
THE ROLE OF PROOF OBLIGATIONS IN SOFTWARE DESIGN

cliff B . Jones
Department of COmputer science

university of Manchester
Manchester, ENGLAND

Abstract

This paper presents certain "proof obligations" which can be used to establish

the correctness of software design. The design of both sequential and parallel

programs is considered. The position is taken that an understanding of formal

results of this kind can aid practical software development,

Introduction

Other papers in this volume discuss the use of formal semantics in language

design, The, so-called, -VDM" work in this area is discussed in [Bjorner 82] and a

recent application is contained in [welsh 84]. This paper is concerned with the

use of "VDM" in the design of general software. It outlines a revision of the

method proposed in [Jones 80] and some e~ensions to cope with parallelism.

The concluding section presents a position statement on the role of such form~l

~thods in software design.

Functional Specification

The func¢¢onn~ spec~f$ca¢¢on of a system must define the required input/output

behaviour. For simple sequential operations, such specifications can be formalised

by pre- and post-conditions written as logical e~pressions. More complex systems

comprise a collection of operations. There are two contrasting ways of recording

the specifications of such a collection. In the "property oriented" approach, the

meaning of the operations is fixed by writing equations in terms of several

operations. This approach appears to be well suited to basic data types such as

lists.

In the alternative - "model oriented" - approach, each operation is defined in

28

terms of an underlying state~ Such a state is chosen to capture the information

which iS essential to a system. The state is normally defined in terms of basic

data types like sets and lists. There is an intuitive notion that certain states

are more abstract than others; this notion can be formalized so that it is possible

to prove that there is no ~$us towards certain implementations. (The paper by

Homing in this volume discusses the property and model oriented approaches.)

A sim~le function, which locates those indices of an Array (modelled here by a

map) which are ~ped to elements satisfying 'p', can be specified by writing its

sSgn~Te and pre- and Dost-conditions:

findp~ ~___RN t_qo x 9 N

pre-findp(m) e 3iedo~m . p(m(i))

post-findp(m,r) ~ r = mine({iEdomm I p(m(i))))

where~

mins~ set of N -> N

pre-mins(s) e s ,~ (}

post-mins(s,r) ~ rEs ^ vies . r~i

N set of natural numbers

Such specifications clearly show the assumptions on the arguments to functions

(pre-conditions). The post-conditlons show the required relationship between

results and argumentso One advantage of such specifications can be seen in

'post-rains' ~ It is frequently clearer to write a specification by recording

separate (conjoined) properties. It is also possible to write a specification

which does not precisely characterize a result. For example:

post-findp(m,r) -~ Ha(r))

would permit an ~lemntation to return any index - rather than the minimum - with

the required property. One view is that such specifications under-determine

implementations, with parallel programs, the implementations themselves can be

non-determinist ic,

A proposed implementation of the 'findp' specification is written as a function

definition. If the implementation is correct, the following logical expression can

be proved t o follow from the definitions."

2g

V m ¢ map N to X . pre-findp(m) ~ post-findp(m, findp(m))

(The axiomatisation used is that of the "Logic of Partial Functions" described in

(Barringer 8%a].)

The preceding sequent is a proof obD&gu~&on which establishes that the function

definition sa~$sfSes the given specification. Clearly, it would be possible to

write "specifications" which are unimplementable. There is, therefore, a proof

obligation on the specification itself that it be $mpDemen$ubDe. In this case:

m ~ map N t__qo X, pre-findp(m) ~ 3tEN . post-findp(m,r)

The ideas on functions apply directly to operations which transform states. The

experience with writing large "VDM" specifications has, however, prompted a number

of abbreviations which make it easier to define the dependance on, and changes to,

the state. Each operation lists those parts of the state to which the operation

has sx~ernuD access; read only (rd) or read/write (wr) access is marked for each

component. The names of such state components are written in upper case letters;

the values are referred 1-o in the logical expressions using lower case letters; in

post-conditions, the value prior to the operation is marked with a hook while the

final value is undecorated.

An operation 'FINDP' can be specified.

