
FORMALIZATION IN SYSTEMS DEVELOPMENT

Lars Mathiassen and Andreas Munk-Madsen

Computer Science Department

University of Aarhus

Denmark

Abstract

Formalizations are related both to types of expression and
to types of behaviour. The limits to applying formalizations
in these two senses are discussed and illustrated by exam-
ples from practical systems development~ It will be estab-
lished that formalizations are valuable in some situations,
but insufficient in others. The alternative to uncritically
using formalizations is that system developers analyse the
situations in which they find themselves, and from there
choose a combination of a formal and an informal approach.

I. Introduction

For several years computer scientists have engaged in discussions on me-

thods for program development. These discussions have not always left

practitioners with clear advice on and guidelines for programming. On

the contrary, a major aspect like the significance of formalizations

has provoked clearly conflicting viewpoints.

Our interest lies with methods for developing computer based systems in

organizations. Program development is thus only a sub-activity in the

wide spectrum of activities with which we are concerned. These activi-

ties are analysis, design, coding, testing, conversion; and not to for-

get, the very important activities of systems development management.

We experience a wide gap between the discussion in scientific literature

and practical systems development. In spite of the intensity of the dis-

cussions formalizations are only used to a limited extent. It is natural

to pose the question: Why? - What are formalizations after all? What are

the limits to using formalizations in systems development? Which alter-

natives to formalizations can be proposed?. In this paper these questions

are discussed. Examples of situations in practical systems development

are used as illustrations.

102

2. Methods for Formalization

In our terminology~ a method consists of prescriptions for carrying out

a certain type of work process (Mathiassen 81). In addition to these pre-

scriptions, a method is characterized by its application area - i.e. the

type of work processes in which the method may be applied - and its per-

spective (i.e. some assuptions) on the nature of these wore processes and

their environment.

The prescriptions of a method are given in terms of: techniques, tools,

and principles of organization. A technique is a way of carrying

out a work process with regard to the nature of the task and product. A

systems development method may, for instance, include stepwise refine-

ment as a programming technique. A tool enters into the work process as

an aid. Usually at least one technique is attached to each tool. Struc-

ture diagrams (Jackson 83) is an example of a description tool prescribed

in a systems development method. Principles of organization prescribe

how the work should be carried out under given conditions. Conditions

include the fact that resources are limited, and the fact that several

people have to cooperate. Dividing a project into phases with built-in

checkpoints is an example of applying a principle of organizing a sys-

tem development process. This principle serves to improve the control

of the process.

In our context - systems development - the term formal may be connected

to types of expression (descriptions, specifications, programs), and to

types of behaviour (when carrying out systems development and when pro-

grarmming) . According to Oxford Advanced Learner's Dictionary of Current

English, formal denotes "in accordance with rules, customs, and conven-

tion". In the more restricted context of program development, Naur under-

stands the term formal in the specific sense of: expressed purely by

means of symbols given a specialized meaning. Furthermore he stresses

that the formal mode of expression merely is an extension of the informal

one, not a replacement of it (Naur 82). We agree with this view, and

consequently talk about degrees of formalization.

Seen from the point of view o~ formalization a method for systems deve-

lopment can provide at least two interesting types of prescriptions.

First it can prescribe the use of description tools and related techni-

103

ques which imply a certain degree of formalized expression. Secondly it

can prescribe the use of principles for organizing the work which imply

a certain degree of formalized behaviour. Many discussions can be traced

back to the fact that this distinction has not been made clear. Method

designers usually create the ~irst type of guidelines and call these me-

thods; software managers think they buy the second type and are badly

disappointed.

In the following we will discuss the limits and alternatives to formali-

zation. Regarding limits we are primarily concerned with when formali-

zations are useful (application area). We give less attention to the

question of the degree of formalization. Section 3 will discuss formali-

zations in relation to the use of description tools and the techniques

attached to them. Here we address the issue of descri2tion. Section 4

will discuss prescriptions for formalized behaviour, especially princip-

les for organizing development activities. Here we address the issue of

management.

