
C O M B I N I N G A L G E B R A I C _&ND P R E D I C A T I V E S P E C I F I C A T I O N S

IN LARCH

J. J. Horning

Systems Research Center

Digital Equipment Corporation

130 Lyt ton Avenue

Palo Alto, CA 94301 U. S. A.

A b s t r a c t

Recently there has been a great deal of theoretical interest in formal specifications. However,

there has not been a corresponding increase in their use for software development. Meanwhile,

there has been significant convergence among formal specification methods intended for practical

use.

The Larch Project is developing tools and techniques intended to aid in the productive use of

formal specifications. This talk presents the combination of ideas, both old and new, that we are

currently exploring.

One reason why our previous specification methods were not very successful was that we tried

to make a single language serve too many purposes. To focus the Larch Project, we made some

fairly strong assumptions about the problem we were addressing.

Each Larch specification has two parts, written in different languages. Larch interface languages

are used to specify program units (e.g., procedures, modules, types). Their semantics is given

by translat ion to predicate calculus. Abstractions appearing in interface specifications are

themselves specified algebraically, using the Larch Shared Language.

A series of examples will be used to illustrate the use of the Larch Shared Language and the

Larch/CLU interface language. The talk will conclude with notes on the key design choices for

each of the languages, and for the method of combining the two parts of a specification.

13

I n t r o d u c t i o n

I would like to begin with three general observations about the field of formal specification:

Theoretical interest: It is clear that formal specification has captured the interest of a signficant

group in the theoretical computer science community. The program for this joint conference

gives evidence of the vitality of the research area. Similar evidence will be found in a

dozen other recent conferences and in numerous journals. Sound theoretical foundations are

being given for more a~d more different kinds of formal specification languages, and subtle

semantic problems are being explored to ever-greater depth, particularly in such areas as

parameterization and concurrency.

Adoption: It is equally clear that this interest has not been matched by the use of formal

specifications in software development. Several a t t empt s - - and even some successes--have

been reported. But formal methods have not swept the programming community (at my

employer, or in the world at large) in the same way that higher-level languages did in

the decade after FORTRAN. In retrospect, perhaps this should have been expected, for a

variety of reasons. Many of the theoretical results are not presented in a form accessible

to practitioners. I t is not obvious how some of the theoretically appealing methods deal

with many problems of practical importance. Formality is not inevitable in specifications--

there are more alternatives for human/human communication than for human/machine

communication. Few of the formal specification languages have come with the quality of

computer support that even the original FORTRAN did.

Co'nvergence: As developers of formal specification methods confront the problems of practical

software development, many distinctions that formerly seemed clear-cut are becoming

blurred. Everyone seeks to combine the advantages tradit ionally associated with each

method, while mitigating its disadvantages. Good ideas are borrowed freely and hybrid

methods are tried. It is difficult to track "intellectual ancestry, ~ and generalizations about

the limitations of classes of methods are quickly falsified.

In this talk, I would like to share the particular combination of old and new ideas that we are

currently exploring in the Larch Project. We do not yet have much experience with their use

in practical software development, and the supporting tools are not yet available. But we are

pleased with the way the pieces seem to be fitting together. We hope tha t software developers will

assess their promise for dealing with practical problems, and tha t developers of other specification

methods will consider including some of them in their own schemes.

C o n t e x t : The Larch P r o j e c t

The Larch Project at MIT's Laboratory for Computer Science and DEC's Systems Research

Center is the continuation of more than a decade of collaborative research with John Guttag and

his students in the area of formal specification. It is developing both a family of specification

languages and a set of tools to support their use, including language-sensitive editors and semantic

checkers based on a powerful theorem prover [Lescanne 83][Forgaard 84].

14

Larch is ~u effort to test our ideas about making formal specifications useful. We tried to analyze

the reasor~s why our previous specification methods had not been as useful (and hence not as

widely used) as we had hoped they would be [Guttag, Homing, and Wing 82]. We identified

several problems to be solved before we could confidently offer our methodology to software

developers. To focus the project, we made the following assumptions, which strongly influenced

the directions it has taken:

Local specifications: We started with the belief that programming-language-oriented behavioral

specifications of progr~'n units could be useful in the near future. No conceptual break-

throughs or theoretical advances seemed to be needed. Rather, we needed to use what we

already knew to design usable languages, develop some software support tools, and educate

some system designers and implementers.

