
OBJECT ORIENTED CONCURRENT PROGRAMMING AND INDUSTRIAL SOFTWARE PRODUCTION

Akinori Yonezawa* and Yoshihiro Matsumoto**

*) Department of Information Science
Tokyo Institute of Technology
Ookayama Meguro-ku, Tokyo 152

**) Toshiba Corporation
Heavy Apparatus Eng. Lab.

l, Toshiba-Cho, Fuchu, Tokyo 183

O. Abstract

A framework of object oriented parallel computations is presented and a programming
language called ABCL whose semantics faithfully reflects this computation model is
illustrated. A methodology for industrial software production based upon the compu-
tation model is discussed.

1. Introduction

Objects in the object oriented programming are conceptual entities which model the
functions and knowledge of "things" that appear in problem domains. The fundamental
aim in the object oriented programming is to make the structure of a solution as
natural as possible by representing it as interactions of objects.

Currently proposed formalisms for object oriented programming (e.g., [GR83] [WMS1])
confine themselves in the sequential world. This is too restrictive. Parallelism is
ubiquitous in our problem domains. Behaviors of computer systems, human information
processing systems, corporative organizations, scientific societies etc. are results
of highly concurrent (independent, cooperative or contentious) activities of their
components. To model and study such systems, or design various software systems and
solve problems by the metaphor of such systems, it is necessary to develop an ade-
quate formalism in which various concurrent activities and interactions of "objects"
can be naturally expressed and which is also executable as computer programs.

We have already proposed such a formalism, namely a programming language called
ABCL[Y084]. The problem domains to which we apply our formalism include distributed
problem solving and planning in AI, modeling human cognitive processes, designing
real-time systems and operating systems, and designing and constructing office
information systems. Some of characteristic example programs in these domains are
also given in [Y084].

2. A Model of Computatio%

Our computation model for object oriented concurrent programming is a direct descen-
dant of the Actor computation model which was proposed and studied by C. Hewitt and

~96

his group at MIT[HE73][HB77][YO77][Y079]. This section gives an intuitive account
of what we mean by "objects". The properties of objects explained in this section

are those which are inherited from the notion of "actors".

In our computation model, computations are performed by concurrent message passing
among procedural modules called objects. Objects model conceptual or physical enti-
ties which appear in problem domains. Messages correspond to requests, inquiries or

replies.

Each object has its own processing power and it may have its local memory. An
object is always in one of two modes, active or inactive and it becomes active when
it receives a message. Each object has its own description which determines what
messages it can accept and what computations it performs. Upon receiving a message,
an object can make simple decisions, send messages to objects (including itself),
create new objects and change its local memory according to its description. After
performing the described computation, an object becomes inactive until it receives a

new message.

Though message passings in a system of objects may take place concurrently, we
assume message arrivals at an object be linearly ordered. No two messages cannot

arrive at the same object simultaneously and a single message queue sorted in the
arrival order is assumed for each object. When a message arrives at an object, if

the object is not active and no messages are in the queue, then the message is
received by the object. If the object is active or messages are already in the

queue, the message is put at the end of the queue.

There are two classes of objects, "serialized" objects and "unserialized" objects. A
serialized object is activated by one message at a time. While a serialized object
is being activated by a message, it is locked and cannot receive a new message. We
do not assume this property for unserialized objects. In the subsequent discussion

we focus our attention on serialized objects.

~. Types of Message~and Continuations

To study the versatility of our model of computation, we modeled and described vari-

ous parallel or real-time systems using a simple set of notations. In the course of

this process, we made a simple assumption on the message arrival and also found it
sometimes necessary to distinguish three types of message passings which are not

included in the original Actor model of computation.

[Arrival Ordering Preservation Assumption]

When two messages are sent to an object T by the same object O, the time ordering
of the two message transmissions (according to O's clock) must be preserved in

the time ordering of the two message arrivals Caccording to T's clock).

This assumption was not included in the original Actor model of computation[HB77],
Without this, however, we cannot model, for example, a computer terminal or display-
ing device as an object. The terminal object must receive character messages in the

same order as their transmissions from an object that models an output handling

program in an operating system.

397

["Past" Type Message Passings]

Suppose an object 0 is being activated and it sends a message M to an object T.
Then 0 does not wait for M to be received by T. It just continues its computation
after the transmission of M (provided that the transmission of M is not the last

action during the current activation of 0).

