
C O M B I N I N G  A L G E B R A I C  _&ND P R E D I C A T I V E  S P E C I F I C A T I O N S  

IN LARCH 

J. J. Horning 

Systems Research Center 

Digital Equipment Corporation 

130 Lyt ton Avenue 

Palo Alto, CA 94301 U. S. A. 

A b s t r a c t  

Recently there has been a great deal of theoretical interest in formal specifications. However, 

there has not been a corresponding increase in their use for software development. Meanwhile, 

there has been significant convergence among formal specification methods intended for practical 

use. 

The Larch Project is developing tools and techniques intended to aid in the productive use of 

formal specifications. This talk presents the combination of ideas, both old and new, that  we are 

currently exploring. 

One reason why our previous specification methods were not very successful was that  we tried 

to make a single language serve too many purposes. To focus the Larch Project, we made some 

fairly strong assumptions about the problem we were addressing. 

Each Larch specification has two parts,  written in different languages. Larch interface languages 

are used to specify program units (e.g., procedures, modules, types). Their semantics is given 

by translat ion to predicate calculus. Abstractions appearing in interface specifications are 

themselves specified algebraically, using the Larch Shared Language. 

A series of examples will be used to illustrate the use of the Larch Shared Language and the 

Larch/CLU interface language. The talk will conclude with notes on the key design choices for 

each of the languages, and for the method of combining the two parts of a specification. 
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I n t r o d u c t i o n  

I would like to begin with three general observations about the field of formal specification: 

Theoretical interest: It  is clear that  formal specification has captured the interest of a signficant 

group in the theoretical computer science community. The program for this joint  conference 

gives evidence of the vitality of the research area. Similar evidence will be found in a 

dozen other recent conferences and in numerous journals. Sound theoretical foundations are 

being given for more a~d more different kinds of formal specification languages, and subtle 

semantic problems are being explored to ever-greater depth, particularly in such areas as 

parameterization and concurrency. 

Adoption: It is equally clear that  this interest has not been matched by the use of formal 

specifications in software development. Several a t t empt s - - and  even some successes--have 

been reported. But formal methods have not swept the programming community (at my 

employer, or in the world at large) in the same way that  higher-level languages did in 

the decade after FORTRAN. In retrospect, perhaps this should have been expected, for a 

variety of reasons. Many of the theoretical results are not presented in a form accessible 

to practitioners. I t  is not obvious how some of the theoretically appealing methods deal 

with many problems of practical importance. Formality is not inevitable in specifications-- 

there are more alternatives for human/human communication than for human/machine 

communication. Few of the formal specification languages have come with the quality of 

computer support  that  even the original FORTRAN did. 

Co'nvergence: As developers of formal specification methods confront the problems of practical 

software development, many distinctions that  formerly seemed clear-cut are becoming 

blurred. Everyone seeks to combine the advantages tradit ionally associated with each 

method, while mitigating its disadvantages. Good ideas are borrowed freely and hybrid 

methods are tried. It is difficult to track "intellectual ancestry, ~ and generalizations about 

the limitations of classes of methods are quickly falsified. 

In this talk, I would like to share the particular combination of old and new ideas that  we are 

currently exploring in the Larch Project. We do not yet have much experience with their use 

in practical software development, and the supporting tools are not yet available. But we are 

pleased with the way the pieces seem to be fitting together. We hope tha t  software developers will 

assess their promise for dealing with practical problems, and tha t  developers of other specification 

methods will consider including some of them in their own schemes. 

C o n t e x t :  The Larch P r o j e c t  

The Larch Project at MIT's Laboratory for Computer Science and DEC's Systems Research 

Center is the continuation of more than a decade of collaborative research with John Guttag and 

his students in the area of formal specification. It is developing both a family of specification 

languages and a set of tools to support their use, including language-sensitive editors and semantic 

checkers based on a powerful theorem prover [Lescanne 83][Forgaard 84]. 