Sequerrtial programs: We focussed on specifications of the behavior of progr~n units in non-

concurrent environments. We are aware of the importance of concurrency, and of many

of the additional problems it introduces. However, we find it quite hard enough to deal

adequately with the sequential case. A successful framework for dealing with concurrency

will still need a method for specifying the atomic actions of the concurrent system.

Scale: Methods that are entirely adequate for one-page specifications may fail utterly for hundred-

page specifications. It is essential that large specifications be composed from small ones

that can be understood separately, and that the task of understanding the ramifications of

their combination be managable. For large specifications, the "putting together" operations

[Burstall and Goguen 77] are more crucial than the details of the language used for the

pieces of which it is composed.

Incompleteness: Realistically~ most specifications are going to be partial. Sometimes incomplete-

ness reflects abstra~.tion from details that are irrelevant for a particular purpose; e.g., time,

storage usage, and functionality might be specified separately. Sometimes it reflects an in-

tentional choice to delay certain design decisions. And sometimes it reflects oversights in the

design or specification process. It is important to detect the latter kind of incompleteness

without making the other two kinds awkward.

Errors: Our experience suggests that the process of writing specifications is at least as error-prone

as the process of programming. We believe that it is important to do a substantial amount

of checking of the specifications themselves. The ultimate tool for error-detection is the

understanding of human minds. However, we have found that--by designing the specification

language to incorporate useful redundancy---some surprisingly effective mechanical checks

are feasible. We have chosen to supplement checking analogous to a compiler's syntax and

type checking with a number of semantic checks that rely on a theorem prover.

Tools: A serious bar to practical use of formal specifications is the number of tedious and/or

error-prone tasks associated with maintaining the consistency of a substantial body of

formal text. Tools c~u assist in managing the sheer bulk of large specifications, in browsing

through selected pieces, in deriving interactions and consequences, and in teaching a new

methodology. Thinking about such tools has changed our ideas about what it is important

to include in specification languages.

15

Handbooks: It is inefficient to star t each specification from scratch. We need a repository of

reusable specification components that have evolved to handle the common cases well, and

that can serve as models when faced with uncommon cases. It is no more reasonable to keep

reinventing the specifications of priority queues and bitmaps than to axiomatize integers

and sets every time they are used. A rich collection of "abstract models" is a step in the

right direction, but the collection should be open-ended, and include application-oriented

abstractions, as well as mathematical and implementation-oriented ones. We expect the

most useful parts of specification handbooks to be writ ten in the Shared Language.

Language dependencies: For many years we tried to write specifications in languages that were

completely free of bias towards any programming language. We now think that effort

was misdirected, at least for local specifications. The environment in which a program

unit is embedded, and hence the nature of its observable behavior, is likely to depend in

fundamental ways on the semantic primitives of the programming language. Any at tempt

to disguise this dependence will make specifications more obscure to both the unit 's users

and its implementers. On the other hand, many of the important abstractions in most

specifications can be defined in a language-independent way.

We have adopted a two-tiered methodology [Wing 83]. Each specification has two parts, written

in different languages: specifications of program units are writ ten in a Larch interface language

that is tailored to a programming language; these specifications use programming-language-

independent abstractions, which are specified separately in the Larch Shared Language. Some

important aspects of the Larch family of specification languages are:

Composability: The Larch Shared Language is oriented towards the incremental construction of

specifications from other specifications.

Emphasis on presentation: To make it easier to read and understand specifications, the

composition mechanisms in the Larch Shared Language are defined as operations on

specifications, rather than on theories or models.

Interactive and integrated with tools: The Larch languages are intended for interactive use.

Tools are being constructed for both interactive construction and incremental checking of

specifications.

Semantic checking: The semantic checks for the Larch languages were designed assuming the

availability of a powerful theorem prover. Hence they are more comprehensive than the

syntactic checks commonly defined for specification languages.

Shared Language based on equations: The Larch Shared Language has a simple semantic basis

taken from algebra. However, because of the emphasis on composability, checkability, and

interaction, it differs substantially from the algebraic specification languages we have used
in the past.

Interface languages based on predicate calculus: Each interface language is a way to write

assertions about states, that can be translated to formulas in typed first-order predicate

calculus with equality. Programming-language-specific notations deal with constructs such

as side effects, exception handling, and iterators. Equality over terms is defined in the

Shared Language; this provides the link between the two parts of a specification.

