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Abstract

™is paper presents certain "proof obligations™ which c¢an be used to establish
the correctness of software design, The design of both sequential and parallel
programs is considered. The position is taken that an understanding of formal

repults of this kind can aid practical software development.

Introduction

Other papers in +this volume discuss the use of formal semantics in language
design. The, so-called, "VDM" work in this area is discussed in [Bjorner 82} and a
recent application is contained in [Welsh 84]. This paper is concerned with the
use of "“VDM" in the design of general software. It outlines a revision of the

method proposed in [Jones 80] and some extensions to cope with parallelism.

™e concluding section presents a position statement on the role of such formal

methods in software design.

Punctional Specification

The functional specification of a system must define the required input/output
behaviour. For simple seguential operations, such specifications can be formalised
by pre—- and post—conditions written as logical expressions. More complex systems
comprise a collection of operations. There are two contrasting ways of recording
the specifications of such a collection. 1In the "property oriented" approach, the
meaning of the operations is fixed by writing equations in texrms of several
operations. This approach appears to be well suited to basic data types such as
lists,

In the alternative -~ "model oriented” ~ approach, each operation is defined in
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terms of an underlying state. Such a state ig chosen to capture the information
which i# essential to a systemn. The state is normally defined in terms of basic
data types like sets and lists., There is an intuitive notion that certain states
are more abgtract than others; this notion can be formalized so that it is possible
to prove that there is no blas towards certain implementations. (The paper by

Horning in this volume discusses the property and model oriented approaches.)

A gimple function, which locates those indices of an Array (modelled here by a
map) which are mapped to elements satisfying ‘p', can be specified by writing its
signature and pre~ and post-conditions:

findp: map ¥ to X > W
pre~£indp(m) ¢ 3Jiedomm . p(m{i))

post—findp(m,r) & v = wins( {iedomm | p(m(i})))

where:

ming: get of N > N
pre-mins(s) & 8 # {}

post-mins(s,r) & re€s A Vi€s . rsi

N set of natural numbers

such specifications clearly show the assumptions on the arguments to functions
({ pre-conditions). The post—conditions show the required relationship between
results and arguments. one advantage of such specifications can be seen in
‘post-ming® . It is frequently clearer to write a specification by recording
geparate {conjoined) properties. It is also possible to write a specification

which does not precisely characterize a result. For example:

pogt—£indp{m, v} & p(w(x))

would permit an implemntation to return any index - rather than the minimum —~ with
the required property. one view is that such specifications under—determine
implementations. With parallel programs, the implementations themselves can bhe

non—deterministic,

5 propoged implementation of the ’findp* gpecification is written as a function
definition. If the implementation is correct, the following logical expressgion can
be proved to follow from the definitions:
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Vme map N to X . pre-findp(m) 3 post-findp(m, findp(m))

{The axiomatisation used is that of the "Logic of Partial Functions" described in

{Barringer 84a].)

The preceding sequent is a proecf obligation which establishes that the function
definition satisfies the given specification. Clearly, it would be possible to
write "specifications” which are unimplementable. There is, therefore, a proof

obligation on the specification itself that it be implementable. In this case:

me€ map N to X, pre-findp(m) | 3reN . post-findp(m,r)

The ideas on functions apply directly to operations which transform states. The
experience with writing large "vDM" specifications has, however, prompted a number
of abbreviations which make it easier to define the dependance on, and changes to,
the state. Each operation lists those parts of the state to which the operation
hag external access; read only (rd) or read/write (wr) access is marked for each
component. The names of such state components are written in upper case letters;
the values are referred to in the logical expressions using lower case letters; in
post-conditions, the value prior to the operation is marked with a hook while the

final value is undecorated.
An operation 'FINDP' can be specified.
FINDP
ext rd M: Array
wr R: N
pre true
post satp(m,r) A vie(l,...,r-1} . “p(m(i))

where:

satp(m,i) ¢ i€N 4 p(m(i))
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Array = map W o X
where

invim) 2 domm = {i,...,H}

p: X3 B

N (e N) a given gonstant

Notice that the pre-condition needed on the function has, here, been obviated by
allowing ‘FINDF® to veturn & number greater than *‘N'.

In this small example, where only one operation is being considered, the
advantage of this notation may not be clear — the larger examples in {Jones 80}
benefit from such notational conventions.

Sequential Degign Steps

An implementation can be proved correct with respect to a formal specification.
In the design of large programs, errors can be made early in the Jdesign process.
Bttempts to detect errors by test cases are known to be unreliable. Even if the
construction of proofs were a good way of detecting errors, it would share with
running test cases the defficiency that such late detection of errors can result in

the need to replace work based on erroneous design decisions.