FINDP

ext rd M" Array

w_Er R. N

pre true

post satp(m,r) ^ ViE{I r-l} . "p(m(i))

where:

satp(m,i) ~ i~N ~ p(m(i))

30

Array = ~ N t_o X

Where

inv(m) ~ doM m = {i N}

p~X~B

N (c N) a given ~nstan£

Notice that the pre-condition needed on the function has, here, been obviated by

allowing 'F~NDP' to return a number greater than 'N'.

In this small example, where only one operation is being considered, the

advantage of this notation may not be clear - the larger examples in [Jones 80]

benefit from such notational conventions.

sequential Desiqn steps

An implementation can be proved correct with respect to a formal specification.

In the design of barge programs, errors can be made early in the design process.

Attempts to detect errors by test cases are known to be unreliable. Even if the

construction of proofs were a good way of detecting errors, it would share with

running test cases the defficiency that such late detection of errors can result in

the need to replace work based on erroneous design decisions.

A development method would therefore provide greater benefit if it could be

used to establish the correctness of early (high-level) design decisions before

proceeding to more detailed design. This observation applies equally to formal and

informal design methods. Techniques for "inspections" or "structured walkthroughs"

aim to increase the chance of detecting any errors in early design decisions before

design goes further.

[£ the assumptions about the more detailed design are recorded formally, a

proof can be produced that the high-level design decision is correct. The

consequence of the foregoing discussion is that a fozlnal development method must

satisfy the following requirement:

If a design step introduces sub-problems, its correctness can be

established solely in terms of their specifications.

This requirement is relatively easy to satisfy for sequential programs; the

31

equivalent problem for parallel programs is less well understood.

A large specification might consist of an abstract state model and a number of

operations. It is normally the case that the early steps of design involve

refining, in one or more stages, the abstract state into data structures which can

be easily represented in the implementation. One set of proof obligations for da~a

~'efSnemen~ is built around the idea of providing a retrieve function (homomorphism)

from the representation to the abstraction:

retr: Rep 9 Abs

The ~e~uucy proof obligation concerns the states alone and establishes that there

is at least one representation for each abstract state:

acAbs ~ 3reRep . a = retr(r)

Two proof obligations must be discharged for each operation. If the operations on

the abstract state are 'OPAi' and those on the representation 'OPRi', the domaSn

proof obligation is:

r~Rep, pre-OPAi(retr(r)) ? pre-OPRi(r)

The resuD~ proof obligation is:

~r, re~p, pre~Pi(retr(~r)), pest~pRi(r ~, r) ~ ~st~pAi(retr(~r), retr(r))

The requirement on development methods is satisfied since subsequent steps of

design rely only on the representation and its operations.

Large examples of suc% data refinements are published elsewhere (e.g. [Fielding

80], [Jones 83b], [Bjorner 82], [Welsh 82]).

i

The process of data refinement brings the specification closer to an

implementation, but post-conditions still define what has to be done rather than

how to do it. Opera%Ion decompos$$$on splits such implicitly specified operations

into small steps. These smaller (sub-)operations may either be represented by

specifications or be available operations of the implementation (hardware, language

or other supporting software).

P r o o f o b l i g a t i o n s f o r o p e r a t i o n d e c o m p o s i t i o n m u s t e x i s t f o r e a c h c o n s t r u c t i n

a progra~ning language. The original proof rules of [Hoare 69] concerned

32

post-conditions of %he final state alone~ the first attempt in [Jones 80] to handle

post-conditions of two states was unnecessarily clumsy; the more tractable proof

obligations given in [Jones 83b] were suggested by Peter Aczel (ef.[Aczel 82]).

These rules again satisfy the requirement on a development method: sub-components

can be developed solely from their specifications and can ignore the context in

which they are used.

A very simple example is to show that the sequential composition of 'INIT' and

°SEARCHES' satisfies the earlier specification of °FINDP'~

INXT

ext wr R~

pre true

SEaRChES

ext rd M~ Array

wrR: N

satUrn, r)

post consid(m,r, lnd) ^ satp(m,r)

where~

Ind = {i, N}

consid(m,i,s) ~ Vj~s . p(m(j)) ~ i~j

The sequential composition rule in this case does little more than check that

the post-condition of 'INIT ~ establishes the pre-condition for 'SEARCHES'. A

slightly more interesting example would be the decomposition of 'SEARCHES' into a

loop. Examples of ~he use of these rules are given in [Jones 83a], [Jones 83b].