We call this type of message passings "past" type because sending a message finishes
before it causes the intented effects to the message receiving object. Let us
denote a past type message passing by the following notation.

[T <= M] (I)

The past type corresponds to the situation where one requests or commands someone to
do some task and simultaneously he proceeds his own task without waiting for the
requested task to be completed. This type of message passings substantially increase

concurrency of activities within a system. (Past type message passings can further
be divided into two kinds which may reflect two different implementation strategies.
In one kind, an object which transmits a message does not continue its computation
until the arrival of the message is assured, while in the other kind, the object
continues its computation as soon as the message leaves the object. Of course the
latter kind allows higher concurrency than the former one, but may sacrifice the
robustness against various unexpected errors in the system's components.)

["Now" Type Message Passings]

When an object 0 sends a message M to an object T, 0 waits for not only M to be
received by T, but also waits for T to return some information to O. If T does
not return anything, 0 waits until T's current activation caused by M ends.

This is similar to ordinary function/procedure calls, but it differs in that T's

activation does not have to end with sending some information back to O. T may con-
tinue its computation during the same activation caused by M. A now type message
passing is denoted by

[T <== M] (2)

Returning information from T to 0 may serve as an acknowledgement of receiving the

message (or request) as well as reporting the result of a requested task. Thus the
message sending object 0 is able to know that his message was surely received by the

object though he may waste time in waiting. The returned information (certain values
or signals) is denoted by the same notation as the message passing. Namely, (2)
denotes not merely an action of sending M to T by a now type message passing, but
also denotes the information returned by T. If the activation of T ends without
returning any information, we assume, by convention, (2) denotes some special value
(e.g. nil).

Now type message passings provide a quite convenient means to synchronize concurrent
activities performed by independent objects when it is used together with the paral-
lel construct that will be discussed in a later section. (It should be warned that
recursive now type message passings cause local deadlock.)

398

["Future" Type Message Passings]

Suppose an object 0 sends a message M to an object T expecting a certain request-

ed result to be returned from T. But 0 does not need the result immediately. In

this situation, 0 does not have to wait for T to return the result after the

transmission of M. It continues its computation immediately. Later on when 0

needs that result, it checks O's internal memory area that was specified at the
time of the transmission of M. If the result is ready, it is used. Otherwise 0

waits there until the result is obtained.

A future type message passing is denoted by

[x := [T <= M]] (3)

where x is the specified memory area (or a variable). A system's concurrency is

increased by the use of future type message passings. If the now type were used

instead of future type, 0 would have to waste time by waiting for the currently

unnecessary result to be produced. The future type message passing feature has been

incorporated in previous object oriented programming languages [LI81][FU84].

Since the now type and future type message passings are not allowed in the Actor

computation model, an actor A which sends a message to a target actor T and expects

a response from T must terminate its current activation and A must wait for the

response to arrive as just one of incoming messages. To discriminate T's response

from other incoming messages, A must make some provision before it sends the message

to T. Also the necessity of the termination of A's current activation causes unna-

tural breaking down of A's task into small pieces.

In the above discussion, the contents of a message was left vague. We should make it
clear in order to make a more precise account of how various information flows

among objects through message passings. A message consists of two parts, an RR-part

and a C-part. An RR-part which stands for a request/reply part tells the message

receiving object about the contents of a request or it is used to carry a reply or

result of a requested task.

When a message is sent by a "past" type message passing to request an object to do

some task, it is sometimes useful for the message sending object to have a means to

specify a destination object where the result of the requested task should be sent.

We call this destination object a "continuation". A C-part which stands for a
continuation-part provides this means. (Without an explicit indication of the desti-

nation, the only thing one can do is either to have the object which carries out the

requested task keep the result within itself, or to have the result sent to some

default object.) In our notational convention, a message is expressed by a pair

whose first and second parts are separated by a period. The first part and second

part correspond to its RR-part and C-part, respectively. Namely, it is of the form

[<RR-part> . <C-part>].

