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Abstract 

This paper presents certain "proof obligations" which can be used to establish 

the correctness of software design. The design of both sequential and parallel 

programs is considered. The position is taken that an understanding of formal 

results of this kind can aid practical software development, 

Introduction 

Other papers in this volume discuss the use of formal semantics in language 

design, The, so-called, -VDM" work in this area is discussed in [Bjorner 82] and a 

recent application is contained in [welsh 84]. This paper is concerned with the 

use of "VDM" in the design of general software. It outlines a revision of the 

method proposed in [Jones 80] and some e~ensions to cope with parallelism. 

The concluding section presents a position statement on the role of such form~l 

~thods in software design. 

Functional Specification 

The func¢¢onn~ spec~f$ca¢¢on of a system must define the required input/output 

behaviour. For simple sequential operations, such specifications can be formalised 

by pre- and post-conditions written as logical e~pressions. More complex systems 

comprise a collection of operations. There are two contrasting ways of recording 

the specifications of such a collection. In the "property oriented" approach, the 

meaning of the operations is fixed by writing equations in terms of several 

operations. This approach appears to be well suited to basic data types such as 

lists. 

In the alternative - "model oriented" - approach, each operation is defined in 



28 

terms of an underlying state~ Such a state is chosen to capture the information 

which iS essential to a system. The state is normally defined in terms of basic 

data types like sets and lists. There is an intuitive notion that certain states 

are more abstract than others; this notion can be formalized so that it is possible 

to prove that there is no ~$us towards certain implementations. (The paper by 

Homing in this volume discusses the property and model oriented approaches.) 

A sim~le function, which locates those indices of an Array (modelled here by a 

map) which are ~ped to elements satisfying 'p', can be specified by writing its 

sSgn~Te and pre- and Dost-conditions: 

findp~ ~___RN t_qo x 9 N 

pre-findp(m) e 3iedo~m . p(m(i)) 

post-findp(m,r) ~ r = mine({iEdomm I p(m(i)))) 

where~ 

mins~ set of N -> N 

pre-mins(s) e s ,~ (} 

post-mins(s,r) ~ rEs ^ vies . r~i 

N set of natural numbers 

Such specifications clearly show the assumptions on the arguments to functions 

(pre-conditions). The post-conditlons show the required relationship between 

results and argumentso One advantage of such specifications can be seen in 

'post-rains' ~ It is frequently clearer to write a specification by recording 

separate (conjoined) properties. It is also possible to write a specification 

which does not precisely characterize a result. For example: 

post-findp(m,r) -~ Ha(r)) 

would permit an ~lemntation to return any index - rather than the minimum - with 

the required property. One view is that such specifications under-determine 

implementations, with parallel programs, the implementations themselves can be 

non-determinist ic, 

A proposed implementation of the 'findp' specification is written as a function 

definition. If the implementation is correct, the following logical expression can 

be proved t o  follow from the definitions." 
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V m ¢ map N to X . pre-findp(m) ~ post-findp(m, findp(m)) 

(The axiomatisation used is that of the "Logic of Partial Functions" described in 

(Barringer 8%a]. ) 

The preceding sequent is a proof obD&gu~&on which establishes that the function 

definition sa~$sfSes the given specification. Clearly, it would be possible to 

write "specifications" which are unimplementable. There is, therefore, a proof 

obligation on the specification itself that it be $mpDemen$ubDe. In this case: 

m ~ map N t__qo X, pre-findp(m) ~ 3tEN . post-findp(m,r) 

The ideas on functions apply directly to operations which transform states. The 

experience with writing large "VDM" specifications has, however, prompted a number 

of abbreviations which make it easier to define the dependance on, and changes to, 

the state. Each operation lists those parts of the state to which the operation 

has sx~ernuD access; read only (rd) or read/write (wr) access is marked for each 

component. The names of such state components are written in upper case letters; 

the values are referred 1-o in the logical expressions using lower case letters; in 

post-conditions, the value prior to the operation is marked with a hook while the 

final value is undecorated. 

An operation 'FINDP' can be specified. 