16

E x a m p l e Speci f ica t ions in t he L a r c h S h a r e d L a n g u a g e

The following series of examples is intended to give the flavor of the Larch Shared Language. A

complete description of the Larch Shared Language is contained in [Guttag and Homing 85a],

and extensive examples of its use are given in [Guttag and Homing 85b].

The trait is the basic module of specification. A trait may specify an abstract data type, but

frequently traits are used to capture general properties that may be shared by many types. Such

traits may be included in other traits that specify particular types.

Consider the following specification describing tables that store values in indexed places:

TableSpec: t r a i t

i n t roduces

new: --~ Table

add: Table, Index, Val --+ Table

~ E ~ : Index, Table --+ Bool

evah Table, Index --~ Val

isEmpty: Table ~ Bool

size: Table --~ Card

cons t r a in s new, add, C, eval~ isEmpty, size so t h a t

fo r all [indl, ind2: Index, vat: Vat, t: Table]

eval(add(t, indl, va.~, ind.) = if lad1 = ind9 t h e n val else eval(t, ind£)

indl E new = false
indi E add(t, inde, val) = (indl = inde) V (indl E t)

size(new) = 0
size(add(t, indl, vaO) = if indl E t t hen size(t) else size(t) + 1

isEmpty(t) = (size(t) = 0)

This example is similar to a conventional algebraic specification in the style of [Guttag and

Homing 80]. The part of the specification following in t roduces declares a set of operators

(function identifiers), each with its signature (the sorts of its domain and range). These signatures

are used to sort-check terms (expressions) in much the same way as function calls are type-

checked in programming languages. The remainder of the specification constrains the operators

by writing equations that relate sort-correct terms containing them.

Each trait defines a a set of well-forraed formulas (wff's) of predicate calculus that is closed under

inference. The theory associated with a simple trait written in the Larch Shared Language is

defined by:

Axioms: Each equation, universally quantified by the variable declarations of the containing

cons t r a in s clause, is in the theory.

inequation: -1 (true = false) is in the theory. All other inequations in the theory are derivable

from this one and the meaning of equality.

Predicate calculus: The theory contains the conventional axioms of typed first-order predicate

calculus with equality, and is closed under its rules of inference.

17

The next example is an abstraction of those da ta structures that "contain" elements, e.g., set,

bag, queue, stack. It is useful both as a starting point for specifications of various kinds of

containers, and as an assumption for generic operators. The crucial part of the trai t is the

g e n e r a t e d by . By indicating that any term of sort C is equal to some term in which new and

insert are the only operators with range C, it introduces an inductive rule of inference that can

be used to prove properties of terms of sort C.

Container: t r a i t

i n t r o d u c e s

new: ~ C

insert: C, E --* C

c o n s t r a i n s C so t h a t C g e n e r a t e d b y [new, insert]

The next example builds upon Container by assuming it. It constrains the new and insert

operators it inherits from Container, as well as the operator it introduces, isEmpty. The conve r t s

clause adds nothing to the theory of the trait . It adds checkable redundancy by indicating that

this t ra i t is intended to contain enough axioms to adequately specify isEmpty. Because of the

g e n e r a t e d by , this can be proved by induction over terms of sort C, using new as the basis and

insert(c, e) in the induction step.

IsEmpty: t r a i t

a s s u m e s Container

i n t r o d u c e s isEmpty: C ~ Bool

c o n s t r a i n s isEmpty, new, insert so t h a t for a l l [c: C, e: E 1

isEmpty(new) --- true

isEmpty(insert(¢, e)) -- false

imp l i e s c o n v e r t s [isEmpty]

The next two examples also assume Container. Like c o n v e r t s , the e x e m p t s clauses are

concerned with checking, and add nothing to the theory. They indicate that the lack of equations

for next(new) and rest(new) is intentional. Even if Next or Rest is included into a trait that

claims the convertibility of next or rest, the terms next(new) and rest(new) don't have to be

converted.