When the C-part of a message need not be specified, it is left blanked. In this case

the message is a Lisp singleton list of the following form

~g

[<RR-part>]

where the period after <RR-part> is omitted. In fact, the C-parts of messages sent
by "now" or "future" types must be void, because the destination to which the result
is supposed to be sent is predetermined. Namely, a "future" type message passing
itself specifies a part of the internal memory (or a variable) of the message send-
ing object. For the case of "now" type, we can view this type of message passings
as a special case of "now" type message passings.

~. ~ Language ABCL

In order to describe behaviors of objects in more precise and concrete terms, we
need to develop a language. We have tentatively designed and implemented a program-
ming language called ABCL (An object-Based Core Language). The purpose of designing

this language is manifold. It is intended to serve as an experimental programming
language to construct software in the framework of object-based concurrent program-
ming. The kind of the application domain we emphasize includes the AI fields and we
plan to use this language as an executable thought-tool for developing the paradigm
of distributed problems solving [Y084][SI81] and cognitive models. It is also
intended to serve as an executable language for modeling and designing of various
parallel or real time systems. Thus ABCL serves as a language for rapid
prototyping[SI82].

The primary design principles of this language are:

[i] Clear semantics: the semantics of the language should be as close to the simple
underlying computation model as possible.

[2] Practicality: various features of Lisp can be directly utilized to exploit
efficiency and programming ease as long as the framework of the object oriented

programming style is maintained.

The purpose of the present paper is not to introduce the details of the language, we

keep its explanation minimum. For those who are interested in the language, see
[YOS4][MYS4].

4.1. Defining Objects

Each object has a fixed set of message patterns it accepts. To define the behavior

of an object, we must specify what computations or actions it will perform for each

such message patter~. The description of computation for each message pattern is
called a "script". If an object has its local memory, its computations may be
affected by the current contents of such memory. Thus in order to define an object
with local memory, we must also describe how the object's local memory is
represented. Representations of local memory are variables or internal objects
which have its own local memory.

To write a definition of an object in ABCL, we use a notation of the following form

(4). (state: ...) declares the representation of local memory and initializes it.
Scripts are basically expressed in terms of message passings, referencing to
variables and calculating values or manipulating list structures using Lisp

400

functions. These actions are performed sequentially unless special parallel execu-

tion constructs are used.

[object <object-name>
(state: <representation of memory>)

(=> [<pattern>] <script>)

(~>'[<pattern>] <script>)

(4)

As an illustrative example, let us consider an object which models the behavior of a
semaphore. A semaphore has a counter to store an integer with a certain initial
value (say l) and also it has a queue for waiting processes which is initially

empty. We represent the counter as a variable and the queue as an (internal) object
which behaves as a queue. A semaphore accepts two patterns of messages, [p-op: . C]
and [v-op: . C] which correspond to the P-operation and V-operation. In ABCL, sym-
bols ending with a colon in messages or message patterns are constants, whereas sym-

bols starting with a capital letter or "_ " are pattern variables which bind com-
ponents of incoming messages. (p-op: and v-op: are constants. C is a pattern vari-
able which binds the C-part (, namely the continuation) of an incoming matching mes-

sage.)

Using the notation (4), a definition of thesemaphore object is shown below.

[object aSemaphere
(state: [counter := 1]

[process_q = [CreateQ <== [new:]]])

(=> [p-op: o C] <script for P-operation>

(=> [v-op: . C] <script for V-operation>

; := means assignment.

; = means binding.

)

)]

Note that a "now" type message passing is used to create a queue object

bound to a symbol process_q.

and it is

4.2. Creatin~Ob~e~

CreateQ in the above example is an object which creates and returns a new object
which behaves as a queue. We assume it is defined elsewhere. CreateQ can be viewed
as a class of queues and the created queue object as an instance of the queue class
(if we use the terminology of AI or SmallTalk[GB83]). In ABCL, rather complicated

notions such as classes and meta-classes are unified as the notion of objects, which

allows us to manipulate classes and meta-classes as objects.

Objects which create and return an object are often defined in the following

fashion.

401

[object CreateSomething
(=> [<initial-information> . <continuation>]

[<continuation> <= [[object ... ; a newly created object is
(=> [...] ...) ; sent to <continuation>

(=> [. . .] . . .)]

nil]]
)]

Namely, a message whose RR-part is a newly created object defined by [object]
and whose C-part is nil is sent to <continuation>. Creating a new object and sending
it back to the continuation is one of typical situations where a message with its

C-part being nil is sent to the original continuation. A simple abbreviated nota-
tion in ABCL expresses this scheme of message transmission.

