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ABSTRACT 

This paper presents an algebraic specification of the switching 
module, a component of a telephone switching system. This module exhi- 
bits interesting synchronisation properties which lead to consider it as a 
process. The specification is first presented without error  handling, and 
then refined to include a non trivial error  recovery strategy. Thus, we 
additionally show how error  handling, wtfich often obscures specifications, 
may be postponed, and become a systematic refinement of a simpler 
specification. 

1. In t roduct ion  

This paper adms at presenting an algebraic specification for a component of a 
telephonic exchange called a 'switching module', exhibiting synchronisation properties 
and possible erroneous behaviours. These two aspects admittedly raise problems in the 
abstract  data type framework. We show, on this example, how these problems may be 
overcome, Incidentally, the switching module is usually implemented in hardware. This 
paper shows that a common specification language between hardware and software is by 
no means impossible, 

Specification methods able to describe the behaviour of processes cover various levels 
of abstraction, from operational (e.g. Petri nets) to axiomatic ones (e.g, ACP), In this 
paper, we are specifically interested in specifying processes by using the classical alge- 
braic approach to data type specification. 
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An algebra is formed by a collection of 'sorts '  -- sets of objects -- and a collection of 
functions over the sorts. It may be defined by providing the signature of the functions 
and a set of axioms, thus enabling,an axiomatic style of specification. Classically [GM 84], 
the sorts are used to model data  types in programming languages, ~zhereas the functions 
over the sorts  model the functions defined in the programming language. Several 
approaches have been proposed to use the algebraic framework for the specification of 
processes. 

ACP([BK 83]) provides operators to combine atomic actions into individual processes 
and sets of cooperating ones. These operators are defined axiomatically and form an 
'algebra of communicating processes'  in which specifications can be written. Currently, 
ACP suffers from a lack of integration with classical algebraic specifications of data types. 

Another approach describes processes by means of auxiliary data types, specified in 
the algebraic style. In [Jul 83], processes communicate by applying the functions 'pro- 
duce' (for the sender) and 'consume'  (for the receiver) to a shared object belonging to a 
'communication type' .  This object is described axiomatically, but the specification has to 
include an operational part, described by means of a variant of weakest preconditions. 

In this article, we propose an algebraic specification technique for processes which is 
more similar to the one used for abstract  data types: in the same way as stacks belong to 
some sort  in the algebra of stacks, processes wig belong to some ~sort in some algebra. 
The elements of the sort  will be the various possible states in which the process may be, 
all along its life. The functions applicable to these objects will correspond to the various 
events in which the process may be involved. These ideas will be developed in Section 3. 

As proned in [Cog 77], the specification of a program should include all exceptional 
behaviours. All information necessary to the handling of the exceptional state, and only 
that information, should be kept in case of error. To follow these principles without 
obscuring the specification with too many details, we propose to provide the specification 
in three steps: first, just describing the circumstances of errors, secondly, providing 
error diagnostics, and thirdly, specifying the chosen error handling. These ideas will be 
developed in Section 4. 

In the next section, we present an informal description of the switching module. 

2. The switching module  

The switching module is a component of a "time multiplexed digital telephonic system'.  
A telephonic system is digital when the conversations are transmitted in digital form. To 
achieve this, the anaiogic signal delivered by the microphone is sampled 8000 times per 
second, i.e. every 125 microseconds. A sample takes slightly less than 4 microseconds to 
be transmitted. It is therefore possible for a line to transmit repeatedly the samples of 
~, different conversations (figure I). This technique is called "time multiplexing". The 
periodical interval of time allocated to a conversation is called a "channel", and there are 
thus 32 channels on a line. A channel is allocated to a use~" for the duration of his talk. 

Still, a conversation is not t ransmit ted on one single channel: it 'follows a path formed 
by several physical lines connected through nodes. It may be the case that it uses the 
channel 7 before a node and the channel 30 after it. Therefore, the nodes consist of 
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%ul ~m2 ~38 %~34 

O- .... 4- ..... 8 ................ 125 .... 129 ......... > time (ps) 

%ui = 1st s ample  of conversa t ion  1 

~ 2  = 1st sample  of conversa t ion  2 

w 8 3  = 2nd sample  of conver sa t ion  1 

w 3 4  = 2nd sample  of conver sa t ion  2 

f~u re  1 

'switching module# performing the switching of the channels. We assume that the net- 

work is synchronous (at least around a switching module), i.e. when it is channel 7's time 

before a node, it is channel 7's time after it ~too. Therefore, the switching module can only 

move the samples from one channel to another by delaying them. Of course, the amount 

of delay depends on the two channels which must be connected: if incoming channel 7 

should be switched to 30, all samples reaching the switching module on channel 7 should 

be delayed by 23 channels, i.e around 90 ps. 

Suppose the un i t  of t ime  is 125/32 ps.  Channel  1 is t h e n  handled a t  t ime 1, 33, 65, eta;  

channe l  7 is handled  a t  t ime  7, 39, 71, etc. Consider  the voice sample or 'word' w received 

in the switching module  a t  t ime  7, when channe l  7 is handled. At the s ame  time, an  

i r re levant  word (for the  cons idered  conversa t ion)  goes out, s en t  on the outgoing channe l  

7, At t ime  80, an i r re levant  word is rece ived on the  incoming channel  30, and the  word zv 

is sen t  on the  outgoing channe l  30. 