3. Description

Descriptions - of any degree of formalization - play an important rSle

in the system development process. One of the most important sub-products

- the program code - is a formalized description. Descriptions of com-

puter systems and the users' work and organization appear in all activi-

ties which directly aim at manufacturing the product: analysis, design,

coding, test, and conversion. Important intermediate products include:

descriptions of the users' current work and organization, functional re-

quirement specification, overall technical design, overall functional de-

sign, detailed technical design, detailed functional design, code, tech-

nical conversion plan, and functional conversion plan.

3.1. Possibilities and Problems

Example I:

A system development project aimed at developing an interactive budget
system. The overall design of the new system had been reviewed and accep-
ted. One of the next steps was to design a module which would accept
statements of amounts in various currencies from a character string. This
module should recognize valid inputs and transform them into an inter-
nal representation, and it should give appropriate error messages.

104

In this case formalization of the set of valid inputs was helpful. The

programmer chose to specify a table~ describing a finite state machine

accepting valid inputs. By doing so the prograntmer obtained several ad-

vantages. The correctness of the specification was in this case intui-

tively clear, and the program structure could be derived almost direct-

ly from the input description.

Naur mentions tabular descriptions as an example of profitable applica-

tion of formalization (Naur 82). Tabular descriptions are, as he puts

it, the obvious means for helping to assure that in a certain situation

all cases, or all combination of cases, a<e considered and treated pro-

perly. More generally Naur argues that simple formalizations are of great

practical value. Any of the various descriptions which are created du-

ring a system development effort may in fact employ any number of diffe-

rent formal notations side by side without contradictions. Using simple

formalizations can both be practical and efficient.

Regarding descriptions in general we see at least four motivations for

formalizations.

I. Formalized descriptions are imperative in the man-machine dialogueg

because machines so far only can interpret and execute formalized

descriptions.

2. A formalized description can be an effective means to avoid ambiguity

and obtain conciseness in the communication between people.

3. A required use of formalizations can support the system developer's

understanding because they force him to think.

4. In systems development several types of descriptions occur, including

requirements and designs, if the problem can be described in a forma-

lized way, the solutions may be more easily deduced, or it may be ea-

sier to verify the solution.

In example I the third and fourth of these points are met. In our expe-

rience this is the case in many system development situations. We find

that practitioners are too poorly acquainted with the various tools for

formalizing descriptions. Michael Jackson's structure diagrams (Jackson

75) are commonly known, but only a minority know of the existence of an

equivalent notation: regular expressions, which are linear and therefore

both convenient and effective.

105

Example 2:

During the development of a computer based production planning system
much time was spent trying to specify the computation of throughput time.
Everyone involved knew the meaning of this quantity - throughput time
was in this context a well-known term. However, every suggestion for a
formalized specification of a calculation procedure was met with the
same critisism by the production planners: the suggested calculation was
too simple. Finally it became clear that it was not a case of specifying
an existing computation procedure. The production planners had never be-
fore computed the throughput time - the values were estimated on the ba-
sis of personal experience, simple individual principles, and knowledge
of the given situation.

Example 2 indicates that the system developers chose the wrong approach

because they wished to employ a specific tool. It would certainly be

nice if the computation of the throughput time could have been specified

in a formalized way - because then the assignment would have been more

or less completed. But the formalized approach was not suitable in this

situation. The problem was not to specify the computation of throughput

time, but rather to analyse and design how reasonable estimates of through-

put time could be determined with the aid of computer based tools. The

alternative would be to start analysing the production planners' work,

and how the throughput time occured in their work.

Part of the literature sees program development as an activity which

takes its starting point in a well-defined problem, and the objective

of the activity is to develop a program which solves the problem in ques-

tion. In reality the problem is seldom well-defined from the start. As

Polya puts it in terms of practical problem solving in general: "unknowns,

data and conditions are more complex and less sharply defined in a prac-

tical problem than in a mathematical problem" (Polya 57). As implied in

example 2, one of ~he fundamental issues in systems development is in

fact to set the problem, i.e. to determine what the system should be

able to do, and how it should interact with the organization's work pro-

cesses.

Example 3:

During the development of an accounting system a problem surfaced as the
design activities expanded. The system developers designed one solution
after the other, but all solutions were rejected by the users, either
on the grounds that the proposed system did not integrate the accounts
of the hitherto separated company divisions, or on the grounds that the
proposed system would radically change the way of working in one of the
accounting departments.