(=> [<request>] ... !<expression> ...),

This is equivalent to

(=> [<request> . <continuation>]
... [<continuation> <= [<expression> . nil]] ...).

5. Parallelism and Synchronization

5.1 Parallelism

Using the abbreviated notation explained in the previous section, the object which
creates and returns a semaphore object is defined in Figure I. In the script for
p-op:, (subl counter) is an invocation of a lisp function subl and the result
updates the contents of counter. When process_q object is empty in executing the

script for v-op:, a [go:] message is sent to the continuation which is bound to C;
otherwise the first process that has been waiting is removed from the queue and

[go:] messages are sent to this process and the continuation simultaneously.

As noted earlier, a script is usually executed sequentially. But when a special
construct denoted by

{ E1 Ek }

is executed, the executions of EI,...,Ek start simultaneously. The execution of
this construct, which we call a "parallel construct", does not end until the execu-
tions of all the components EI,...,Ek end. When the components of a parallel con-
struct are all past type message passings, the degree of parallelism caused among
the message receiving objects is not much greater than the degree of parallelism
caused by the sequential execution of the components because of very small time cost

of a message transmission. But if a parallel construct contains now type message
passings, the possibility of exploitation of parallelism among the message receiving
objects is very high.

402

[object CreateSemaphore

(=> [init: N] ~when !init: ~o~] is sent, the following object
~is created and returned.

![object ; definition of a semaphore object begins.
(state:

[counter := N]
[process_q = [CreateQ <== [new:]]])

(=> [p op: . C]
[counter := (subl counter)]
(case (> 0 counter)

(is t ; if counter is negative
[process q <= [enqueue: C]])

~therwise
[C <= [go:]])))

(=> [v op: . cl
[counter := (addl counter)]
(case [process_q <== [dequeue:]]
(is nil ; if process_q is empty

[c <= [go:]])
(is FrontProcess ; the head of process_q is bound to FrontProcess

{ [FrontProcess <= [go:]],
[c <= [go:]] })))

])]

Figure I. Defining a Semaphore Object

After having explained parallel constructs, it is an appropriate time to review
basic types of parallelism provided in ABCL.

the

[I] concurrent activations of independent objects.

[2] parallelism caused by past type message passings.

[3] parallelism caused by parallel constructs.

~.2. ~nchronization

Parallel constructs are also powerful in synchronizing the behaviors of objects
because the semantics of a parallel construct requires that its execution completes
only when the executions of all the components complete. When a parallel construct,
in a script, contains a now type message passing, all the intended actions of the
message receiving objects must be completed before going on to the execution of the
rest of the script. (Note that we need no synchronization if all the components of
a parallel construct are past type message passings.)

For example, suppose the movement of a robot arm is actuated by three step motors,
each being responsible for the movement along different coordinates[KS84] and for

403

each motor there is an object operating it. In order to pick up something by the

fingers attached to the arm, the control program sends signals to the three objects

in parallel, and it must wait until the rotations of all the three motors stop. See
a fragment of the program below.

... { [motorX <== [step: I00]], [motorY <== Istep: 150]], [motorZ <== [step: -30]]]
<command to pick up> ...

We conclude this section to remind one that ABCL provides the following four basic
mechanisms for synchronization.

[1] serialized object: the activation of a serialized object takes place one at a

time and a single first-come-first-served message queue is associated with each
object.

[2]

[3]

now type message passing: it does not end until a certain result is returned or
the activation of the message receiving object comes to end.

future type message passing: when the specified variable is referred to, the
execution is suspended if the contents is not updated yet.

[4] parallel construct: as discussed above.

Although we have shown an implementation (or modeling) of semaphores in terms of the

object paradigm, we think semaphores are toe primitive and unstructured as a basic
synchronization mechanism. Thus we have no intention of using semaphore objects to

synchronize behaviors of objects. Our experience of writing programs which require

various types of synchronization suggests that combinations of the four mechanisms
listed above seem sufficiently powerful for dealing our current problems.