14 

Larch is ~u effort to test our ideas about making formal specifications useful. We tried to analyze 

the reasor~s why our previous specification methods had not been as useful (and hence not as 

widely used) as we had hoped they would be [Guttag, Homing, and Wing 82]. We identified 

several problems to be solved before we could confidently offer our methodology to software 

developers. To focus the project, we made the following assumptions, which strongly influenced 

the directions it has taken: 

Local specifications: We started with the belief that programming-language-oriented behavioral 

specifications of progr~'n units could be useful in the near future. No conceptual break- 

throughs or theoretical advances seemed to be needed. Rather, we needed to use what we 

already knew to design usable languages, develop some software support tools, and educate 

some system designers and implementers. 

Sequerrtial programs: We focussed on specifications of the behavior of progr~n units in non- 

concurrent environments. We are aware of the importance of concurrency, and of many 

of the additional problems it introduces. However, we find it quite hard enough to deal 

adequately with the sequential case. A successful framework for dealing with concurrency 

will still need a method for specifying the atomic actions of the concurrent system. 

Scale: Methods that are entirely adequate for one-page specifications may fail utterly for hundred- 

page specifications. It is essential that large specifications be composed from small ones 

that can be understood separately, and that the task of understanding the ramifications of 

their combination be managable. For large specifications, the "putting together" operations 

[Burstall and Goguen 77] are more crucial than the details of the language used for the 

pieces of which it is composed. 

Incompleteness: Realistically~ most specifications are going to be partial. Sometimes incomplete- 

ness reflects abstra~.tion from details that are irrelevant for a particular purpose; e.g., time, 

storage usage, and functionality might be specified separately. Sometimes it reflects an in- 

tentional choice to delay certain design decisions. And sometimes it reflects oversights in the 

design or specification process. It is important to detect the latter kind of incompleteness 

without making the other two kinds awkward. 

Errors: Our experience suggests that the process of writing specifications is at least as error-prone 

as the process of programming. We believe that it is important to do a substantial amount 

of checking of the specifications themselves. The ultimate tool for error-detection is the 

understanding of human minds. However, we have found that--by designing the specification 

language to incorporate useful redundancy---some surprisingly effective mechanical checks 

are feasible. We have chosen to supplement checking analogous to a compiler's syntax and 

type checking with a number of semantic checks that rely on a theorem prover. 

Tools: A serious bar to practical use of formal specifications is the number of tedious and/or 

error-prone tasks associated with maintaining the consistency of a substantial body of 

formal text. Tools c~u assist in managing the sheer bulk of large specifications, in browsing 

through selected pieces, in deriving interactions and consequences, and in teaching a new 

methodology. Thinking about such tools has changed our ideas about what it is important 

to include in specification languages. 
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Handbooks: It is inefficient to star t  each specification from scratch. We need a repository of 

reusable specification components that  have evolved to handle the common cases well, and 

that  can serve as models when faced with uncommon cases. It is no more reasonable to keep 

reinventing the specifications of priority queues and bitmaps than to axiomatize integers 

and sets every time they are used. A rich collection of "abstract models" is a step in the 

right direction, but  the collection should be open-ended, and include application-oriented 

abstractions, as well as mathematical  and implementation-oriented ones. We expect the 

most useful parts  of specification handbooks to be writ ten in the Shared Language. 

Language dependencies: For many years we tried to write specifications in languages that  were 

completely free of bias towards any programming language. We now think that  effort 

was misdirected, at least for local specifications. The environment in which a program 

unit is embedded, and hence the nature of its observable behavior, is likely to depend in 

fundamental ways on the semantic primitives of the programming language. Any at tempt  

to disguise this dependence will make specifications more obscure to both the unit 's  users 

and its implementers. On the other hand, many of the important  abstractions in most 

specifications can be defined in a language-independent way. 

We have adopted a two-tiered methodology [Wing 83]. Each specification has two parts,  written 

in different languages: specifications of program units are writ ten in a Larch interface language 

that  is tailored to a programming language; these specifications use programming-language- 

independent abstractions, which are specified separately in the Larch Shared Language. Some 

important  aspects of the Larch family of specification languages are: 

Composability: The Larch Shared Language is oriented towards the incremental construction of 

specifications from other specifications. 