Parallel Decompositlon Steps

The decomposition of operations into sub-operations which can execute in

parallel must now be considered. The difficulty is to meet the development method

requirement. Here, shared variable paralleism is considered. The first

observation is that %he pre-/post-condition form of specification is not rich

enough. It is easy to construct e~m.Dles where the behaviour of two operations

running in parallel is not goverened by their separate pest-conditions. The

33

Sn~erference which the operations exert on each other influences the final result.

The research result~=~ reported in [Francez 78], [Lamport 80] and [Jones 81] each

attempt to solve this problem by extending the notion of specification to capture

some aspects of the interference. The last of these methods is described here.

The approach proposed is to face the issue of interference throughout development;

to reflect its existence in the specification; and to recognise that it must be

checked at each design step.

Specifications of interfering operations are extended with assertions

(rely-conditions), which e~ress the assumptions that can be made about the

interference which can be tolerated, and assertions (guarantee-conditions), which

constrain the interference which may be caused. More precisley, a reLy-cond$~$on

is a predicate of two states which defines the relationship Which can be assumed to

exist between the external variables in states changed by other processes. Thus

the imple~entor of an operation, although not able to assize that the

implementation will run in isolation, knows some limit to the state changes which

other processes can make. For example the rely-condition:

X = X

expresses the assumption that the (value of the) external variable 'X' will not

change; but:

accepts the possibility of change but requires that 'T' never increases in value.

The rely-condition:

(-(-
x+y = x+y

requires that the sum of two values remains unchanged. (This example and the next

imply some notion of indivisible operations in the implementation.) The role of a

switch to control changes can be given in a rely-condition:

buf=~

Rely-conditions, like pre-conditions, are recording assumptions for the

implementations the commitments (cf° post-conditions) relating to interference are

34

reco~ed in G~unCee-cond$~¢on~o These are again predicates of two states which

all state trar~fo~mations must respect. The expessions above could occur in

guarantee-conditions, A process which was to GOeZ$S~ with one whose rely-condition

was a~ in the last e~latlon~ might have only read access to 'SW' and use~

as a guarantee-oondition,~

It is possible to think of a rely-condition, for say 'OP', as a post-condition

of an operation which may be executed between any two atomic steps of 'OP'. The

guarantee-condition can be thought of as the post-condition for the atomic steps of

'OP ° . (Although this explanation refers to "atomic steps", the level of atomicity

is not fixed.)

The s~eue of Eru¢hos~henes is used as a first illustration of the extended

specifications. The idea of using two parallel processes was proposed in [Hoare

75]. The solution is extended here to use more processes. The overall task can be

achieved by sto~ing the set of all integers between 2 and N in a variable and then

invoking SIEVEs

S ,~ {2 N}; S~EVE

SIEVE

ext WE S: set of N

.pos t s = s - U{mults(i) ~ ie{2 sqrt(N)}}

mults(i) m {i*m i m~{Z N})

Notice that interference on °S t is excluded in the specification. Suppose 'SIEVE'

is to be implemented by executing in parallel many instances of a process 'REM' -

one instance for each ~I'. What should the specification of the 'REM' process be?

T~e beginning i~ straightforward~

REM(I : X)

ext wr S~ set of N

If the post-condition were~

35

s = s - mults(i)

the overall post-condition would follow from the conjunction of those for each

'REM(1)'. This would be acceptable if each instance of 'REM' were run in

isolation, The equality sets an upper and lower bound on changes to 'S'. This is

too restrictive in the case that other parallel interfering processes are changing

'S'. ('RE~2)' might, for example, run at a time When 'REM(3)' removes the value

'9' from 'S'.) The lower bound on the effect of 'REM' can be defined in the

post-condit ion:

vjcmults(i) . 9~s

However, the conjunction of such post-conditions will not yield the overall

post-condition. The proof rule for realization by parallel processes is given

below (in a form suggested by Peter Aczel in [Aczel 83]). The overall

post-condition can be a consequence of information about interference. In this

case it is clear that for any state Which can arise a value Which has been removed

must be a multiple of one of the process indices. Formally:

VCE(s-s) . ~i~ {2 N) . c~mults(i)

Since the states which can arise are all created by the steps of the instances of

'REM', this must follow from the transitive closure of the guarantee-condition for

'REM'. Thus the guarantee-coDzlition must include:

vc~(es-s) . cEmults(i)

Another way to see the need for this guarantee-condition is to observe that the

post-condition would be satisfied by a process Which set 'S' to the empty set!