106

The basic problem in this situation was that the system developers were

faced with inconsistent requirements: on one hand their assignment was

to develop a system which was common for all the departments, on the

other each department wished to maintain their individuality. A naive

suggestion would be that a formalized description of the requirements

would have surfaced this problem earlier. But in the actual case the

project group did realize that they faced inconsistent requirements. They

just hoped that they could provoke a decision by working out and presen-

ting various suggestions for the design of the system. They did not, how-

ever, succeed in this, and many efforts were wasted.

Example 3 illustrates one of the difficult problems in systems develop-

ment. Inconsistent requirements appear frequently, and sometimes they

are solved through open discussions. What really makes this case diffi-

cult is that the users in the different departments do not want to face

the underlying conflict.

Any description tool would be of little help in this situation. The pro-

blem appears to be that the users are dissatisfied with a given design

proposal; they want a more sophisticated design. Accepting this inter-

pretation the system developers are left with going back home to speci-

fy a more refined solution= In principle the situation could be handled

in this way, i.e. by making two systems in one. This solution would,

however, neither be economical nor practical (it would involve account

numbers with 40 digits). The point is that the situation appears to be

a description or a design problem, but in reality it involves a latent

conflict in the organization. This suggests that the system developers

should force the organization to take a stance.

3.2. Limits to Formalization

We think that ideally the following conditions should be met before a

tool for formalizing descriptions is applicable in a given situation:

I. The syntax and semantics of the tool should be well-defined.

2. The tool should be tested in practical situations.

3. A phenomenon which is suitable for formalized description must be

identified.

107

4. The tool should fit the task. I.e., the tool should capture the pro-

perties of what is to be described.

5. System developers should be trained in using the tool.

Let us relate the examples to conditions 3 and 4. In example I both con-

ditions were met, and the application of formalizations proved useful.

In example 2 condition 3 was apparently met: the system developers found

a phenomenon, i.e. computation of throughput time which was suitable for

formalized description. However, focusing on this phenomenon represen-

ted a misinterpretation of the assignment. Here the application of a

specific tool misled the system developers. In example 3 the system de-

velopers attempted to design several solutions in a situation where they

faced conflicting requirements. What appeared to be a description pro-

blem was in reality an organizational problem. Here conditions 3 and 4

were in a way met, but no description tool would do in the situation.

More generally the state-of-the-art and the nature of systems develop-

ment can be related to the above-mentioned conditions as follows~

I. There are many well-defined tools.

2. The simple tools have been tested. Method makers often promote the

more advanced tools without drawing attention to the fact that the

tools are still on the experimental stage,

3. Descriptions of computer systems can be formalized. Descriptions of

organizations can only partly be formalized due to their social na~

ture.

4. The application area and the perspective of description tools are

seldom properly defined.

5. System developers in general know too little about tools for forma-

lizing descriptions.

3.3. Alternatives to Formalization

The quality of the existing tools, seen in relation to the nature of the

system development process, indicates that the system developers should

have the possibility to choose theiz own tool in any given situation,

108

Formalizations are of great practical value as a possible extension of

a basically informal means of expression. Today practical systems deve-

lopment is very much based on informal means of expression. The quali-

ty of the specifications may be improved through a more disciplined ap-

plication of informal mea~s of expression, and through an increased par-

tial application of formalizations (Naur 82).

When attention is drawn to formalizations there is a tendency to neglect

the activities in the system development process for which formalizations

are unsuitable, especially the analysis of the users' work and orqaniza-

tion. Tools and techniques for analysing and designing the users' work

and organization ought to play a more dominant r61e in the discussions

and the research.

Relating description issues to organizational problems and conflicts

can be achieved through an experimental strategy (Floyd 84). An experi-

mental strategy can be advantageously employed to clarify situations

characterized by ambiguity and uncertainty (Davis 82).

4o Management

We now tur~ to the second interpretation of formalizations. This section

will discuss formalizations - especially principles of organization -

in connection with system development management. The term management

denotes all the activities in a system development project which are

necessary because the project is carried out by more than one person,

and which do not directly contribute to the production of the system.

These management activities include planning and evaluation of resour-

ces, activities, and products; regulation of conditions; configuration

management; and general management activities like marketing and moti-

vation. Depending on the organization~ some of these activities are per-

formed by the system developers themselves, and others by managers.