Emphasis on presentation: To make it easier to read and understand specifications, the 

composition mechanisms in the Larch Shared Language are defined as operations on 

specifications, rather than on theories or models. 

Interactive and integrated with tools: The Larch languages are intended for interactive use. 

Tools are being constructed for both interactive construction and incremental checking of 

specifications. 

Semantic checking: The semantic checks for the Larch languages were designed assuming the 

availability of a powerful theorem prover. Hence they are more comprehensive than the 

syntactic checks commonly defined for specification languages. 

Shared Language based on equations: The Larch Shared Language has a simple semantic basis 

taken from algebra. However, because of the emphasis on composability, checkability, and 

interaction, it differs substantially from the algebraic specification languages we have used 
in the past. 

Interface languages based on predicate calculus: Each interface language is a way to write 

assertions about states,  that  can be translated to formulas in typed first-order predicate 

calculus with equality. Programming-language-specific notations deal with constructs such 

as side effects, exception handling, and iterators. Equality over terms is defined in the 

Shared Language; this provides the link between the two parts of a specification. 
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E x a m p l e  Speci f ica t ions  in t he  L a r c h  S h a r e d  L a n g u a g e  

The following series of examples is intended to give the flavor of the Larch Shared Language. A 

complete description of the Larch Shared Language is contained in [Guttag and Homing 85a], 

and extensive examples of its use are given in [Guttag and Homing 85b]. 

The trait is the basic module of specification. A trait may specify an abstract data type, but 

frequently traits are used to capture general properties that may be shared by many types. Such 

traits may be included in other traits that  specify particular types. 

Consider the following specification describing tables that store values in indexed places: 

TableSpec: t r a i t  

i n t roduces  

new: --~ Table 

add: Table, Index, Val --+ Table 

~ E ~ :  Index, Table --+ Bool 

evah Table, Index --~ Val 

isEmpty: Table ~ Bool 

size: Table --~ Card 

cons t r a in s  new, add, C, eval~ isEmpty, size so t h a t  

fo r  all [ indl, ind2: Index, vat: Vat, t: Table ] 

eval(add(t, indl, va.~, ind.) = if lad1 = ind9 t h e n  val else eval(t, ind£) 

indl E new = false 
indi E add(t, inde, val) = (indl = inde) V (indl E t) 

size(new) = 0 
size(add(t, indl, vaO) = if indl E t t hen  size(t) else size(t) + 1 

isEmpty(t) = (size(t) = 0) 

This example is similar to a conventional algebraic specification in the style of [Guttag and 

Homing 80]. The part of the specification following in t roduces  declares a set of operators 

(function identifiers), each with its signature (the sorts of its domain and range). These signatures 

are used to sort-check terms (expressions) in much the same way as function calls are type- 

checked in programming languages. The remainder of the specification constrains the operators 

by writing equations that relate sort-correct terms containing them. 

Each trait defines a a set of well-forraed formulas (wff's) of predicate calculus that is closed under 

inference. The theory associated with a simple trait written in the Larch Shared Language is 

defined by: 

Axioms: Each equation, universally quantified by the variable declarations of the containing 

cons t r a in s  clause, is in the theory. 

inequation: -1 (true = false) is in the theory. All other inequations in the theory are derivable 

from this one and the meaning of equality. 

Predicate calculus: The theory contains the conventional axioms of typed first-order predicate 

calculus with equality, and is closed under its rules of inference. 
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The next example is an abstraction of those da ta  structures that  "contain" elements, e.g., set, 

bag, queue, stack. It is useful both  as a starting point for specifications of various kinds of 

containers, and as an assumption for generic operators. The crucial part  of the trai t  is the 

g e n e r a t e d  by .  By indicating that  any term of sort C is equal to some term in which new and 

insert are the only operators with range C, it introduces an inductive rule of inference that  can 

be used to prove properties of terms of sort C. 