Next: t r a i t

a s s u m e s Container

i n t r o d u c e s next: C --* E

c o n s t r a i n s next, insert so t h a t for a l l [e: E]

next(insert(new, e)) : e

e x e m p t s next(new)

Rest: t r a i t

a s s u m e s Container

i n t r o d u c e s rest: C --* C

c o n s t r a i n s rest, insert so t h a t for a l l [e: E]

rest(insert(new, e)) = new

e x e m p t s rest(new)

18

The next example specifies properties common to various data structures such as stacks, queaes,

priority queues, sequences, and vectors. It augments Container by combining it with IsEmpty,

Next, and Rest° Lucludes indicates that this trait is intended to inherit their operators, and

to constrain them further. Specifically, the p a r t i t i o n e d by clause constrains new, insert, and

isEmpty by indicating that they are a "complete" set of observer functions. I.e., if two terms

are different, this difference can be observed in the value of at least one of these functions. Since

little other information has been supplied about these operators, the p a r t i t i o n e d by does not

yet add much to ~he associated theory.

Enumerable: t r a i t

includes Container, IsEmpty, Next, Rest

cons t r a in s C so t h a t C p a r t i t i o n e d by [next, rest, isEmpty]

The next example specializes Enumerabte by further constraining next, rest, and insert. Sufficient

axioms are given to convert next and rest. The axioms that convert isEmpty are inherited from

the trait Enumerable, which inherited them from the trait IsEmpty.

PriorityQueue: t r a i t

a s sumes TotalOrder w i t h [E for T]

includes Enumerable

cons t r a in s next, rest, insert so t h a t for all [q: C, e: E

next(insert(q, e)) = if isEmpty(q) t h e n e

else if next(q) < e t h e n next(q) else e

rest(insert(q, e)) = if isEmpty(q) t h e n new

else if next(q) < e t h e n insert(rest(q), e) else q

implies conver t s [next, rest, isEmpty]

The next example illustrates a specialization of Container that does not satisfy Enumerable.

It augments Container by combining it with IsEmpty and Cardinal, and introducing two new

operators. Container and IsEmpty are inc luded because the trait further constrains operators

inherited from them. Cardinal is i m p o r t e d ; this indicates that this trait ' inherits Cardinal's

specification, but is not intended to further constrain any of its operators. The theory associated

with Cardinal can thus be understood independently, and will not be enriched by MultiSet.

I m p o r t s and includes yield the same theory, but stronger checks are performed for impor t s .

The p a r t i t i o n e d by indicates that count alone is sufficient to distinguish unequal terms of sort

MSet. C o n v e r t s [isEmpty, count, delete] is a stronger assertion than the combination of an

explicit conver t s i count, delete] with the inherited conver t s [isEmpty].

MultiSet: t r a i t
a s sumes Equality w i t h [E for T]

i m p o r t s Cardinal
includes Container w i t h [MSet for C, (} for new], IsEmpty w i t h [MSet for C]

i n t roduces count: E, MSet -+ Bool

delete: E, MSet --, MSet

size: MSet --, Card

19

cons t ra ins MSet so t h a t

MSet pa r t i t ioned by [count]

for all [c: MSet, e l , e/g: E]

count({} , el) = o

count(insert(e, e l) , e/g) = count(c, e/g) ÷ (if (e l = e/g) then 1 else 0)

size({}) ---- 0

size(insert(c, eI)) = slze(c) d- 1

delete({}, eg) = {}

delete(insert(c, e l) , e2) = f f e l = e2 then c else insert(delete(c, e/g), e l)

implies converts [isEmpty, count, delete]

An Example Specification in L a r c h / C L U

Theories are all very well, but what is their connection to software development? In Larch, the

theories associated with specifications written in the Shared Language are used to give meaning

to operators appearing in specifications written in Larch interface languages. It is these interface

specifications that actually provide information about program units.

Interface languages are programming-language dependent. Everything from the modularization

mechanisms to the choice of reserved words is influenced by the programming language. At

present, there is only one moderately well-developed Larch interface language, the Larch/CLU

language [Wing 83][Guttag, Horning, and Wing 85]. The semantics of Larch/CLU incorporates

semantic constructs from CLU. For example, the meaning of signal in Larch/CLU derives from

the meaning of signal in CLU--which is different from the meaning of SIGNAL in PL/I or

MESA. Correspondingly, Larch/CLU uses CLU-like syntax for constructs in common, e.g.,

procedure headers. Other interface languages would use concepts and terminology based on

their programming languages.