The central question is: in which situations does system development

management benefit from formalizations as prescribed in the rules and

procedures of a method?

4.1. Possibilities and Problems

Example 4:

109

In a project the amount of work was estimated when the overall design
was almost completed. The project was broken down into tasks which had
an estimated size of 100 to 400 man hours each. The estimates were based
on the system developers' rather extensive experience with the applica-
tion and the development environment. However, system test and conver-
sion were estimated to only 6% of the total development time. It actu-
ally took 20%, which is close to the textbook recommendations (Boehm 81).
But neither textbooks nor company statistics were consulted.

Here formalization could have helped to improve an important intermedi-

ate product - the estimate. The rule: "Compare the allocation of resour-

ces for activities with statistics" is easy to implement, and the ad-

vantages of doing so are self-evident.

Regarding formalization of behaviour in general we see at least two mo-

tivations:

I. Formalization is a means to increase the quality and efficiency of

work processes.

2. Formalization is a means to improve the efficiency of external con-

trol of work processes through reports and directives.

In example 4 the first of these points is met.

Example 5:

A project was heavily up-staffed after one man-year had been spent on
overall design. The design was, however, not completed at this stage.

A further 15 man years were spent in a rather chaotic programming acti-
vity.

The existence of a procedure for product acceptance, e.g. a "formal tech-

nical review" (Freedman and Weinberg 82) might have given management a

warning not to up-staff. In this situation it is, however, more doubt-

ful whether such a procedure would have been of any use. The first risk

of failure is that the review offers an incorrect assessment. The se-

cond risk is that it might be decided that there is no time for a re-

view because the project is behind schedule. And the third risk is that

management might choose to ignore the review report. In the actual case

management already acts at variance with general experience by violating

Brooks' law: "Adding manpower to a late software project makes it la-

ter" (Brooks 82).

Example 6:

1!0

A project wor~ed in an organization where procedures required that a
steering committee accepted the overall design. The steering committee~
however, accepted an overall design which had many defects. Confronted
with critisism the project leader admitted the defects, but did nothing
to improve the product, arguing that the product had been accepted. La-
ter the introduction of the new system had to be postponed because of

serious defects in the system.

Here a procedure is applied which is based in the second motivation men-

tioned above - but only ostensibly. This results in a wrong picture of

the situation - which is really worse that a blurred one. The point is

that rules and procedures can be used to place responsibilities formal-

ly. However, as we have seen in this example, rules and procedures may

also work as pretexts for doing nothing, and they can support opportu-

nistic adjustment of behaviour. They may thus - directly contrary to the

intention - counteract genuine problem solving. This phenomenon is ge-

nerally known as the dysfunctional effects of bureaucracies (March and

Simon 58).

Example 7:

The method section of a data service organization was responsible for
improving the working practices in systems development. The section saw
its main task in producing guidelines which were adapted to the organi-
zation. Thus the activities mainly consisted of looking for solutions
in the available literature, in participating in courses and meetings,
and in writing. The results of these activities were mainly reports con-
taining guidelines which were only observed to a modest degree in the

organization.

The immediate problem is that the section is primarily concerned with

producing guidelines, while it ignores the follow-up activities which

should ensure that these guidelines are observed in practice. In rela-

tion to the chosen strategy for changing working practices, the section

only solves one part of the task. The heavy problems related to bringing

new methods into practical use are left to random initiatives. Why then

is it carried out in this way? A simple answer would be that the method

section is staffed with system developers, and that they think that pro-

grammers are programmable (Weinberg 82).

There is, however, an underlying problem connected to the chosen stra-

tegy. Changing working practices is separated as an independent function,

and no attention is paid to the actual problems related to systems de-

velopment. The fundamental assumption seems to be that systems develop-

ment can be carried out in a standardized manner; independent of the qua-

lifications and characteristics of the involved participants, and inde-

pendent of the situation in which a given project finds itself (Kraft 77).

111

4.2. Limits to Formalization

Examples 4 to 7 are illustrations of the use of rules and procedures for

management purposes. What are the limits to formalization?