Container: t r a i t  

i n t r o d u c e s  

new: ~ C 

insert: C, E --* C 

c o n s t r a i n s  C so t h a t  C g e n e r a t e d  b y  [ new, insert ] 

The next example builds upon Container by assuming it. It  constrains the new and insert 

operators it inherits from Container, as well as the operator it introduces, isEmpty. The conve r t s  

clause adds nothing to the theory of the trait .  It adds checkable redundancy by indicating that  

this t ra i t  is intended to contain enough axioms to adequately specify isEmpty. Because of the 

g e n e r a t e d  by ,  this can be proved by induction over terms of sort C, using new as the basis and 

insert(c, e) in the induction step. 

IsEmpty: t r a i t  

a s s u m e s  Container 

i n t r o d u c e s  isEmpty: C ~ Bool 

c o n s t r a i n s  isEmpty, new, insert so t h a t  for  a l l  [ c: C, e: E 1 

isEmpty(new) --- true 

isEmpty(insert(¢, e)) -- false 

imp l i e s  c o n v e r t s  [ isEmpty ] 

The next two examples also assume Container. Like c o n v e r t s ,  the e x e m p t s  clauses are 

concerned with checking, and add nothing to the theory. They indicate that  the lack of equations 

for next(new) and rest(new) is intentional. Even if Next or Rest is included into a trait  that  

claims the convertibility of next or rest, the terms next(new) and rest(new) don't  have to be 

converted. 

Next: t r a i t  

a s s u m e s  Container 

i n t r o d u c e s  next: C --* E 

c o n s t r a i n s  next, insert so t h a t  for  a l l  [ e: E ] 

next(insert(new, e)) : e 

e x e m p t s  next(new) 

Rest: t r a i t  

a s s u m e s  Container 

i n t r o d u c e s  rest: C --* C 

c o n s t r a i n s  rest, insert so t h a t  for  a l l  [ e: E ] 

rest(insert(new, e)) = new 

e x e m p t s  rest(new) 
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The next example specifies properties common to various data structures such as stacks, queaes, 

priority queues, sequences, and vectors. It augments Container by combining it with IsEmpty, 

Next, and Rest° Lucludes indicates that this trait is intended to inherit their operators, and 

to constrain them further. Specifically, the p a r t i t i o n e d  by  clause constrains new, insert, and 

isEmpty by indicating that they are a "complete" set of observer functions. I.e., if two terms 

are different, this difference can be observed in the value of at least one of these functions. Since 

little other information has been supplied about these operators, the p a r t i t i o n e d  by  does not 

yet add much to ~he associated theory. 

Enumerable: t r a i t  

includes  Container, IsEmpty, Next, Rest 

cons t r a in s  C so t h a t  C p a r t i t i o n e d  by  [ next, rest, isEmpty ] 

The next example specializes Enumerabte by further constraining next, rest, and insert. Sufficient 

axioms are given to convert next and rest. The axioms that convert isEmpty are inherited from 

the trait Enumerable, which inherited them from the trait IsEmpty. 

PriorityQueue: t r a i t  

a s sumes  TotalOrder w i t h  [ E for  T ] 

includes Enumerable 

cons t r a in s  next, rest, insert so t h a t  for  all [ q: C, e: E 

next(insert(q, e)) = if isEmpty(q) t h e n  e 

else if  next(q) < e t h e n  next(q) else e 

rest(insert(q, e)) = if isEmpty(q) t h e n  new 

else if next(q) < e t h e n  insert(rest(q), e) else q 

implies conver t s  [ next, rest, isEmpty ] 

The next example illustrates a specialization of Container that does not satisfy Enumerable. 

It augments Container by combining it with IsEmpty and Cardinal, and introducing two new 

operators. Container and IsEmpty are inc luded  because the trait further constrains operators 

inherited from them. Cardinal is i m p o r t e d ;  this indicates that this trait '  inherits Cardinal's 

specification, but is not intended to further constrain any of its operators. The theory associated 

with Cardinal can thus be understood independently, and will not be enriched by MultiSet. 

I m p o r t s  and includes yield the same theory, but stronger checks are performed for impor t s .  