FINDP 

ext rd M" Array 

w_Er R. N 

pre true 

post satp(m,r) ^ ViE{I ..... r-l} . "p(m(i)) 

where: 

satp(m,i) ~ i~N ~ p(m(i)) 
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Array = ~ N t_o X 

Where 

inv(m) ~ doM m = {i ..... N} 

p~X~B 

N (c N) a given ~nstan£ 

Notice that the pre-condition needed on the function has, here, been obviated by 

allowing 'F~NDP' to return a number greater than 'N'. 

In this small example, where only one operation is being considered, the 

advantage of this notation may not be clear - the larger examples in [Jones 80] 

benefit from such notational conventions. 

sequential Desiqn steps 

An implementation can be proved correct with respect to a formal specification. 

In the design of barge programs, errors can be made early in the design process. 

Attempts to detect errors by test cases are known to be unreliable. Even if the 

construction of proofs were a good way of detecting errors, it would share with 

running test cases the defficiency that such late detection of errors can result in 

the need to replace work based on erroneous design decisions. 

A development method would therefore provide greater benefit if it could be 

used to establish the correctness of early (high-level) design decisions before 

proceeding to more detailed design. This observation applies equally to formal and 

informal design methods. Techniques for "inspections" or "structured walkthroughs" 

aim to increase the chance of detecting any errors in early design decisions before 

design goes further. 

[£ the assumptions about the more detailed design are recorded formally, a 

proof can be produced that the high-level design decision is correct. The 

consequence of the foregoing discussion is that a fozlnal development method must 

satisfy the following requirement: 

If a design step introduces sub-problems, its correctness can be 

established solely in terms of their specifications. 

This requirement is relatively easy to satisfy for sequential programs; the 
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equivalent problem for parallel programs is less well understood. 

A large specification might consist of an abstract state model and a number of 

operations. It is normally the case that the early steps of design involve 

refining, in one or more stages, the abstract state into data structures which can 

be easily represented in the implementation. One set of proof obligations for da~a 

~'efSnemen~ is built around the idea of providing a retrieve function (homomorphism) 

from the representation to the abstraction: 

retr: Rep 9 Abs 

The ~e~uucy proof obligation concerns the states alone and establishes that there 

is at least one representation for each abstract state: 

acAbs ~ 3reRep . a = retr(r) 

Two proof obligations must be discharged for each operation. If the operations on 

the abstract state are 'OPAi' and those on the representation 'OPRi', the domaSn 

proof obligation is: 

r~Rep, pre-OPAi( retr( r ) ) ? pre-OPRi( r ) 

The resuD~ proof obligation is: 

~r, re~p, pre~Pi( retr( ~r ) ), pest~pRi( r ~, r ) ~ ~st~pAi( retr( ~r ), retr( r ) ) 

The requirement on development methods is satisfied since subsequent steps of 

design rely only on the representation and its operations. 

Large examples of suc% data refinements are published elsewhere (e.g. [Fielding 

80], [Jones 83b], [Bjorner 82], [Welsh 82]). 

i 

The process of data refinement brings the specification closer to an 

implementation, but post-conditions still define what has to be done rather than 

how to do it. Opera%Ion decompos$$$on splits such implicitly specified operations 

into small steps. These smaller (sub-)operations may either be represented by 

specifications or be available operations of the implementation (hardware, language 

or other supporting software ). 

P r o o f  o b l i g a t i o n s  f o r  o p e r a t i o n  d e c o m p o s i t i o n  m u s t  e x i s t  f o r  e a c h  c o n s t r u c t  i n  

a progra~ning language. The original proof rules of [Hoare 69] concerned 
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post-conditions of %he final state alone~ the first attempt in [Jones 80] to handle 

post-conditions of two states was unnecessarily clumsy; the more tractable proof 

obligations given in [Jones 83b] were suggested by Peter Aczel (ef.[Aczel 82]). 

These rules again satisfy the requirement on a development method: sub-components 

can be developed solely from their specifications and can ignore the context in 

which they are used. 