To answer this we will have to look at the general mechanism which makes

formalization work as a means for regulating behaviour: In a given situ-

ation there will be a rule or a procedure according to which an activity

must be carried out. The idea is that the rules or procedures ensure the

necessary coordination between various activities. At the same time they

replace the involved peoples' reflections and save time, or they replace

the involved peoples' lack of reflection and improve quality. To make

this mechanism work, a number of conditions must be met:

I. The system development process must be well understood so that typi-

cal situations can be identified and related to available rules and

procedures.

2. Rules and procedures must be applicable in practice. Generally this

requires that the course of a project is highly predictable.

3. Rules and procedures must be thoroughly tested to ensure quality.

4. Rules and procedures must be adapted frequently in accordance with

changing environments.

5. System developers must be well trained in using the available rules

and procedures.

Let us relate the examples to these conditions. In example 4 the condi-

tions are met, bu~ the rule is not implemented. In example 5 condition

I is not met. The reason for the unsuccessful course of events is that

management fails to understand the situation. In example 6 the problems

relate to condition 3 and 5: Management does not take the procedure se-

riously; instead of undertaking an actual evaluation of the project

group's work, management merely accepts it automatically. The project

group, on the other hand, takes the procedure seriously and uses it to

evade responsibility. In example 7 the method developers never succeed

in training the system developers in new methods; condition 5 is not met.

In relation to ~ these conditions the state-of-the-art and the nature of

the system development activities may be seen as follows:

~2

I. The system development process is only partly understood. Situations

can only be described reasonably unambiguously on a general level.

Moreover, systems development projects are carried out in environments

which often are characterized by bounded rationality, ambiguities,

and conflicts (Mathiassen 81).

2. The individual activities can only be described on a general level.

System developers deal with analysis as well as with design; and they

deal with problem setting as well as with problem solving. System de-

velopers do not deal with routine production.

3. Most methods are not thoroughly tested before they are put into use.

how many independent test reports for systems development methods are

available?

4. In most organizations very little effort is spent on adjusting and

changing methods. Moreover, most methods claim general applicability.

To be adaptable to changing environments the conditions for applying

a method must be made explicit. This is not the case today.

5. Training is typically ignored. Reading the rules and procedures is in

most cases assumed to be enough.

4.3. Alternatives

The alternative to formalizations for management purposes is better in-

sight and understanding. The alternative to rules and procedures is con-

cepts. The alternative to telling people what they should do, is to make

them understand why they should do it.

In practice system developers often find themselves in unknown and unpre-

dictable situations. There is only one way out of it: they must choose

their own method. The point is fundamentally the same as in the relation

between formalizations and descriptions. Basically system developers have

to rely on informal and situation-determined behaviour (Davis 82). For-

malized behaviour should be seen as a possible supplement, which in cer-

tain situations may improve quality and efficiency. However, it is just

as important to establish a disciplined regulation of the informal be-

haviour.

To achieve this it is necessary, during the course of a project, to be

113

able to describe situations a project might find itself in and compare

it with other situations (Lanzara and Mathiassen 84). Furthermore it is

necessary to know the causal relations between the characteristics of a

situation and the conditions that created it (Munk-Madsen 84). And it is

especially necpssary to know possible ways of acting in different types

of situations - including to know in which situations formalizations may

be advantageously applied.

Finally there is the question of how working practices are actually chan-

ged. Some organizations completely ignore this problem. But the typical

ways today are courses and manuals presenting guidelines without giving

the participants the opportunity to try them out. An alternative would

be to go through illustrative cases and examples instead of just presen-

ting guidelines, and to establish practical experiments with new working

practices in selected projects.

5. Summary

Part of the literature on program development is based on a number of

assumptions according to which a programming process has the following

characteristics:

1. It is based on a well-defined problem.

2. Exactly one programmer is involved.

3. The result is a running program.

4. The program is to be used by the programmer himself.

These assumptions are practically never valid in system development pro-

jects - and it is probably only a minority of practical programming pro-

cesses which fit into this picture. Typical system development processes

have the following characteristics:

I. They are based on complex situations which may be characterized by am-

biguity as well as conflict. At the same time problems continually

shift during the course of the process.

2. There are several people with different qualifications and experience

involved.

114

3. The result is new working processes and new forms of organization which

entail new computer based systems and tools. A major problem is to de-

sign the interplay between these elements.

4. The so-called users rarely participate in the project~ and different

groups of users have different expectations and requirements to the

results of the process.