The p a r t i t i o n e d  by indicates that count alone is sufficient to distinguish unequal terms of sort 

MSet. C o n v e r t s  [ isEmpty, count, delete ] is a stronger assertion than the combination of an 

explicit conver t s  i count, delete ] with the inherited conver t s  [ isEmpty ]. 

MultiSet: t r a i t  
a s sumes  Equality w i t h  [ E for  T ] 

i m p o r t s  Cardinal 
includes  Container w i t h  [ MSet for  C, (} for  new ], IsEmpty w i t h  [ MSet for  C ] 

i n t roduces  count: E, MSet -+ Bool 

delete: E, MSet --, MSet 

size: MSet --, Card 



19 

cons t ra ins  MSet so t h a t  

MSet pa r t i t ioned  by  [ count ] 

for all [ c: MSet, e l ,  e/g: E ] 

count({} ,  el) = o 

count(insert(e, e l ) ,  e/g) = count(c, e/g) ÷ (if ( e l  = e/g) then  1 else 0) 

size({}) ---- 0 

size(insert(c, eI)) = slze(c) d- 1 

delete({}, eg) = {}  

delete(insert(c, e l ) ,  e2) = f f  e l  = e2 then  c else insert(delete(c, e/g), e l )  

implies converts  [ isEmpty, count, delete ] 

An Example  Specification in L a r c h / C L U  

Theories are all very well, but what is their connection to software development? In Larch, the 

theories associated with specifications written in the Shared Language are used to give meaning 

to operators appearing in specifications written in Larch interface languages. It is these interface 

specifications that actually provide information about program units. 

Interface languages are programming-language dependent. Everything from the modularization 

mechanisms to the choice of reserved words is influenced by the programming language. At 

present, there is only one moderately well-developed Larch interface language, the Larch/CLU 

language [Wing 83][Guttag, Horning, and Wing 85]. The semantics of Larch/CLU incorporates 

semantic constructs from CLU. For example, the meaning of signal in Larch/CLU derives from 

the meaning of signal in CLU--which is different from the meaning of SIGNAL in PL/I  or 

MESA. Correspondingly, Larch/CLU uses CLU-like syntax for constructs in common, e.g., 

procedure headers. Other interface languages would use concepts and terminology based on 

their programming languages. 

I will present just one short specification written in a version of Larch/CLU to give the flavor of 

the language. The specification defines a type, ten_bag, together with four procedures. It would 

be implemented by a CLU cluster.  

ten_bag mutab le  type  expor t s  singleton, add, remove, choose 

based on sort  MSet f rom MultiSet wi th  [int for E ] 

singleton = proc(e:  int) returns(b:  ten_bag) 

modifies no th ing  

ensures  new(b) A b = insert({}, c) 

add -- proc(b: ten_bag, e: int) signals (too_big) 

modifies a t  mos t  [ b] 

ensures normal ly  bpoat -- insert(bpre, e) 

except  signals too_big when  size(bpre) = 10 

ensuring modifies nothing 



20 

remove = p ros (b :  ten_bag, e: int) 

mod i f i e s  a t  m o s t  [ b] 

e n s u r e s  bpos~ = delete(bpre, e) 

choose = proc(b :  ten_bag) returns(e: int) 

r e q u i r e s  -~ isEmpty(b) 

mod i f i e s  n o t h i n g  

e n s u r e s  count(b, s) 0 

e n d  ten_bag 

The specification of each procedure can be straightforwardly translated to a predicate over two 

states in the style of [Hehner 841. The r e q u i r e s  clause, if present, represents a precondition 

tha t  may be assumed by the implementation, and must be ensured by any caller. The modi f i e s  

clause places a bound on the objects the procedure is allowed to change. The e nsu re s  clause is 

like a postcondition, but  may reference values of objects in both the pre and post states. 

The names in a Larch/CLU specification tie it to two other kinds of formal text: traits in the 

Shared Language, and programs in CLU. Operators (e.g., insert), sort names (e.g., MSet), and 

trai t  names (e.g., MultiSet) provide the link to a theory defined by a collection of traits.  Names 

of procedures (e.g., add),  formal parameters (e.g., e), types (e.g., int), and signals (e.g., too_big) 

provide the link to programs that  implement the specification. The pr imary job of an interface 

language is to bring these two together. For example, the b a s e d  on  clause connects type names 

and sort names. The r e q u i r e s  and ensu re s  clauses contain operators,  formal parameters,  and 

signal names. These are used together to constrain the relationship between the values of the 

actuals on entry to a procedure and their values on exit from the procedure. 