I will present just one short specification written in a version of Larch/CLU to give the flavor of

the language. The specification defines a type, ten_bag, together with four procedures. It would

be implemented by a CLU cluster.

ten_bag mutab le type expor t s singleton, add, remove, choose

based on sort MSet f rom MultiSet wi th [int for E]

singleton = proc(e: int) returns(b: ten_bag)

modifies no th ing

ensures new(b) A b = insert({}, c)

add -- proc(b: ten_bag, e: int) signals (too_big)

modifies a t mos t [b]

ensures normal ly bpoat -- insert(bpre, e)

except signals too_big when size(bpre) = 10

ensuring modifies nothing

20

remove = p ros (b : ten_bag, e: int)

mod i f i e s a t m o s t [b]

e n s u r e s bpos~ = delete(bpre, e)

choose = proc(b : ten_bag) returns(e: int)

r e q u i r e s -~ isEmpty(b)

mod i f i e s n o t h i n g

e n s u r e s count(b, s) 0

e n d ten_bag

The specification of each procedure can be straightforwardly translated to a predicate over two

states in the style of [Hehner 841. The r e q u i r e s clause, if present, represents a precondition

tha t may be assumed by the implementation, and must be ensured by any caller. The modi f i e s

clause places a bound on the objects the procedure is allowed to change. The e nsu re s clause is

like a postcondition, but may reference values of objects in both the pre and post states.

The names in a Larch/CLU specification tie it to two other kinds of formal text: traits in the

Shared Language, and programs in CLU. Operators (e.g., insert), sort names (e.g., MSet), and

trai t names (e.g., MultiSet) provide the link to a theory defined by a collection of traits. Names

of procedures (e.g., add), formal parameters (e.g., e), types (e.g., int), and signals (e.g., too_big)

provide the link to programs that implement the specification. The pr imary job of an interface

language is to bring these two together. For example, the b a s e d on clause connects type names

and sort names. The r e q u i r e s and ensu re s clauses contain operators, formal parameters, and

signal names. These are used together to constrain the relationship between the values of the

actuals on entry to a procedure and their values on exit from the procedure.

Each procedure's specification can be studied in isolationmin contrast to traits, where the core of

the specificatior~ involves the interactions among operators. Of course, to understand or reason

about the type, it is still necessary to consider the specifications of all its procedures. CLU's

type-checking ensures the soundness of a da ta type induction principle for this type. This would

enable us to prove that the size of any ten_bag value generated by a non-erroneons program is

less than or equal to 10.

Induction over the procedures of a da ta type is distinct from induction over the generating

operators of a sort, and is used to prove theorems about values in a different space. Each value

of type ten_bag can be represented by a term of sort MSet, but not every term represents a value

that can be obtained using the procedures of the type. For example, induction over (} and insert

can be used to prove that for every term of sort lvISet there is term representing a larger MSet.

This is not in conflict with the proof mentioned in the previous paragraph.

Choose is probably the most interesting procedure in this example. Its specification says that

it must return some value in the ten_bag it is passed, but doesn' t say which value. Moreover,

it doesn' t even require that different invocations of choose with the same argument produce the

same result. Choose is an example of nondeterminism, and therefore cannot be specified by

equating its result to a term.

2]

This specification can be satisfied by a CLU cluster implementing one type, ten_bag, with

four procedures, singleton, add, remove, and choose. The specification says nothing about

"implementing" sorts (such as MSet) or operators (such as {} and insert). These auxiliary

constructs are defined solely for the purpose of writing interface specifications; they do not exist

in programs.

Execution errors, on the other hand, are properties of programs; they do not exist in traits.

R e q u i r e s clauses and s igna l s provide means to specify two different ways of dealing with

erroneous conditions. For example, add must raise a signal if adding another element would

make its argument too big, whereas the implementor of choose is allowed to assume that it will

not be called with an empty ten_bag. Note that this precondition cannot be checked at runtime by

a program using the type ten_bag. The size operator is available for reasoning about procedures,

but the interface (as specified) does not supply any corresponding procedure. Ensuring that

execution of a program using this type is error-free would thus require some sort of (formal or

informal) proof about the program.

N o t e s on t h e L a r c h S h a r e d L a n g u a g e

Why Algebra? This question really expands into two questions: Why not an operational or

abstract model approach? and Why not full predicate calculus? The short answer is that we

find equations to be a convenient notation for stating properties of many abstractions useful in

programming. A more detailed answer would cover such issues as the ease with which partial

specifications can be combined to yield stronger specifications, the ease with which partial

specifications can be read and understood, the descriptive power of the technique, and the

suitability of the formalism for efficient theorem-proving using rewrite rules.