A very simple example is to show that the sequential composition of 'INIT' and 

°SEARCHES' satisfies the earlier specification of °FINDP'~ 

INXT 

ext wr R~ 

pre true 

SEaRChES 

ext rd M~ Array 

wrR: N 

satUrn, r) 

post consid(m,r, lnd) ^ satp(m,r) 

where~ 

Ind = {i, .... N} 

consid(m,i,s) ~ Vj~s . p(m(j)) ~ i~j 

The sequential composition rule in this case does little more than check that 

the post-condition of 'INIT ~ establishes the pre-condition for 'SEARCHES'. A 

slightly more interesting example would be the decomposition of 'SEARCHES' into a 

loop. Examples of ~he use of these rules are given in [Jones 83a], [Jones 83b]. 

Parallel Decompositlon Steps 

The decomposition of operations into sub-operations which can execute in 

parallel must now be considered. The difficulty is to meet the development method 

requirement. Here, shared variable paralleism is considered. The first 

observation is that %he pre-/post-condition form of specification is not rich 

enough. It is easy to construct e~m.Dles where the behaviour of two operations 

running in parallel is not goverened by their separate pest-conditions. The 
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Sn~erference which the operations exert on each other influences the final result. 

The research result~=~ reported in [Francez 78], [Lamport 80] and [Jones 81] each 

attempt to solve this problem by extending the notion of specification to capture 

some aspects of the interference. The last of these methods is described here. 

The approach proposed is to face the issue of interference throughout development; 

to reflect its existence in the specification; and to recognise that it must be 

checked at each design step. 

Specifications of interfering operations are extended with assertions 

(rely-conditions), which e~ress the assumptions that can be made about the 

interference which can be tolerated, and assertions (guarantee-conditions), which 

constrain the interference which may be caused. More precisley, a reLy-cond$~$on 

is a predicate of two states which defines the relationship Which can be assumed to 

exist between the external variables in states changed by other processes. Thus 

the imple~entor of an operation, although not able to assize that the 

implementation will run in isolation, knows some limit to the state changes which 

other processes can make. For example the rely-condition: 

X = X  

expresses the assumption that the (value of the) external variable 'X' will not 

change; but: 

accepts the possibility of change but requires that 'T' never increases in value. 

The rely-condition: 

(-(- 
x+y = x+y 

requires that the sum of two values remains unchanged. (This example and the next 

imply some notion of indivisible operations in the implementation. ) The role of a 

switch to control changes can be given in a rely-condition: 

buf=~ 

Rely-conditions, like pre-conditions, are recording assumptions for the 

implementations the commitments (cf° post-conditions) relating to interference are 
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reco~ed in G~unCee-cond$~¢on~o These are again predicates of two states which 

all state trar~fo~mations must respect. The expessions above could occur in 

guarantee-conditions, A process which was to GOeZ$S~ with one whose rely-condition 

was a~ in the last e~latlon~ might have only read access to 'SW' and use~ 

as a guarantee-oondition,~ 

It is possible to think of a rely-condition, for say 'OP', as a post-condition 

of an operation which may be executed between any two atomic steps of 'OP'. The 

guarantee-condition can be thought of as the post-condition for the atomic steps of 

'OP ° . (Although this explanation refers to "atomic steps", the level of atomicity 

is not fixed.) 

The s~eue of Eru¢hos~henes is used as a first illustration of the extended 

specifications. The idea of using two parallel processes was proposed in [Hoare 

75]. The solution is extended here to use more processes. The overall task can be 

achieved by sto~ing the set of all integers between 2 and N in a variable and then 

invoking SIEVEs 

S ,~ {2 ..... N}; S~EVE 

SIEVE 

ext WE S: set of N 

.pos t s = s - U{mults(i) ~ ie{2 ..... sqrt(N)}} 

mults(i) m {i*m i m~{Z ..... N}) 

Notice that interference on °S t is excluded in the specification. Suppose 'SIEVE' 

is to be implemented by executing in parallel many instances of a process 'REM' - 

one instance for each ~I'. What should the specification of the 'REM' process be? 