Each procedure's specification can be studied in isolationmin contrast to traits,  where the core of 

the specificatior~ involves the interactions among operators. Of course, to understand or reason 

about  the type, it is still necessary to consider the specifications of all its procedures. CLU's 

type-checking ensures the soundness of a da ta  type induction principle for this type. This would 

enable us to prove that  the size of any ten_bag value generated by a non-erroneons program is 

less than or equal to 10. 

Induction over the procedures of a da ta  type is distinct from induction over the generating 

operators of a sort,  and is used to prove theorems about values in a different space. Each value 

of type ten_bag can be represented by a term of sort MSet, but  not every term represents a value 

that  can be obtained using the procedures of the type. For example, induction over (} and insert 

can be used to prove that  for every term of sort lvISet there is term representing a larger MSet. 

This is not in conflict with the proof mentioned in the previous paragraph. 

Choose is probably the  most interesting procedure in this example. Its specification says that  

it  must return some value in the ten_bag it is passed, but  doesn' t  say which value. Moreover, 

it  doesn' t  even require that  different invocations of choose with the same argument produce the 

same result. Choose is an example of nondeterminism, and therefore cannot be specified by 

equating its result to a term. 
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This specification can be satisfied by a CLU cluster implementing one type, ten_bag, with 

four procedures, singleton, add, remove, and choose. The specification says nothing about 

"implementing" sorts (such as MSet) or operators (such as {} and insert). These auxiliary 

constructs are defined solely for the purpose of writing interface specifications; they do not exist 

in programs. 

Execution errors, on the other hand, are properties of programs; they do not exist in traits. 

R e q u i r e s  clauses and s igna l s  provide means to specify two different ways of dealing with 

erroneous conditions. For example, add must raise a signal if adding another element would 

make its argument too big, whereas the implementor of choose is allowed to assume that  it  will 

not be called with an empty ten_bag. Note that  this precondition cannot be checked at  runtime by 

a program using the type ten_bag. The size operator is available for reasoning about procedures, 

but the interface (as specified) does not supply any corresponding procedure. Ensuring that  

execution of a program using this type is error-free would thus require some sort of (formal or 

informal) proof about the program. 

N o t e s  on  t h e  L a r c h  S h a r e d  L a n g u a g e  

Why Algebra? This question really expands into two questions: Why not an operational or 

abstract  model approach? and Why not full predicate calculus? The short answer is that  we 

find equations to be a convenient notation for stating properties of many abstractions useful in 

programming. A more detailed answer would cover such issues as the ease with which partial  

specifications can be combined to yield stronger specifications, the ease with which partial  

specifications can be read and understood, the descriptive power of the technique, and the 

suitability of the formalism for efficient theorem-proving using rewrite rules. 

The Shared Language is perhaps more notable for what  it leaves out than for what it includes. We 

tried to keep it simple. However, before omitting a feature found in other algebraic specification 

languages, we had to convince ourselves that  the gain in simplicity of the language was worth the 

cost in expressive power or increase in the complexity of specifications writ ten in the language. 

A key assumption underlying our design was that  specifications should be constructed and 

reasoned about incrementally. This led us to a design that  ensures that  adding things to a trait  

never removes formulas from its associated theory. The desire to maintain this monotonicity 

property led us to construe the equations of a t rai t  as denoting a first-order theory. Had we 

chosen to take the theory associated with either the initial or final interpretat ion of a set of 

equations (as in {ADJ 78] and [Wand 79D, the monotonicity property would have been lost. 

In a t ra i t  that  defines an "abstract da ta  type" there will generally be a distinguished sort 

corresponding to the "type of interest" of [Guttag 75] or "data sort" of [Burstall and Goguen 81]. 