Furthermore, the 'REM' process can only ensure that elements will not be in the

final value of 'S' if no other (interfering) process can reinsert values (e.g.

'REM(2)' will remove the value '6' once - if 'REM(3)' were to reinsert the value,

the post-condition would not be satisfied). Thus a rely-condition of~

s Cs

is required, Since multiple instances of 'REM' will run in parallel, this must

also be conjoined to the guarantee-condition. Thus the overall specification for

'REM' becomes:

36

R m ~ (I : m)

ext wr S: set of N

pre true

~ s ~ ^
<-

v c ~ (e - s) 0 c~multe(i)

VjEmults(i) . jEs

Returning to the ~FINDP' problems the overall specification might have rely-and

guarantee-conditions:

@ @
_tel! Z m=m ^ r=r

~uar true

The operations ~[NXT' and 'SEARCHES' require similar, trivial, extensions. The

extended fom of the sequential proof rules is given in [Barringer 8%b].

Suppose that 'SEARCHES" is now to be implemented by the parallel execution of

'T' processes 'SEARCHi' (for i~{l T}) where each such process is responsible

for checking a set of indices given in a map:

GS: ~ {i T} too (set of Ind)

The each 'SEARCHi' process is specified:

SEARC~i

ext rd M: Array

w_rr R: I~

true

rely m I gs(i) m ~ ~ gs(i) ^ r ~ @

gum ~ ~ r<~r ̂ satp(m.r)

~st co,sid(m, r~ gs(i))

where the map restriction operator yields that portion of a map whose domain is in

the set:

m I s = [d ~mCs) I de(dommn s)]

A specification now consists of four predicates:

37

P pre-condition of one state

R rely-condition of two states

G guarantee-condition of two states

Q post-condition of two states

The proof rule for the decomposition to two parallel processes is:

S1 s.at (P°RvG2,GI,QI),

$2 sa__tt (P,RvGI,G2,Q2)

(SI II $2) sat (P,R,GIvG2,QI^Q2A(RvGIvG2) ~)

The generalisation to 'n' processes is:

&i(si sat (P°R v VjGj,Gi,Qi)) i~j

(I [Si) sa_tt (P,R,ViGi,&iQi ^ (RvViGi) w)

where &i/Vi are generalised (finite) conjuctions and dis3unctions.

To show that the parallel decomposition of 'SEARCHES' is correct, a number of

proof obligations must be discharged.

&i(pre-SEARCHES W pre-SEARCHi)

is vacuously true~

&i(rely-SEARCHES v Vj guar-SEARCHj W rely-SEARCHi)

is straight forward j

Vi(guar-sEARC~i) W guar-SEARCHES

is vacuously true~

pre-SEARCHES ^ (&i post-SEARCHi) ^

(rely-SEARCRY~ v V i guar-SEARCHi)* ~ post-SEARCHES

38

requires

satp(m,r) ^ &i cons£d(m,r,gs(i)) ^ m~m ~ r#r ~ sat~m,r)

consid(m,r, Ind) ^ satp(m,r)

which follows provided that the distributed union of the range of 'GS' is equal to

'Ind'.

In [Owicki 76] a parallel implementation of this problem is given using one

process each for the odd and even indices. In [Jones 83c] it is shown how this can

be develo~d from the 'SEARCHi t specification. (Basically by a specialization to

two processes and a data refinement of 'R' onto an expression.) The key

requirement of a development method is again met in that it is not necessary to

reconsider the earlier stages of design. (The same paper discusses a maximal

parallel solution with one process per index.)

The method outlined above illustrates that it might be possible to find a way

of developing interfering programs Which meets the requirement~ The expressiveness

of the rely-/guarantee-conditions is, however, inadequate for many problems.