6. Use of ABCL for Industrial Software Production

Software design in the practical software manufacturing is a refinement process in
which requirements specified in a problem domain are gradually transformed into pro-
grams. In the waterfall type lifecycle models, the refinement is done through mul-
tiple numbers of consecutive phases. In an earlier phase, a specification may be
transformed into the second specification which has more concreteness, or less
abstraction. In later phases, a program written in a higher language will be
translated into the program written in a lower language. Dijkstra described the

concept of abstract machine M(i) and description D(i) on abstract level i such that
execution of D(i) on M(i) satisfies the purpose of code D(O) which is to be executed

on a real machine M(O). At the next lower level, level(i-l), D(i-l) is executed on
M(i-l) [DI72].

The phases, descriptions and abstract levels in our practical software production
are defined as follows [MA84]:

404

i=4; D(4): requirements specification,
i=3; D(3): functional design specification or external design specification,
i=2; D(2): program design specification or detail design specification,
i=l; D(1): program text,

i=O; D(O): binary code.

phase(4): requirements analysis and definition,

phase(3): functional design,
phase(2): program design,
phase(l): programming,
phase(O): translation or compilation.

It has been our consistent desire that the designer does not have to go down into
too much low level description. In this sense, we owe compilers and assemblers for
staying away from level 0, but the actual productivity value is still much to be

improved, if we could have a language in which we could write a specification of a
higher abstract level (i.e., the functional design or program design level) and
translate it into binary code, it will bring us a great benefit" for increasing the
productivity. The descriptions of higher abstract levels reflect the designer's
internal models or concepts more directly than those of lower levels do. Therefore

the languages which could meet our desire of describing specifications of higher
levels should be those which could describe human (expert) knowledge in more direct
forms. Our object oriented concurrent language ABCL seems to be one candidate of

such desired languages.

We will give a simple example selected from our actual software and show how ABCL
has been used for this example. This example is a part of software to print out the
operational guidance messages for human operators in local dispatch control stations

of an electric power system.

In response to requests from the central supervisory office, an operator disconnects

facilities which are required to be checked, repaired or cleaned. The facilities

may be transmission lines, electric bus lines in a substation, or transformers.
When a facility is disconnected, it will become out of service. Therefore the
operator must put alternative facilities into service so that they will substitute

for the functions of the disconnected facility. By setting up an alternative cir-
cuit which rounds about the facility to be disconnected, the consumer of electric

power will not be affected.

The programs written in ABCL in Figure 2 and Figure 3 show a part of the software
which reasons the method to set up this round about operation. The programs
describe a knowledge to disconnect a transmission line named "LINE-N". Figure 3
describes the knowledge before it is instantiated. The description in Figure 2
instantiates it so that the newly created object whose name is now
Disconnect_operation for LINEN contains the knowledge to disconnect the transmis-
sion line "LINE-N". This knowledge is modelled as the object described in line 4 to

line 17 in Figure 3, where the value of the pattern variable "Line_name" is "LINE-
N t! .

405

1 [Disconnect__operation for LINE_N =
2 [Createlinedisconnect_knowledge <== [for: LINE-N]]]

3 [Disconnect_operation for LINEN <=
4 [disconnect_transmissionline_and_report__to: . Supervisor]]

Figure 2.

1
2
3
4
5
6
7
8
9
l0
II
12
13
14
15
16
17

[object Create_line__disconnectknowledge
(=> [for: Line_name]

![object Me
(state:

[caller_name := nil]
[load_facility_list := (func$fetch_local_facility_for Line_name)]
[substation_operation = [Create_substation_operation <= [new:]]])

(=> [disconnect_transmission_line_and_report_to: . Caller]
[caller_name := Caller]
[substation_operation <=

[handle_outservice__of: load_facility_list and_report__to: . Me]])

(=> [substation operation finished:]
(func$disconnect_transmissionline Line_name)
[caller_name <= [transmission__line_disconnected:]])])]

Figure 3.

The object "Disconnect_operation for LINEN" is activated when it receives messages
with the patterns shown in line l0 and 15. When it receives a message of the pattern
in line 10, the name of the object which is bound to the pattern variable "Caller"
is stored in the variable "caller_name", and it activates the object
"substation_operation" by sending the message shown in line 13, and then it becomes
inactive. When the substation object finishes its operation, it is supposed to send
back to Disconnect_operation for LINE N a message of the pattern shown in line 15.
Thus Disconnect_operation for LINEN becomes active again and does the disconnecting
of transmission lines for LINE-N (line 16) and finally it sends to the original
caller (here, Supervisor) a message indicating the end of the operation (line 17).