A development method would therefore provide greater benefit if it could be
uged to establish the correctness of early (high-level) design decisions before
proceeding to more detailed design. This observation applies equally to formal and
informal design methods. Technigues for “inspections" or "structured walkthroughs®
aim to increase the chance of detecting any errors in early design decisions before

design goes furtherx.

If the assumptions about the more detailed design are recorded formally, a
proof can be produced that the high-level design decision is corvect. The
consequence of the foregoing discussion is that a formal development wethod must

gsatisfy the following requirsmens:

If a design step introduces sub-problems, its correctness can be

established solely in terms of their specifications.

This requirement ig relatively easy to satisfy for sequential programs; the
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eguivalent problem for parallel programs is less well understood.

A large specification might consist of an abstract state model and a nuwber of
operations. It is normally the case that the early steps of design involve
refining, in one or more stages, the abstract state into data structures which can
be easily represented in the implementation. One set of proof obligations for data
refinement is built around the idea of providing a retrieve function (homomorphism)

from the representation to the abstraction:
retr: Rep > Abs

The adequacy proof obligation concerns the states alone and establishes that there

is at least one representation for each abstract state:
a€abs | 3IreRep . a = retr(r)

Two proof obligations must be discharged for each operation. If the operations on
the abstract state are 'OPAL' and those on the representation ‘OPRi’, the domain

proof obligation is:
reRep, pre—OPAL(retr(r)) } pre—QPRi(r)

The result proof obligation is:

(E.rERep, pre~OPi( retr((f)), post—OPRi((f,r) | post—OPAiL( retr(‘f),retr(r))

The requirement on development methods is satisfied since subsequent steps of

design rely only on the representation and its operations.

Large examples of such data refinements are published elsewhere (e.g. {Pielding
807, [Jones 83b], [Bjorner 82], {[Welsh 82}).

The process of data vefinement brings the specific‘:ation cloger +to an
implewentation, but post-conditions still define what has to be done rather than
how to do it. Operation decomposition splits such implicitly specified operations
into small steps. Thege smaller (sub-)operations may either be represented by
specifications or be available operations of the implementation (hardware, language
ox other supporting software).

Proof obligations for operation decomposition must exist for each construct in

a programming language. The original proof rules of ([Hoare 69] concerned
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post-conditions of the final state alone; the first attempt in {Jones 80] to handle
post-conditions of two states was unnecessarily clumey; the more tractable proof
obligations given in [Jones 83b] were suggested by Peter Aczel (cf.(Aczel 82}).
These rules again satimfy the requirement on a developwent method: sub-components
can be developed zolely from their specifications and can ignore the context in
which they are used.

& very simple example is to show that the sequential composition of 'INIT' and
'SEARCHES' satisfies the earlier specification of ‘FINDP':

INIT
ext wr R: R
pre txue

post r =N 4+ 1

SERRCHES
ext rd M: Array
wr R: N
pre satp(m,r)
post consid{w,x,Ind} » satp(m,r})

where:

Ind = {1,...,N}
congid(m.i,s) @ vies . p(m(3)) = i3

The sequential composition rule in this case does little more than check that
the post-condition of 'INIT' establishes the pre—condition for ‘'SEARCHES®. A
slightly more interesting example would be the decompogition of ‘SEARCHES' into a

loop. Examples of the use of these rules are given in [Jones 83a], [Jones 83b].

Parallel Decomposition Steps

The decomposition of operations into sub-operations which can execute in
parallel must now be considered. The difficulty is to meet the development method
requirement. Here, shared variable paralleism is congidered. The ¥first
observation is <that the pre—/post-condition form of specification is not rich
enough. It is easy to construct examples where the behaviour of two operations

running in parallel is not goverened by their separate post—conditions. The
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interfeorence which the cperations exert on each other influences the final result.

The research results reported in [Francez 78], [Lamport 80} and {Joneg 811 each
attempt to solve this problem by extending the notion of gpecification to capture
some aspects of the interference. ‘The last of these methods is described here.
The approach proposed i3 to face the issue of interference throughout development:
to reflect its existence in the specification; and to recoghise that it must be

checked at each design step.

Specifications of interfering operations are extended with assertions
(rely-conditions), which express the assumptions that can be made about +the
interference which can be tolerated, and assertions (guarantee-conditiong), which
constrain the interference which may be caused. More precisley, a rely-condition
is a predicate of two states which defines the relationship which can be assumed to
exist between the external variables in states changed by other processes. Thus
the implementor of an operation, although not able +to assume that the
implementation will run in isolation, knows some limit to the state changes which
other processes can make. For example the rely-condition:

x =%
expresses the assumption that the (value of the) external variable 'X' will not
change; but:

e<§

accepts the possibility of change but requires that ‘' never increases in value.
The rely-condition:

£ ¢
Xty = Xby
requires that the sum of two values remains unchanged. (This example and the next
imply some notion of indivisible operations in the implementation.) The role of a
switch to control changes can be given in a rely-condition:
SW=FULL % buf=Hut

Rely-conditions, 1like pre-conditions, are recording assumptions for +the

implementation; the commitments (cf, post—conditions) relating to interference are
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recorded in guarantee-conditions. These are again predicates of two states which
all state trangformations wmust respect. The expessions above c¢ould occur in
guarantee—conditions. A process which was to coexist with one whose rely-condition

waz as in the last equation, might have only read access to 'SW' and use:
SweEMPTY = Duf=Huf
as a guarantee-condition.