T~e beginning i~ straightforward~ 

REM( I : X) 

ext wr S~ set of N 

If the post-condition were~ 
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s = s - mults(i) 

the overall post-condition would follow from the conjunction of those for each 

'REM(1)'. This would be acceptable if each instance of 'REM' were run in 

isolation, The equality sets an upper and lower bound on changes to 'S'. This is 

too restrictive in the case that other parallel interfering processes are changing 

'S'. ('RE~2)' might, for example, run at a time When 'REM(3)' removes the value 

'9' from 'S'.) The lower bound on the effect of 'REM' can be defined in the 

post-condit ion: 

vjcmults(i) . 9~s 

However, the conjunction of such post-conditions will not yield the overall 

post-condition. The proof rule for realization by parallel processes is given 

below (in a form suggested by Peter Aczel in [Aczel 83] ). The overall 

post-condition can be a consequence of information about interference. In this 

case it is clear that for any state Which can arise a value Which has been removed 

must be a multiple of one of the process indices. Formally: 

VCE( s-s ) . ~i~ {2 ...... N) . c~mults(i) 

Since the states which can arise are all created by the steps of the instances of 

'REM', this must follow from the transitive closure of the guarantee-condition for 

'REM'. Thus the guarantee-coDzlition must include: 

vc~(es-s) . cEmults(i) 

Another way to see the need for this guarantee-condition is to observe that the 

post-condition would be satisfied by a process Which set 'S' to the empty set! 

Furthermore, the 'REM' process can only ensure that elements will not be in the 

final value of 'S' if no other (interfering) process can reinsert values (e.g. 

'REM(2)' will remove the value '6' once - if 'REM(3)' were to reinsert the value, 

the post-condition would not be satisfied). Thus a rely-condition of~ 

s Cs 

is required, Since multiple instances of 'REM' will run in parallel, this must 

also be conjoined to the guarantee-condition. Thus the overall specification for 

'REM' becomes: 
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R m ~ (  I :  m) 

ext wr S: set of N 

pre true 

~ s ~  ^ 
<- 

v c ~ ( e - s )  0 c~multe(i) 

VjEmults(i) . jEs 

Returning to the ~FINDP' problems the overall specification might have rely-and 

guarantee-conditions: 

@ @ 
_tel! Z m=m ^ r=r 

~uar true 

The operations ~[NXT' and 'SEARCHES' require similar, trivial, extensions. The 

extended fom of the sequential proof rules is given in [Barringer 8%b]. 

Suppose that 'SEARCHES" is now to be implemented by the parallel execution of 

'T' processes 'SEARCHi' (for i~{l ..... T}) where each such process is responsible 

for checking a set of indices given in a map: 

GS: ~ {i . . . . .  T} too (set of Ind) 

The each 'SEARCHi' process is specified: 

SEARC~i 

ext rd M: Array 

w_rr R: I~ 

true 

rely m I gs(i) m ~ ~ gs(i) ^ r ~ @ 

gum ~ ~ r<~r ̂  satp(m.r) 

~st co,sid(m, r~ gs(i) ) 

where the map restriction operator yields that portion of a map whose domain is in 

the set: 

m I s = [d ~mCs) I de(dommn s) ]  

A specification now consists of four predicates: 
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P pre-condition of one state 

R rely-condition of two states 

G guarantee-condition of two states 

Q post-condition of two states 

The proof rule for the decomposition to two parallel processes is: 

S1 s.at (P°RvG2,GI,QI), 

$2 sa__tt (P,RvGI,G2,Q2) 

(SI II $2) sat (P,R,GIvG2,QI^Q2A(RvGIvG2) ~) 

The generalisation to 'n' processes is: 

&i(si sat (P°R v VjGj,Gi,Qi)) i~j 

( I [ Si) sa_tt (P,R,ViGi,&iQi ^ (RvViGi) w) 

where &i/Vi are generalised (finite) conjuctions and dis3unctions. 

To show that the parallel decomposition of 'SEARCHES' is correct, a number of 

proof obligations must be discharged. 