Recent research (e.g. [Lamport 83], EBarringer 84], [Barringer 85] - for overview

see (de Roever 85]) has moved to using Temporal Logic. This author has some

hesitation in following this step~ It must be realized that even the sequential

rules discuss the temporal changes to states. The contribution of the

Naur/Floyd/~oare techniques is that the proof obligations themselves hide this

fact. The rely/guarantee idea was an attempt to reqain this situation in spite of

the more complex environment. The next step should be work on a number of ew~mples

using such temporal rules (e.g. [Sa 8%]); if patterns of specification and proof

can be isolated, perhaps we can again confine temporal arguments to the

justification of proof rules which then do not use temporal logic. (A general

overview of approaches to parallelism is given in [Barringer 8%b].)

Position

These advanced seminars are considering the relevance of formal methods in

software development~ This section contains a number of c~u~ms which indicate this

author" s position.

i~ Formal specifications tend to focus on the functional apsects of systems -

questions like the need for a system are not normally considered. (The separation

39

of performance issues should not cause surprise.)

2. Formal specifications have been written for (the functional apsects) of

significant software, and hardware, systems.

3. There is a need to develop techniques to aid checking that the

specifications of large systems meet the user's intentions.

4. A specific area where formal specification is, at the moment, less helpful

(than simulation> is so-called "Man-Machine Interfaces". (Some work in this are is

reported in this conference - [Marshall 85].)

5. A formal specification can provide a precise and (relatively) concise model

of a systam prior to construction. Such a specification can both deepen

understanding of the intended system and provide a correctness criteria for

implementation (and design).

5. The skills required to write such specifications are not yet widely

available - education is likely to be the limiting factor in the use of formal

methods.

7. Support tools (cf. [Madhavji 85], [Snelting 85] in this conference) are

required - there is a danger that such tools could force "mathematics as a

specification language" to develop into Aria-like syntactic quagmires.

8. Formal development methods focus on correctness issues and leave somewhat

aside the intuitive aspects of how to choose a good design (cf. [Naur 85]).

9. Application of formal methods to the early steps of design can reduce the

possibility of undetected errors - it is these errors which damage the

"productivity" of the program design process.

IO. The decision as to the appropriate degree of formality to be used in design

verification is difficult. It is, as yet, unrealistic to use cca~letely formal

(machine checked) proofB for large systems. It would appear that the earlier

stages warrant more formal treatment than the later ones. A crucial step towards

greater machine support would be the development of "theories" about commonly used

data structures.

iI. Formal methods will certainly not solve all problems concerned with

40

software development. It is, however, a valid research area.

12. EKperiments are needed to improve the ease of access and style of formal

documents~ Perhaps some o~ the research effort which appears to develop

mathematics for its own sake could benefit from more application to actual

cou%m/ting problems.

13. Formal ~ethods, even in their evolving state, have a contribution to make

to current problems (see reports from industry at this conference).

References

[Acsel 92] A N o t e on Program Verification, P.Aczel, munuscr&p~, January 1982.

[Aczel 83] On an Inference Rule for Parallel ~sition, P.Aczel, munuscr&p~,
February 1983.

[Barringer 84] Now You May ~ s e Temporal Logic Specifications, H,Barringer,
R.Kuiper and A. Pnueli, Procs. of Z6$h ACM S~mpos~um on Theory of Computing, May
198%.

[Barringer 8%a] A Logic Covering Undefinedness in Program Proofs, H. Barringer,
J,H. Cheng and C,B~ Jones, ACTA rnformu~,ca, Vol 21 Part 3, pp251-269, 1984,

[Barringer 8@hi A Survey of Verification Techniques for Parallel Programs,
H.Barringer, #o be pubDished, LNCS, spr&nger-VerDdg,

[Barringer 85] A compositional Telporal ARgzoac~ to a CSP-Like ~ ,
H.Barringer, R.Kuiper and A.Pnueli, IFIP Working Conference on "The RoDe of
Abs#roc~ ModeD ~n Informo~ion Processing", Vienna, January 30th - February ist,

1985.