The Shared Language is perhaps more notable for what it leaves out than for what it includes. We

tried to keep it simple. However, before omitting a feature found in other algebraic specification

languages, we had to convince ourselves that the gain in simplicity of the language was worth the

cost in expressive power or increase in the complexity of specifications writ ten in the language.

A key assumption underlying our design was that specifications should be constructed and

reasoned about incrementally. This led us to a design that ensures that adding things to a trait

never removes formulas from its associated theory. The desire to maintain this monotonicity

property led us to construe the equations of a t rai t as denoting a first-order theory. Had we

chosen to take the theory associated with either the initial or final interpretat ion of a set of

equations (as in {ADJ 78] and [Wand 79D, the monotonicity property would have been lost.

In a t ra i t that defines an "abstract da ta type" there will generally be a distinguished sort

corresponding to the "type of interest" of [Guttag 75] or "data sort" of [Burstall and Goguen 81].

In such traits , it is usually possible to parti t ion the operators whose range is the distinguished

sort into "generators," those operators which the sort is g e n e r a t e d by , and "extensions," which

can be converted into generators. Operators whose domain includes the distinguished sort and

whose range is some other sort are called "observers." Observers are usually convertible, and

the sort is usually p a r t i t i o n e d by one or more subsets of the observers and extensions.

22

While we expected that many traits would correspond to complete abstract data types~ we

expected that even more would not. This led us to introduce g e n e r a t e d by and p a r t i t i o n e d

by as independent constructs. G e n e r a t e d by is used to close the set of constructors of a sort,

and p a r t i t | o n e d by to indicate that a set of observers is complete. Separating these constructs

affords the specifier some useful flex:,bility.

The ability to substitute for any operator or sort identifier appearing in a trait, using a w i t h list,

is very powerful. In effect, all such identifiers are formal parameters. An earlier version of the

Larch Shared Language had explicit lambda abstraction in traits. However, we discovered that

our assumptions at the time when a trait was written about which names should be parameters

too often linfited their applicability. We often wished to substitute for a name that had not

been listed as a parameter. Even more often, we found ourselves using the same identifier for

the actual as the formal, because most of the potential parameterization was not needed for a

specific use.

It is the trait 's text that is effectively parameterized by sort and operator identifiers, rather

than the associated theory. This allows us to completely sidestep the subtle semantic problems

associated with parameterized theories, theory-valued parameters, and the like--some of which

are dealt with in other presentations at this conference.

We have chosen not to use ~higher-order" entities in defining the Larch Shared Language. Traits

are simple textual objects, combined by operations defined on their text. We have found that such

operations are much easier to explain to readers of specifications than are operations on theories

or models. Of course, for each of our combining operations on traits, there is a corresponding

operation on theories such that the theory associated with a combination is equivalent to the

combination of the associated theories, so the difference is largely one of exposition.

Notes on In t e r f ace L a n g u a g e s

Why predicates on two states? It should scarcely be necessary to justify the use of predicate

calculus in program specification, since it crops up in so much work dealing with precise

descriptions of programs--start ing from Turing and von Neumann, and running through Floyd,

Hoare, Dijkstra, and many more---uses this notation. But we have followed Hehner and Jones

in using predicates over two states, rather than one. This seems to work out well both as a tool

for describing the semantics of programming languages and as a tool for stating requirements on

particular programs. In practice, we have found our specifications easier to write and to read

since we adopted the two-state notation, but I know of no formal justification for this.

No tes on C o m b i n i n g a n Algebra ic a n d a P r e d i c a t i v e L a n g u a g e

This section touches on some of the more important ramifications of the way Larch Shared

Language and Larch interface language specifications fit together.

The style of specification used in Larch resembles that used in operational specifications built

upon abstract models. It differs, however, in several important respects. The Shared Language

23

is used to specify a theory rather than a model, and the interface languages are built around

predicate calculus rather than around an operational notation. One consequence of these

differences is tha t Larch specifications never exhibit ~imphmentation bias."

The semantic bases of Larch interface languages tend to mirror the semantic bases of the

programming languages from which they are derived. In general, this means that the semantics

of an interface language is rather complex. But it does allow us to be quite precise about what

it means for an implementation to "satisfy" a Larch specification.