In such traits ,  it is usually possible to parti t ion the operators whose range is the distinguished 

sort into "generators," those operators which the sort is g e n e r a t e d  by ,  and "extensions," which 

can be converted into generators. Operators whose domain includes the distinguished sort and 

whose range is some other sort are called "observers." Observers are usually convertible, and 

the sort is usually p a r t i t i o n e d  by  one or more subsets of the observers and extensions. 
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While we expected that many traits would correspond to complete abstract data types~ we 

expected that even more would not. This led us to introduce g e n e r a t e d  by  and p a r t i t i o n e d  

by  as independent constructs. G e n e r a t e d  by  is used to close the set of constructors of a sort, 

and p a r t i t | o n e d  by  to indicate that a set of observers is complete. Separating these constructs 

affords the specifier some useful flex:,bility. 

The ability to substitute for any operator or sort identifier appearing in a trait, using a w i t h  list, 

is very powerful. In effect, all such identifiers are formal parameters. An earlier version of the 

Larch Shared Language had explicit lambda abstraction in traits. However, we discovered that 

our assumptions at the time when a trait was written about which names should be parameters 

too often linfited their applicability. We often wished to substitute for a name that had not 

been listed as a parameter. Even more often, we found ourselves using the same identifier for 

the actual as the formal, because most of the potential parameterization was not needed for a 

specific use. 

It is the trait 's  text that is effectively parameterized by sort and operator identifiers, rather 

than the associated theory. This allows us to completely sidestep the subtle semantic problems 

associated with parameterized theories, theory-valued parameters, and the like--some of which 

are dealt with in other presentations at this conference. 

We have chosen not to use ~higher-order" entities in defining the Larch Shared Language. Traits 

are simple textual objects, combined by operations defined on their text. We have found that such 

operations are much easier to explain to readers of specifications than are operations on theories 

or models. Of course, for each of our combining operations on traits, there is a corresponding 

operation on theories such that the theory associated with a combination is equivalent to the 

combination of the associated theories, so the difference is largely one of exposition. 

Notes  on  In t e r f ace  L a n g u a g e s  

Why predicates on two states? It should scarcely be necessary to justify the use of predicate 

calculus in program specification, since it crops up in so much work dealing with precise 

descriptions of programs--start ing from Turing and von Neumann, and running through Floyd, 

Hoare, Dijkstra, and many more---uses this notation. But we have followed Hehner and Jones 

in using predicates over two states, rather than one. This seems to work out well both as a tool 

for describing the semantics of programming languages and as a tool for stating requirements on 

particular programs. In practice, we have found our specifications easier to write and to read 

since we adopted the two-state notation, but  I know of no formal justification for this. 

No tes  on  C o m b i n i n g  a n  Algebra ic  a n d  a P r e d i c a t i v e  L a n g u a g e  

This section touches on some of the more important ramifications of the way Larch Shared 

Language and Larch interface language specifications fit together. 

The style of specification used in Larch resembles that  used in operational specifications built 

upon abstract models. It differs, however, in several important respects. The Shared Language 
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is used to specify a theory rather than a model, and the interface languages are built  around 

predicate calculus rather than around an operational notation. One consequence of these 

differences is tha t  Larch specifications never exhibit ~imphmentation bias." 

The semantic bases of Larch interface languages tend to mirror the semantic bases of the 

programming languages from which they are derived. In general, this means that  the semantics 

of an interface language is rather complex. But it does allow us to be quite precise about what 

it means for an implementation to "satisfy" a Larch specification. 

The semantics of the Larch Shared Language is quite simple, largely as a consequence of two 

decisions: 

Operators and sorts appearing in traits are auxiliary and are not par t  of the implementation. 

Issues that  must be dealt with at the interface language level are not tackled again at the Shared 

Language level. 

As a result of the first decision, there is no mechanism to support the hiding of operators in the 

shared language. The hiding mechanisms of other specification languages allow the introduction 

of auxiliary operators that  don't  have to be implemented. These operators are not completely 

hidden, since they must be read to understand the specification and are likely to appear in 

reasoning based on the specification. Since none of the operators appearing in a Shared Language 

specification is intended to be implemented, the introduction of a hiding mechanism could have 

no effect on the set of implementations satisfying a Larch specification. 