It is possible to think of a rely-condition, for say 'OP', as a post—condition
of an operation which may be executed between any two atomic steps of '0OP'. The
guarantee—condition can be thought of as the post-condition for the atomic st;eps of
‘oP‘. (Although this explanation refers to "atomic steps”. the level of atomicity
is not fixed.)

The Sieve of Erathosthenes is used as a first illustration of the extended
specificationz. The idea of using two parallel processes was proposed in [Hoare
75]. The solution is extended here to use wore processes. The overall task can be
achieved by storing the set of all integers between 2 and N in a variable and then
invoking SIEVE:

S 1= {2,...,N}; SIEVE

SIEVE

ext wr S: get of N
&

rely 8 = 8

post 8 = 8 - Ui{multe(i) | ie{2,...,8qQre{(N)}}

mults(i) € {i*m | me{2,...,N}}

Notice that interference on ‘S’ is excluded in the specification. Suppose 'SIEVES
is to be implemented by executing in parallel many instances of a process 'REM’ -
one instance for each *I°'. What should the specification of the 'REM' process be?

The beginning is straightforward:

REM(I: WN)

ext wr S: get of W

If the post—condition were:
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8 = (s— —- multe(i)

the overall post-condition would follow from the conjunction of those for each
REM(IL)'. This would ke acceptable if each instance of 'REM' were run in
isolation. ‘The equality sets an upper and lower bound on changes to 'S'. This is
too restrictive in the case that other parallel interfering processes are changing
*S'. ('REM(2)' might, for example, run at a time when 'REM(3)' removes the value
'9' fyom 'S*'.) The lower bound on the effect of 'REM’' can be defined in the

post-condition:
viemults(i) . jgs

However, the conjunction of such post—-conditions will not vield the overall
pogt-condition. The proof rule for realization by parallel processes is given
below (in a form suggested Dby Peter Aczel in [Aczel 83]). The overall
post—condition can be a consequence of information about interference. In this
case it is clear that for any state which can arise a value which has been removed

must be a multiple of one of the process indices. Formally:
€ 5 .
vee{s-s) . 3ie{2,...,N}) . cemults(i)

Since the states which can arise are all created by the steps of the instances of
'REM', this must follow from the transitive closure of the gquarantee-condition for

*REM'. Thus the guarantee-condition must include:
€« .
vee(s-8) . cemults(i)

Another way to see the need for this guarantee-condition is to observe that the

post-condition would be satisfied by a process which set 'S' to the empty set!

Furthermore, the 'REM’ process can only ensure that elements will not be in the
final value of 'S‘ if no other (interfering) process can reinsert values (e.q.
'REM(2)' will remove the value '6' once — if 'REM(3)' were to reinsert the value,
the post—condition would not be satisfied). Thus a rely-condition of:

&
8 C8

is required. Since multiple instances of 'REM' will run in parallel, this must
also be conjoined to the guarantee-condition. 'Thus the overall specification for
'REM' becomes:
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REM(I: W)

ext wr S: et of N

pre true

rely s C &

quar sg‘é A vee(g-s) . cemults(i)
pegt viemults(i) . ige

Returning to the 'PINDP' problem, the overall specification might have rely-and

guarantee-conditions:

& &«
rely w=m A r=r

guar true

The operations *INIT' and 'SEARCHES®' require similar, trivial, extensions. The

extended form of the sequential proof rules is given in [Barringer 84bl}.

Suppoge that °‘SEARCHES® is now to be implemented by the parallel execution of
pr pyocesses ‘SERRCHi' (for ie{l,...,T}) where each such process is responsible

for checking a set of indices given in a map:
GS: map {1....,T} to (get of Ind)
The each ‘SEARCHi® process is gpecified:

SEARCHL
ext rd M: Array
wr R: N
pre true
rely w | gs(i)-tlii i gs(i) ~ rﬁg
guar r;ég % r<§ A gsatp(m,xr)
post consid{m.r,gs(i))

where the map restriction operator yields that portion of a map whose domain is in
the set:

mie={d»ms) | de(dommn 8)]

A specification now consists of four predicates:
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pre—condition of one state
rely-condition of two states

guarantee~condition of two states

Lo

post—condition of two states

The proof rule for the decomposition to two parallel processes is:

S1 sat (P,RvG2,G1,Ql),
sz gat (P,RvG1,G2,Q2)

(sl 11 s2) gat (P,R,G1lvG2,Q1AQ2A(RVGLVG2 ™)

The generalisation to 'n' processes is:

&;(Si gat (P,R v ViGi,GLi,Q1)) i#]

(11 Si) sat (P,R,VyiGi,8iQi » (RVV;Gi)¥)

where &;/Vj are generalised (finite) conjuctions and disjunctions.