The semantics of the Larch Shared Language is quite simple, largely as a consequence of two

decisions:

Operators and sorts appearing in traits are auxiliary and are not par t of the implementation.

Issues that must be dealt with at the interface language level are not tackled again at the Shared

Language level.

As a result of the first decision, there is no mechanism to support the hiding of operators in the

shared language. The hiding mechanisms of other specification languages allow the introduction

of auxiliary operators that don't have to be implemented. These operators are not completely

hidden, since they must be read to understand the specification and are likely to appear in

reasoning based on the specification. Since none of the operators appearing in a Shared Language

specification is intended to be implemented, the introduction of a hiding mechanism could have

no effect on the set of implementations satisfying a Larch specification.

As a result of the second decision, there is no mechanism other than sort checking for restricting

the domain of operators. Terms such as eval(new, s] are well-formed, even though there are

no equations that allow them to be simplified. Furthermore, no special "error" elements are

introduced to represent the "values" of such terms. Preconditions and errors are handled at the

interface language level.

Similarly, nondeterminism is left to the interface language. Nondeterminism in an interface

should not be confused with incomplete specification in a trait . We often intentionally introduce

operators in traits without giving enough axioms to fully define them. That is to say, there are

distinct terms that are neither provably equal nor provably unequal. However, it is always the

case that for every term t, t = t. The whole mathematical basis of algebra and of the Larch

Shared Language depends on the ability to freely substitute "equals for equals." This property

would be destroyed by the introduction of "nondeterministic functions." I t is also not generally

true for "functions" in most programming languages.

Issues of name scoping are also left to the interface language level. The Larch Shared Language

does not "qualify" operator or sort names with the traits in which they are introduced or defined.

Thus, within a trai t , all such names (including those acquired from other traits) are "global."

This is extremely helpful when combining a number of traits to specify a single type, but raises

the possibility of accidental "collisions." Although we do not have a lot of experience yet, we

expect two features of the language to keep this from becoming a serious problem: an operator 's

signature is t reated as part of its name, so that two operators with different signatures can never

24

collide; and i m p o r t s checking ensures tha t a t ra i t does not add new constraints to operators

being acquired.

A Larch Shared Language trait does not have block structure, and there is no ~hierarehy" in its

associated theory. We do not expect this to be a problem, because the trai ts needed to specify

single program units should be relatively small.

While the semantic basis of Larch/CLU is considerably more complicated than that of the

Larch Shared Language, its static semantics is considerably simpler. In the Shared Language,

there are several mechanisms for building a specification from other specifications and for

inserting checkable redundancy into specifications. Corresponding mechanisms are not present

in Larch/CLU. Interfaces are specified in terms o~ traits, not in terms of other interfaces.

We wish to encourage a style of specification in which most of the structural complexity is pushed

into the Shared Language part of specification, We feel that specifiers are less likely to make

serious mistakes in this simpler domain. Furthermore, it should be easier to provide machine

support that will help specifiers to catch the mistakes that they do make. Finally, by encouraging

specifiers to put effort into Shared Language specifications, we increase the likelihood that parts

of specifications will be reusable.

C o n c l u d i n g R e m a r k s

The ideas behind the Larch Project are more important than its details, except to the extent

that the details must be gotten right in order to fit the pieces together. A useful methodology is

more than a collection of separately good ideas. Thus the issue of combination re-occurs on the

meta-tevel. There ~s not much that I can offer in the way of solid advice~ other than the warning

that it is harder than it looks to get all the details right.

It is too soon to draw any conclusions about the utility of Larch in software development. We

have wri t ten a significant number of Larch Shared Language specifications. On the whole, we

were pleased with the specifications, and with the ease of constructing them. While writing

them, we uncovered several design errors by inspection~ we are encouraged that many of these

errors would have been uncovered by the checks called for in the language definition. However,

until we have the tools that wilt allow us to gain experience with automated semantic checking,

it is impossible to know just how helpful these checks will be.

We have not yet writ ten any large specifications in Larch interface languages. Small examples

seem to work out well. The Larch style of two-tiered specification leads to specifications that looks

like they will "scale" well. We are presently in the process of documenting Larch/CLU, and are

using it to write more substantial interface specifications. That experience should give as a much

firmer basis for evaluating the Larch Shared Language, Larch/CLU, and - -mos t impor tan t ly- - the

Larch style of specification.