As a result of the second decision, there is no mechanism other than sort checking for restricting 

the domain of operators. Terms such as eval(new, s] are well-formed, even though there are 

no equations that  allow them to be simplified. Furthermore, no special "error" elements are 

introduced to represent the "values" of such terms. Preconditions and errors are handled at the 

interface language level. 

Similarly, nondeterminism is left to the interface language. Nondeterminism in an interface 

should not be confused with incomplete specification in a trait .  We often intentionally introduce 

operators in traits without giving enough axioms to fully define them. That  is to say, there are 

distinct terms that  are neither provably equal nor provably unequal. However, it is always the 

case that  for every term t, t = t. The whole mathematical  basis of algebra and of the Larch 

Shared Language depends on the ability to freely substitute "equals for equals." This property 

would be destroyed by the introduction of "nondeterministic functions." I t  is also not generally 

true for "functions" in most programming languages. 

Issues of name scoping are also left to the interface language level. The Larch Shared Language 

does not "qualify" operator or sort names with the traits in which they are introduced or defined. 

Thus, within a trai t ,  all such names (including those acquired from other traits) are "global." 

This is extremely helpful when combining a number of traits to specify a single type, but  raises 

the possibility of accidental "collisions." Although we do not have a lot of experience yet, we 

expect two features of the language to keep this from becoming a serious problem: an operator 's 

signature is t reated as part  of its name, so that  two operators with different signatures can never 
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collide; and i m p o r t s  checking ensures tha t  a t ra i t  does not add new constraints to operators 

being acquired. 

A Larch Shared Language trait  does not have block structure,  and there is no ~hierarehy" in its 

associated theory. We do not expect this to be a problem, because the trai ts  needed to specify 

single program units should be relatively small. 

While the semantic basis of Larch/CLU is considerably more complicated than that  of the 

Larch Shared Language, its static semantics is considerably simpler. In the Shared Language, 

there are several mechanisms for building a specification from other specifications and for 

inserting checkable redundancy into specifications. Corresponding mechanisms are not present 

in Larch/CLU. Interfaces are specified in terms o~ traits,  not in terms of other interfaces. 

We wish to encourage a style of specification in which most of the structural  complexity is pushed 

into the Shared Language part  of specification, We feel that  specifiers are less likely to make 

serious mistakes in this simpler domain. Furthermore, it should be easier to provide machine 

support  that  will help specifiers to catch the mistakes that  they do make. Finally, by encouraging 

specifiers to put  effort into Shared Language specifications, we increase the likelihood that  parts 

of specifications will be reusable. 

C o n c l u d i n g  R e m a r k s  

The ideas behind the Larch Project are more important  than its details, except to the extent 

that  the details must be gotten right in order to fit the pieces together. A useful methodology is 

more than a collection of separately good ideas. Thus the issue of combination re-occurs on the 

meta-tevel. There ~s not  much that  I can offer in the way of solid advice~ other than the warning 

that  it is harder than it looks to get all the details right. 

It is too soon to draw any conclusions about the utility of Larch in software development. We 

have wri t ten a significant number of Larch Shared Language specifications. On the whole, we 

were pleased with the specifications, and with the ease of constructing them. While writing 

them, we uncovered several design errors by inspection~ we are encouraged that  many of these 

errors would have been uncovered by the checks called for in the language definition. However, 

until we have the tools that  wilt allow us to gain experience with automated semantic checking, 

it is impossible to know just  how helpful these checks will be. 

We have not yet writ ten any large specifications in Larch interface languages. Small examples 

seem to work out well. The Larch style of two-tiered specification leads to specifications that  looks 

like they will "scale" well. We are presently in the process of documenting Larch/CLU, and are 

using it to write more substantial  interface specifications. That  experience should give as a much 

firmer basis for evaluating the Larch Shared Language, Larch/CLU, and - -mos t  impor tan t ly- - the  

Larch style of specification. 
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