&i(pre-SEARCHES W pre-SEARCHi ) 

is vacuously true~ 

&i(rely-SEARCHES v Vj guar-SEARCHj W rely-SEARCHi) 

is straight forward j 

Vi(guar-sEARC~i) W guar-SEARCHES 

is vacuously true~ 

pre-SEARCHES ^ ( &i post-SEARCHi ) ^ 

(rely-SEARCRY~ v V i guar-SEARCHi)* ~ post-SEARCHES 
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requires 

satp(m,r) ^ &i cons£d(m,r,gs(i)) ^ m~m ~ r#r ~ sat~m,r) 

consid(m,r, Ind) ^ satp(m,r) 

which follows provided that the distributed union of the range of 'GS' is equal to 

'Ind'. 

In [Owicki 76] a parallel implementation of this problem is given using one 

process each for the odd and even indices. In [Jones 83c] it is shown how this can 

be develo~d from the 'SEARCHi t specification. (Basically by a specialization to 

two processes and a data refinement of 'R' onto an expression.) The key 

requirement of a development method is again met in that it is not necessary to 

reconsider the earlier stages of design. (The same paper discusses a maximal 

parallel solution with one process per index.) 

The method outlined above illustrates that it might be possible to find a way 

of developing interfering programs Which meets the requirement~ The expressiveness 

of the rely-/guarantee-conditions is, however, inadequate for many problems. 

Recent research (e.g. [Lamport 83], EBarringer 84], [Barringer 85] - for overview 

see (de Roever 85]) has moved to using Temporal Logic. This author has some 

hesitation in following this step~ It must be realized that even the sequential 

rules discuss the temporal changes to states. The contribution of the 

Naur/Floyd/~oare techniques is that the proof obligations themselves hide this 

fact. The rely/guarantee idea was an attempt to reqain this situation in spite of 

the more complex environment. The next step should be work on a number of ew~mples 

using such temporal rules (e.g. [Sa 8%]); if patterns of specification and proof 

can be isolated, perhaps we can again confine temporal arguments to the 

justification of proof rules which then do not use temporal logic. (A general 

overview of approaches to parallelism is given in [Barringer 8%b].) 

Position 

These advanced seminars are considering the relevance of formal methods in 

software development~ This section contains a number of c~u~ms which indicate this 

author" s position. 

i~ Formal specifications tend to focus on the functional apsects of systems - 

questions like the need for a system are not normally considered. (The separation 
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of performance issues should not cause surprise.) 

2. Formal specifications have been written for (the functional apsects) of 

significant software, and hardware, systems. 

3. There is a need to develop techniques to aid checking that the 

specifications of large systems meet the user's intentions. 

4. A specific area where formal specification is, at the moment, less helpful 

(than simulation> is so-called "Man-Machine Interfaces". (Some work in this are is 

reported in this conference - [Marshall 85 ]. ) 

5. A formal specification can provide a precise and (relatively) concise model 

of a systam prior to construction. Such a specification can both deepen 

understanding of the intended system and provide a correctness criteria for 

implementation ( and design ). 

5. The skills required to write such specifications are not yet widely 

available - education is likely to be the limiting factor in the use of formal 

methods. 

7. Support tools (cf. [Madhavji 85], [Snelting 85] in this conference) are 

required - there is a danger that such tools could force "mathematics as a 

specification language" to develop into Aria-like syntactic quagmires. 

8. Formal development methods focus on correctness issues and leave somewhat 

aside the intuitive aspects of how to choose a good design (cf. [Naur 85]). 

9. Application of formal methods to the early steps of design can reduce the 

possibility of undetected errors - it is these errors which damage the 

"productivity" of the program design process. 

IO. The decision as to the appropriate degree of formality to be used in design 

verification is difficult. It is, as yet, unrealistic to use cca~letely formal 

(machine checked) proofB for large systems. It would appear that the earlier 

stages warrant more formal treatment than the later ones. A crucial step towards 

greater machine support would be the development of "theories" about commonly used 

data structures. 

iI. Formal methods will certainly not solve all problems concerned with 
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software development. It is, however, a valid research area. 

12. EKperiments are needed to improve the ease of access and style of formal 

documents~ Perhaps some o~ the research effort which appears to develop 

mathematics for its own sake could benefit from more application to actual 

cou%m/ting problems. 

13. Formal ~ethods, even in their evolving state, have a contribution to make 

to current problems (see reports from industry at this conference). 
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