[Bjorner 82] Formal Specification and Software Development, D.Bjorner and
C,B.Jones, Pren~,ce-H<l~D Tn~ern~onu~, 1982.

[Fielding 80] The S[~clfication of Abstract Mappings and their Ia~le~tation as
B~-Trees, E. Fielding, Oxford Un~vers$~g, Monograph PRG-18, 1980.

[Frances 78] A Proof Method for Cyclic Programs, N.Francez and A.Pnueli, ACTA Inf.

Vol 9 No 2, pp133-157, April 1978~

[Hoare 69] A~ A1ri(~latic ~ of Cx~ter Progr~Tamm'i~, C.A.R.Hoare, CACM

[Hoaze 75] Par~uUel ~-ming: An Axiamatic Approach, C.A.R.Hoare, In Computer

Lungs, Permogon Press~ Vol i~ pp 151-160~

[Jones 80] Software Development: A Ri~rous Approach, C.B. Jones, Pren~&ce-HuDD

In~ernu~onuD, %00 pages, 1980.

[Jones 81] Development M~thods for Computer Program Including a Notion of
Interference, C.B.Jones, Orford Un~uersi~, Monogruph PRG 25, June 1981.

[Jones 83a] Specification and Deeign of (Parallel) Program8, C.B.Jones, (~,nP&~;ed

41

p~per), IFIP ~983, Por~e~ North-HoLLand, pp 321 - 332, September 1983.

[Jones 83b] ~yeteatatic Program Develo~ment, C.B.Jones, S~mpos~um 'WSekunde en
Znforma~$ca' , Amsterdam, ~o be p u b l i s h e d ~n ~he Ma thema t i ca l Cen t re Trac~s.

[Jones 83c] Tentative Steps Toward a Development Method for Inter£erin~ Pragrams,
C.B,Jones ACT4 Trans. Program. Lang. S~s~., Vol 5 No%, pp 596 - 619, October 1983,

[Lamport 80] The "~oare Logic" of Cor~cIrrrent Programs, L.Lamport, Ac~a Inf., vol 1%
no i, pp21-37, June 19800

[Lamport 83] What Good Is Temporal Logic?, L. Lamport, North-HoLland, Proc. of #he
~FEP 9~h WorLd Co, purer Congress, ParLe, pages 657-668, 1983.

[Marshall 85] A Formal Specification of Line Representations on Graphics Devices,
L,S.Marshall, TAPSOFT JoSn~ Conference on Theory and Practice of soft,are
Deue~opmen~, Berlin, March 1985.

[Madhavji 85] Software cor~truction Using Typed Fracjwents, N.H.M~dhavji,
N.Leoutsarakos, D Vouliouris, TAPSOFT JoSn$ Conference on Theory and Practice of
Sof~uure DeueLopmen~, Berlin, March 1985.

[Naur 85] Intuition in Software Development, P. Naur, TAPSOFT JoSn~ Conference on
Theory and Pruc$$ce of Soft,are DeueLopmen$, Berlin, March 1985.

[owicki 76] Verifying Properties of Parallel Procjrams~ An AKiomatic Approaah,
S,s,Owicki and D.Gries, Comm, ACM, Vol 19 No 5, pp 279-285.

[de Roever 85] The Quest for ~eitiona1~ty - a Survey of Assertion-base~ Proof
Systemg for Concurrent Programs, w.P.de Roever, IFIP Working Conference on "The
RoLe of Absbrac~ ModeLs $n Information Processing", Vienna, January 30th - February
Ist., 1985.

[Sa 84] Te!poral Logic Specifioations of Colmmnication Protocals, J.Sa, Manchester
Un~uers$~y, 1984.

[Snelting 85] E~periences with the PSCz-Programming Syutem Generator, G.Snelting,
TAPSOFT JOSh# Conference on Theor~ and Pruc~$ce of Soft,ore DeueLopmen~, Berlin,
March 1985.

[Welsh 82] The Specification, Design and Implementation of ~, A. Welsh, M.Sc.
ThesSs, Manchester University, October 1982.

[Welsh 84] A Database Proqra~minq Language* Definition, Implementation ar~
Correctness Proofs, A. Welsh, Ph.D. ~hes~s, Munches#er UnSuers~y, October 1984.