The programs shown reflect the knowledge of the operator more directly because it
simulates the behavior of the operator who first becomes active by the instruction
from the central office, analyzes it, transmits his instructions to his subsidi-
aries, disconnects his facility and then reports the completion to the central
office.

A create-object such as the one shown in Figure 3 is defined for each type of facil-
ity. For example, we have Create_transformer_disconnect_knowledge for the
transformer. The collection of such objects is called "knowledge base" in our sys-
tem. This knowledge base is accessed and maintained through the knowledge base

406

management system.

The object defined in Figure 3 illustrates just one type of objects which represent
"knowledge chunk" in the form of state changes. We have other types of objects. For
example, a type of object represents a block of production rules. Another type of
object can represent a set of fuzzy logic. We are convinced that all these types of
objects are required in order to implement our system which supports plant opera-

tors.

7. C oncludin 8 Remarks

~.~. ?rogramming Environments

The first stage of (concurrent) programming in the object oriented style is to
determine, at a certain level of abstraction, what kinds of objects are necessary
and natural to have in solving the problem concerned. At this stage, message pass-
ing relations (namely what objects send messages to what objects) are also deter-

mined.

Since it is often useful or even necessary to effectively overview the structure of
a solution or result of modeling, those identified objects and message passing rela-
tions should be recorded and be retrieved or even manipulated graphically. For
this purpose, we are currently designing and implementing a programming aid system

on a SUN-II Workstation with multi-window facilities and a standard pointing device.
A typical action using this system might be to add a node to a graph which
represents message passing relations among objects (where nodes correspond to
objects), point the node by a mouse to get a pop-up menu and select/perform opera-

tions such as editing and compiling the program for the object.

7.2.Other Examples

A wide variety of example programs have been written in ABCL and we are fairly con-
vinced that essential part of ABCL is robust enough to be used in the intended
domains. Examples we have written include distributed problem solving by a project
team[Y084], parallel discrete simulation[YO84a], deamons, production rules, robot
arm control[KS84], bounded buffers, integer tables[H078], simulation of data flow
computations, process schedulers etc. Also a simplified example of a mill speed con-
trol program[MAg&] written in ABCL is given in the Appendix below.

Acknowledgements

The first author expresses his deep appreciation to H. Matsuda and E. Shibayama who
made various contributions to the present work including the design and implementa-

tion of ABCL.

References

[D172] Dijkstra, E.W.: Notes on Structured Programming,
(Edso O.J. Dahl, et al.), Academic Press, 1972.

Structured Progr~ing,

407

[FU84]

[GR83]

[HB77]

[HE73]

[H078]

[KS84]

[LI81]

[MA84]

[MY84]

[SI82]

[sP81]

[WM81]

[Y077]

[Y079]

[Y084]

[YO84a]

Fukui, S.: An Object Oriented Parallel Language, Proc. Hakone Programming
Symposium, (1984), in Japanese.

Goldberg, A. and Robson, D.: SmallTalk80 - The Language and its Implementa-
tion -, Addison Wesley, 1983.

Hewitt, C. and Baker, H.: Laws for Parallel Communicating Processes, IFIP-
77, Toronto, (1977).

Hewitt, C. et al.: A Universal Modular Actor Formalism for Artificial Intel-
ligence, Proc. Int. Jnt. Conf. on Art. Int., (1973).

Hoare, C.A.R.: Communicating Sequential Processes, CACM, Vol. 21 No. 8,
1978.

Kerridge, J. M. and Simpson, D.: Three Solutions for a Robot Arm Controller
Using Pascal-Plus, Occam and Edison, Software - Practice and Experience -
Vol. 14, (1984), pp.3-15.

Lieberman, H.: A Preview of Act-l, AI-Memo 625, MIT AI Lab., (1981).

Matsumoto, Y.: Management of Industrial Software Production, IEEE Computer
Vol. 17, No. 2, (1984), pp.59-72.

~tsuda, H. and Yonezawa, A.: ABCL User's Manual, Internal Memo, Dept. of
Information Science, Tokyo Institute of Technology, November 1984.