This article has discussed the application of formalization in relation

to the latter type of situation. One objective of the article has been

to extend the discussion of formalizations from a narrow programming con-

text to a broader systems development context° This part of the discus-

sion has confirmed, and on some points strengthened, Naur's fundamental

statement: Formalizations are of great practical value as a possible ex-

tension of a basically informal means of expression. Today practical sys-

tems development is based on informal means of expression, and the quali-

ty of the specifications need to be improved. This can be achieved through

a more disciplined application of informal means of expression, and through

an increased partial application of formalizations.

The other objective of this article has been to extend and clarify our

concept of method and formalization. We see methods as prescriptions for

regulating both the means of expression employed in descriptions and de-

signr as well as the individual and collective forms of behaviour in

practical systems development. There is almost always a considerable dif-

ference between what people say they do, and what %hey actually do. It

is our ambition to understand and change what we actually do when we

program or develop systems. From this perspective it is important to see

formalizations not only in relation to means of expression, but also in

relation to types of action.

Concerning the application of formalizations for managing systems deve-

lopment, our summarizing statement is fundamentally the same as in the

relation between formalizations and means of expression: System develo-

pers basically have to rely on informal and situation-determined beha-

viour, because they often find themselves in unknown and unpredictable

situations. Formalized behaviour is just a feasible way of improving ef-

ficiency and quality in certain situations. The important thing is to

establish a disciplined regulation of the basically informal behaviour.

In practice we can nevertheless observe endeavours toward formalization

~f systems development both on a theoretical, and on a practical level.

115

Why? Is our analysis wrong? From our viewpoint the answer is simple: In

practice programming and systems deyelopment are carried out within fi-

nancial and organizational settings, and formalizations are not only ap-

plicable as professional tools for executing the work process in a more

efficient and qualified manner. They are also often efficiently employed

by external managers to exercise control over the work process.

"TO make the production of programs independent of individual
programmers - in much the same way as cars are produced in-
dependently of individual automobile workers - various schemes
have been proposed from time to time to standardize what pro-
grammers do ... structured programming offered an entirely
new way of writing programs ... if managers could not yet
have machines which wrote programs, at least they could have
programmers who worked like machines." (Kraft 77).

There are, however, limits to regulating organizational

rules and procedures - even though this may run counter

of the true bureaucrat. In many situations - especially

or developing systems - people have to go by intuition,

find new ways to solve the problems facing them.

behaviour by

to the beliefs

when programming

bypass rules, or

References

Boehm, B.W. (1981). Software Engineering Economics. Prentice-Hall.

Brooks, F.P. jr. (1982). The Mythical Man-Month. Addison-Wesley.

Davis, G.B. (1982). Strateqies for Information Requirement ~ Determina-
tion. IBM Systems Journal, 21. pp. 4-30.

Floyd, C. (1984). A Systematic Look at Prototypin@. In Budde,R. et al
(Eds.) Approaches to Prototyping. Springer-Verlag.

Freedman, D.P., Weinberg, G~M. (1982). Handbook of Walkthroughs r Inspec-
tions, and Technical Reviews. Little, Brown and Co.

Jackson, M.A. (1975). Principles , of Program Design. Academic Press.

Jackson, M.A. (1983). S[stem Development. Prentice-Hall.

Kraft, P. (1977). programmers and Managers. Springer-Verlag.

Lanzara, G.F., Mathiassen, L. (1984). Mapping Situations within a Sys-
tem Development Project. University of Aarhus, DAIMI PB-179.

March, J.G., Simon, H.A. (1958). O rganizationso Wiley.

Mathiassen, L. (1981). Systems Development and Systems Development Me-
thod. University of Aarhus, DAIMI PB-136 (in Danish).

I / 6

Munk-Madsen~ A~ (1984)o Practical Problems of system Development Projects~
In S~ksj~rvi, M. (Eds.). Proceedings of the Seventh Scandinavian
Research Seminar on Systemeering. (To appear).

Naur, P.~ (1982). Form___~alization in Program Development. BIT, 22, ppo 437-
453.

Polya, G. (1957)o How to Solve It~ Doubleday and Company.

Weinberg, G.M. (1982). Overstructured Management of software Engineer in q.
course notes for Problem Solving Leadership Workshop.