25

Acknowledgements

The work that I have been describing was done in collaboration with John Guttag and his

students at MIT---especially Randy Forgaard, Ron Kownacki, Jeannette Wing, and Joe Zachary.

John's influence has been all-pervasive.

My ideas about formal specification have been shaped over the years by so many people that I

hesitate to give an incomplete list. However, I am especially indebted to IFIP Working Group 2.3

(Programming Methodology), both for a continuing education and for being a constructively

critical sounding board. I vividly recall getting key ideas during discussions w~th Jean-Raymond

Abriel, Rod Burstall, Cliff Jones, Bill McKeeman, Doug Ross, Mary Shaw, Jim Thatcher, and

Steve Zilles.

Jeannette Wing, Butler Lampson, and Sores Prehn have been especially helpful in improving

the exposition.

The Larch Project has been supported at the Massachusetts Institute of Technology's Laboratory

for Computer Science by DARPA under contract N00014-75-C-0661, and by the National Science

Foundation under Grant MCS-811984 6, by the Digital Equipment Corporation at its Systems

Research Center, and by the Xerox Corporation at its Palo Alto Research Center.

References

[ADJ 78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, "Initial Algebra Approach

to the Specification, Correctness, and Implementation of Abstract Data Types," in R. T.

Yeh (ed.), Current Trends in Programming Methodology, Vol. IV, Data Structuring, Prentice-

Hall, Englewood Cliffs, 1978.

[Burstall and Goguen 77] R. M. Burstall and J. A. Goguen, "Putting Theories Together to Make

Specifications," Proc. 5th Inf.ernational Joint Conference on Artificial Intelligence, Cambridge,

MA, 1977, 1045-1058.

[Burstall and Goguen 81] - - , "An Informal Introduction to Specifications Using CLEAR," in

R. Boyer and J. Moore (eds.), The Correctness Problem in Computer Science, Academic Press,

New York, 1981, 185-213.

[Forgaard 84] R. Forgaard, "A Program for Generating and Analyzing Term Rewriting Sys-

tems," S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,

MIT/LCS/TR-99, 1984.

[Guttag 75] J. V. Guttag, "The Specification and Application to Programming of Abstract Data

Types," Ph.D. Thesis, Computer Science Department, University of Toronto, 1975.

[Guttag and Horning 80] - - and J. J. Homing, "Formal Specification as a Design Tool,"

Proc. A CM Symposium on Principles of Programming Languages, Las Vegas, Jan. 1980, 251-261.

[Guttag and Horning 83] - - , "Preliminary Report on the Larch Shared Language," Technical

Report MIT/LCS/TR-307 and Xerox PARC CSL-83-6, 1983.

26

[Guttag and Homing 85a] - - ~ ~Report on the Larch Shared Language," Science of Computer

Programming, to appear.

[Guttag and Horning 85b] - - , "A Larch Shared Language Handbook," Science of Computer

Programming, to appear.

[Guttag and Homing 85c] - - ~ "An Overview of the Larch Family of Specification Languages,"

in draft.

[Guttag, Homing, and Wing 82] - - , and J. M. Wing, "Some Notes on Putting Formal

Specifications to Productive Use," Scienee of Computer Programming, vol. 2, Dec. 1982, 53-68.

[Guttag, Horning, and Wing 85] - - , "Preliminary Report on the Larch/CLU Interface

Language," in draft.

[Hehner 84] E. C. R. Hehner, "Predicative Programming, Parts I and II," Comm. ACM, vol. 27,

Feb. 1984, 134-151.

[Lescanne 83] P. Lescanne, "Computer Experiments with the REVE Term Rewriting System

Generator," Proe. A CM Symposium on Principles of Programming Languages, Austin, Jan. 1983,

99-108.

[Musser 80] D. R. Musser, ~Abstract Data Type Specification in the Affirm System," IEEE

Transactions on Software Engineering, vol. 1, 1980, 24-32.

[Nyborg 84] Proe° Workshop on Combining Specification Methods, Nyborg, May 1984, Springer-

Verlag.

[Wand 79] M. Wand, "Final Algebra Semantics and Data Type Extensions," Journal of Computer

and System Sciences, vol. 19, 1979, 27-44.

[Wing 83] J. M. Wing, "A Two-Tiered Approach to Specifying Programs," Ph.D. Thesis,

Laboratory for Computer Science, Massachusetts Institute of Technology, MIT/LCS/TR-299,

May 1983.