Special Issue on Rapid Prototyping, ACM SIG Software Engineering Notes Vol.
7, No. 5, December 1982.

Special Issue For Distributed Problem Solving, IEEE Trans. on Systems, Man
and Cybernetics, Vol. SMC-II, No.l, (1981).

Weinreb, D. and Moon, D.: Flavors: Message Passing in the Lisp Machine, AI-
Memo 602, MIT AI Lab., (1981).

Yonezawa, A.: Specification and Verification Techniques for Parallel Pro-
grams Based on Message Passing Semantics, (Ph.D. Thesis), TR-191 Laboratory
for Computer Science, MIT, 1977.

Yonezawa, A. and Hewitt, C.: Modelling Distributed Systems, Machine Intelli-
gence, Vol. 9 (1979).

Yonezawa, A, Matsuda, H and Shibayama, E: An Object Oriented Approach for
Concurrent Programming, Research Report C-63, Dept. of Information Science,
Tokyo Institute of Technology, November 1984.

Yonezawa, A.: Discrete Event Simulation Based on An Object Oriented Parallel
Computation Model~ Research Report C-64, Dept. of Information Science, Tokyo
Institute of Technology, November 1984.

408

Appendix Mill Speed Control Program

A simple ABCL program for controlling mill roller speed is given below.
Input_Handler object receives sensor data which consist of 6 heat sensor values
(hl-h6), a load cell value (ls), and an emergency stop flag (stp). Speed_Selection
object determines the right speed of the mill roller by considering the current
position of the slab and the data sent from Input_Handler. Speed_Control object
sets the actual speed of the roller. Note the concurrency among the three object.

Sensor Value

* Speed C o n t r o l *

==> * Input_Handler *

vv

<== * S p e e d S e l e c t i o n *

[object Input_Handler
(=> [sensor value: Frame]

(case Frame
(is [hl: 0 h2:0 h3:0 is: O h4: O h5:0 h6:0 stp: O]

[Speed_Selection <= [input: 'ill])

(is [hl: i h2:0 h3:0 is: 0 h4:0 h5:0 h6:0 stp: O]
[Speed_Selection <= [input: 'i2]])

(is [hl: O h2:1 h3:0 Is: 0 h4:0 h5:0 h6:0 stp: O]
[Speed_Selection <= [input: 'i3]])

.o~ <cases for ¢i4 to 'i8 are omitted> ...

(is [hl: 0 h2:0 h3:0 Is: 0 h4:0 h5: I h6:0 stp: O]
[Speed_Selection M= [input: 'i9]])

(is [hl: 1 h2:0 h3:0 is: 0 h4:0 h5:0 h6:1 stp: O]
[Speed_.Selection <= [input: 'ilO]])

(is [hi: h2: h3: is: h4: h5: -- h6: _ stp: I]
[Speedjelect~on <=--[inpuT: 'ilT]])

(otherwise
[Speed_Selection <= [input: ~i12]])))]

409

[object Speed_Selection
(state: [current_slab_loc := 'no_slab])

(=> [input: Status]
(case (list current_slab_loc Status)

(is ['no slab 'il]
[Speed_--Control <= [speed: idle:I])

(is ['no slab 'i2]
[current slab loc := 'coming]
[Speed_C~ntro~ <= [speed: low:I])

(is ['coming _I]
(case (member__l '(i3 i4 i5))

(is t
[Speed_Control <= [speed: low:]])))

(is ['coming 'i6]
[current slab loc := 'rolling]
[SpeedC~ntro~ <= [speed: high:]])

(is ['rolling 'i6]
[Speed_Control <= [speed: high:]])

(is ['rolling 'i7]
[current slab loc := 'leaving]
[SpeedC~ntroT <= [speed: low:]])

(is ['leaving I]
(case (member I '(i7 i8 i9 ilO))

(is t
[Speed_Control <= [speed: low:I])))

(is ['leaving 'il]
[current_slab_loc := 'no_slab]
[SpeedControl <= [speed: idle:I])

(otherwise
[Speed Control <= [speed: stop:]])))]

[object Speed_Control
(=> [speed: SP]

(case SP
(is idle: (set_roller_speed 'idle))

(is low: (set_roller_speed 'low))

(is high: (set_roller_speed 'high))

(is stop: (set_roller_speed 'stop))))]