To show that the parallel decomposition of *‘SEARCHES' is correct, a number of
proof obligations must be diacharged.

&1( PYe—SEARCHES = pre-SEARCHL)

is vacuously true;

&;(rely-SEARCHES v Vi guar—-SEARCH] = rely-SEARCHi1)

is straightforward;

V;{guar—SEARCHi) % gquar—-SEARCHES

ig vacuously true;

pre-SEARCHES A (&; post—SEARCHi) A
{rely~-SEARCHES v V4 guar-SEARCHi )" 4 poet-SEARCHES
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requires:

& & X &
satp(m,r) » &3 consid(m,r.gs(i)) A W A TEE 9 gatp(m,r) =

congid{m,r,Ind) A satp(m,r)

which follows provided that the disgtributed union of the range of 'GS° is equal to
‘Ind’.

In {Oowicki 76} a parallel implementation of this problem is given using one
process each for the odd and even indices. In [Jones 83c] it is shown how this can
be developed from the °*SEARCHI® specification. (Basically by a specialization to
two processes and a data refinement of ‘R’ onto an expression.) The key
requirement ©of a development method is again met in that it is not necessary to
reconsider the earlier sgstages of design. {The same paper discusses a maximal

parallel solution with one process per index.)

The method outlined above illustrates that it might be possible to find a way
of developing interfering programs which meets the requirement., The expressiveness
of the rely-/guarantee-conditions is, however, inadegquate for many problems.
Recent research (e.g. [Lamport 83}, [Barringer 84], [Barringer 85] - for overview
gee [de Roever 85]1) has moved to using Temporal Logic, This author has some
hesitation in following this stepi It must be realized that even the sequential
rules discuss the temporal changes +to states, The contribution of the
Naur/Floyd/Hoare techniques is that +the proof obligations themselves hide this
fact. The rely/guarantee idea was an attempt to regain this situation in spite of
the more complex environment. The next step should be work on a number of examples
using such tewmporal rules (e.g. [Sa 84)); if patterns of specification and proof
can Dbe isolated, perhaps we c¢an again confine temporal arguments to the
justification of proof rules which then do not use temporal logic. {A general

overview of approaches to parallelism is given in [Barringer 84b]}.)
Pogition

These advanced seminars are considering the relevance of formal methods in
software development. This section contains a number of claims which indicate this

author's position.

1. Formal specifications tend to focus on the functional apsects of systems -

questiong like the need for a system are not normally congidered. (The separation
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of performance issues should not cause surprise.)

2. Pormal specifications have been written for (the functional apsects) of

significant software, and hardware, systems.

3. There i3 a need to develop +techniques to aid checking that the

specifications of large systems meet the ugser's intentions.

4. A specific area where formal specification is, at the moment, less helpful
(than simulation) is so-called "Man-Machine Interfaces". (Some work in this are is
reported in this conference — {Marshall 85].)

5. A formal specification can provide a precise and (relatively) concise model
of a system priocr to construction. Such a specification can both deepen
understanding of the intended system and provide a correctness criteria for
implementation (and design).

6. The skills requivred to write such specifications are not vyet widely
available - education is likely to be the limiting factor in the use of formal
methods.

7. Support tools (cf. [Madhavii 85], (Snelting 85)] in this conference) are
required -~ there is a danger that such tools could force "mathematics as a

specification language” to develop into Ada—like syntactic guagmires.

8. Formal development methods focus on correctness issues and leave somewhat
aside the intuitive aspects of how to choose a good design (c¢f. [Naur 85]).

9. Application of formal methods to the early steps of design can reduce the
possibility of undetected errors -~ it is these errors which damage the
"productivity” of the program design process.

10. The decision as to the appropriate degree of formality to be used in design
verification is difficult. It is, as yet, unrealistic to use completely formal
(machine checked) proofs for large systems. It would appear that the earlier
stages warrant more formal treatment than the later ones. A crucial step towards
greater wachine support would be the development of "theories"™ about commonly used
data structures.

11. Formal methods will certainly not solve all problems concerned with
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software development. It is, however, a valid research area.

12. Experiments arve needed o improve the ease of access and style of formal
documents. Perhaps sowme of the research effort which appears +to develop
mathematics for its own sake could benefit from more application +to actual

computing problewms.

13. Formal methods, even in their evolving state, have a contribution to make

to current problems (@ee reports from industry at this conference).
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