Formal Specifications to Pro-
ductive Use," Science of Computer Programming, 2:1, Oct., 1982.

Guttag, J.V., and Horsing, J.J., "An Introduction to the Larch Shared Language," Proceedin#s IFIP

Congress 1988, Paris, 1983.

Guttag, J.V., and Horsing, J.J., "Formal Specification as a Design Tool," Proceedings Principlee of
Programming Languagee Conference, Las Vegas, 1980.

Heninger, K.L. "Specifying Software Requirements for Complex Systems: New Techniques and Their
Application," Proceedings Conference on Specifications of Reliable Software, Boston, 1979.

Hinke, T., Althouse, 5., and Kemmerer, R.A., "SDC Secure Release Terminal Project," Proceedings of
the 1988 Symposium on Security and Privacy, Oakland, CA, April, 1983.

Hooper, I.W. and Hsiu, P., "Scenario-Based Prototyping for Requirements Identification," "Special Is-
sue on Rapid Prototyping, Working Papers from the ACM SIGSOFT Rapid Prototyping Workshop,"
SOFTWARE ENGINEERING NOTES 7:5, Dec., 1982.

International Workshop on Models and Languagee for Software Specification and Design, Orlando,
Florida, Workshop Notes, R.G. Babb and A. Mill, editors, D~partement d'informatique, Universit~ La-
val, Quebec, DIUL~RR-8408, March, 1984.

127

[KES3]

iKer82]

[141>74]

[KKS2I

[KSS4]

[LanS3]

[LHN79]

[Hdm79]

[M,~82]

[MG83]

{MSS2l

[Mye78]

[NCC??]

[Par72]

[RSS2]

[SRSY77]

[SYRSS0]

[Smo821

Kemmercr, R.A. and Eckmann, S.T., "A User's Manual for the UNISEX System," Department of
Computer Science, UCSB, Santa Barbara, CA, Dec., 1983.

Kernighan, B.W., "A Typesetter-independent TROFF," Computing Science Technical Report No. 97,
Bell Laboratories, Murray Hill, N J, 1982.

Kernighan, B.W. and Plunger, P.J., The Element~ of Programming Style, McGraw-Hill, New York,
1974.

Klausner, A. and Konchan, T.E., "Rapid Prototyping and Requirements Specification Using PDS,"
"Special Issue on Rapid Prototyping, Working papers from the ACM SIGSOFT Rapid Prototyping
Workshop," SOFTWARE ENGINEERING NOTES 7:5, Dec., 1982.

Kruchten, P., and Schonberg, E, "The Ada/Ed System: A Large-Scale Experiment in Software Proto-
typing Using SETL," in [BKMZ84], pp. 398-415, 1984.

Landwehr, C.E., "The Best Available Technologies for Computer Security," Computer 16:7, July,
1983.

Ledgard, H.F., Hueras, J.F., and Nagin, F.A., Pascal with Style, Programming Proverbs, Heyden, Ro-
chelle Pk., N J, 1979.

Lescanne, P., "Computer Experiments with the REVE Term Rewriting system Generator," Proceed-
ings of Tenth Symposium on Principles of Programming Languages, Austin, TX, Jan., 1983.

Levitt, K.N., Robinson, L, and Silverberg, B.A., "The HDM Handbook," Vols. I-3, SRI International,
Menlo Pk., CA, 1979.

Locasso, R., Scheid, J., Schorre, D.V, and Eggert, P.R., "The Inn Jo Reference Manual," TM-(L)-
602110011000, System Development Corporation, 1980.

MacEwan, G.H., "Specification Prototyping," "Special Issue on Rapid Prototyping, Working Papers
from the ACM SIGSOFT Rapid Prototyping Workshop," SOFTWARE ENGINEERING NOTES 7:5,
Dec., 1982.

McMullin, P.R., and Gannon, J.D., "Combining Testing with Formal Specifications: A Case Study,"
IEEE-TSE, SE-9:3, May, 1983.

Melliar-Smith, P.M., and Schwartz, R.L., "Formal Specification and Mechanical Verification of SIFT:
A Fault-Tolerant Flight Control System," 1EEE Transactions on Computers, C-31:7, July, 1982.

Myers, G.J., Compo~ite/Strnctured Design, Van Nostrand Reinhold, New York, 1979.

"Programmer's Reference Manual for S-PORT SIMULA 67 System, Norwegian Computing Center,
(date cannot be determined from document).

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules," CACM, 15:2, Dec.,
1972.

Rees, D.J., "The Kernel of the EMAS 2900 Operating System," Software--Practice and Ezperienee 12,
655-667, 1982.

Sheiness, N.H, Rees, D.J., Stephens, P.D., and Yarwood, J.K., "An Experiment in Doing it Again, But
Very Well This Time," CSR-18-77 Department of Computer Science, University of Edinburgh, De-
cember, 1977.

Stephens, P.D., Yarwood, J.K., Rues, D.J., and Sheiness, N.H., "The Evolution f the Operating Sys-
tem EMAS 2900", Software--Practice and Experience 10, 993-1008, t980.

Smoliar, S.W., "Approaches to Executable Specifications, Special Issue on Rapid Prototyping,
Working Papers from the ACM SIGSOFT Rapid Prototyping Workshop," SOFTWARE ENGINEER-
ING NOTES 7:5, Dec., 1982.

'~28

[Pro82]

[st~stl

[sw821

[Tel84]

iUni81]

IA,81t

lWinS0l

[WinS4]

[Zav821

[Zav84]

"Special Issue on Rapid Prototyping, Working Papers ~rom the ACM SIGSOFT Rapid Prototyping
Workshop," SOFTWARE ENGINEERING NOTES 7:5, Dec., 1982.

Stahl, S., "LSI GUARD System Specification (Type A)," MTR-8452, MITRE Corp., Bedford, MA,
Oct. 198!.

Sutton, S.A. and W~lut, C,K., "COS/NFE Functional Description," DTI Document 389, Compion
Corp., Champaign, IL, Nov., 1982.

Teitelmaa, W., '% Tour Through Cedar," Proceedinfs of the Seventh International Conference on
Software Engineering, Orlando, FL, May, 1984.

"The UNIX Programmer's Manual," Bell Telephone Laboratories, Murray Hill, N J, June, 1981.

Thompson, D.H. and Erickson, R.W. (Eds.), "AFFIRM Reference Manual," USC Information Sciences
Institute, Marina Del Rey, CA, Feb., 1981.

Wing, J.M., "Experience with Two Examples: A Household Budget and Graphs," USC[ISI Affirm
Memo-30-JMW, Aug., 1980o

Wing, J.M., "Helping Specifiers Evaluate Their Specifications," Proceedings Second International
Conference on Software Engineering, AFCET, Nice, France, June, 1984.

Zave, P., "An Operational Approach to Requirements Specification for Embedded Systems," IEEE-

TSE, SE-8:3, May, 1982.

Zave, P., "The Operational Versus the Conventional Approach to Software Development," CACM,

27:2, Feb., 1984.