Apart f rom the regular ly  incoming  samples,  there  are two kinds of c o m m a n d s  

addressed  to the switching module:  ' connec t '  and  'd i sconnec t '  specifying two channels  to 

connec t  or  d isconnect ,  indeed,  the  charmel corm.ections a re  es tabl i shed and  b r o k e n  

dynamically.  An input  channel  may be connec t e d  to several  ou tput  channels ,  bu t  the  

reverse  is no t  allowed. An ou tpu t  channe]  connec t e d  to no input  channel  will con ta in  gar- 

bage. 

The del icate poin ts  in the specif icat ion :below come from synchronisa t ion  and e r ro r  

handling aspects :  

* At the s ame  t ime a word is received and  a word is sent:  input  and output  are  synchro-  

nous. 

* Errors  h a p p e n  when t rying to d i sconnec t  two channels  not  connec ted  together ,  or to 

connec t  a n  o u t p u t  channe l  which is a l ready connected .  This should not  p reven t  the 

module  to con t inue  the  t r a n s m i s s i o n  of words. 

In the sequel, we make some simplifying assumpt ions ,  to avoid obscuring the 

specif icat ion with useless  details.  For ins tance ,  we a s sume  tha t  the  connec t  and  discon- 

nec t  c o m m a n d s  are immedia te ly  effective, whereas this could require some time. These 

simplif ications c a n  be removed without any  problem,  except  the increasing size cf the 

specification. 
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S ~ t i o n  of synchrunisation in the switching module 

1. Algebraic speciflcatiaa d processes 

Algebraic techniques apply nicely to the specification of objects entirely characterised 
by the functions that  one may invoke to create or modify them. Similarly, the state of a 
process is entirely characterised by the events that affected the process in the past, i.e. 
the information that  was input and output, and, ff relevant, the identification of the origi- 
nators and destinators. In the spirit of the algebraic approach, we will thus consider pro- 
cess states as objects modified by the application of functions modeling the various 
events. 

Example: 
Consider a process which may receive from the outside the messages "start', 'stop'  
and 'busy?'. It may issue the messages 'busy!' and "notbusy!'. The signature of the 
algebra modeling the process's behaviour will thus include the following functions: 

start:  Proc --> Proc 
stop: Proc --> Proc 
busy?: Proc --> Proc 
busy!: Proc --> Proc 
notbusy!: Proc --> Proc 

In addition, the function 'new' produces a process that no event has affected yet. 

new: --> Proc 

An expression such as "stop(start(new))' describes the state of a process which was 
created, received the message 'start ' ,  and then received the message 'stop'. 

The behaviour of the process will be described by stating which sequences of events 
lead to identical states. As usually, this is achieved by equating expressions formed with 
the available functions. 

In the example above, the equation 

stop(new) = new 

expresses that a message "stop' has no effect on a newly created process. 

The behaviour of the process is also described by stating which sequences of events 

are not allowed. For the process above, one may want to state that a stopped process 

may not issue "busy!'. A discussion about how to state such facts is given in Section 4. 

In the simple example above, the functions take no arguments in addition to the pro- 

cess itself. There is thus a function for each possible event. In general, a function will 

model a whole family of events, distinguished by the value of possible arguments of the 

function. It is up to the specifier to cluster the events in an appropriate way, but the 

problem is generally quite clear. For example, to specify a proce~ able to receive a cer- 

tain request accompanied by varying data, there would be a function identifying this kind 
of event and taking the data as argument. 

Although it is not mandatory, we found it natural to let incoming messages appear as 
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a r g u m e n t s  of the  .function model ing  the  r ecep t ion ,  and outgoing m e s s a g e s  a p p e a r  as  
add i t iona l  va lues  p r o d u c e d  by  the  func t ion  model ing  the  emiss ion.  Cons ider  for  i n s t ance ,  

a p r o c e s s  of t y p e  'Connec tor '  which m a y  rece ive  the  m e s s a g e  ' c o n n e c t '  ask ing  for t h e  
c o n n e c t i o n  of two channels ,  and  will, when the  eovmect ion is c o m p l e t e d ,  i s sue  the  mes -  

sage  ' c o n n e c t e d '  spec i fy ing  again  t he  two channels .  I ts  s i gna tu re  will inc lude the  func- 

t ions  

connec t :  Connec tor  * Charmel * Channel  - >  Connec to r  

c o n n e c t e d :  Connector  - >  Connec tor  * Channel  * Channel 

When seve ra l  r e c e p t i o n s  or  emiss ions  a r e  g u a r a n t e e d  Lo be  synchronous ,  t hey  fo rm 

one s ingle  even t  and  a re  thus  mode l ed  by  one single funct ion.  This will be  i l l u s t r a t e d  in 

t he  spec i f i ca t ion  of the  switching module .  

:].2. Formal specification of the  switch]ng module 

In the  sequel ,  we will use  the  a lgeb ra i c  spec i f ica t ion  language  PLUSS ([BBGGG 84]). I t  

is b a s e d  upon  a s e t  of spec i f ica t ion-bui ld ing  o p e r a t o r s  de r ived  f rom t h o s e  of ASL ([Wir 

83]) which allow to  d e s c r i b e  s t r u c t u r e d  a b s t r a c t  d a t a  types  spec i f i ca t ions  of r ea l i s t i c  

size.  I t  i nc ludes  t he  not ion  of m u l t i - t a r g e t  a lgeb ra s  ([BGP 83]) which we will use  to  spec i fy  
e x c e p t i o n  handl ing  in a lgeb ra i c  d a t a  types .  E r r o r s  will however only be  c ons ide r e d  in  See-  

Lion 4. 

The a l g e b r a i c  m o d e l  of the  switching modu le  is an  ob jec t  t ha t  r e c o r d s  t h e  h i s to ry  of 

even t s  t h a t  have a f fec ted  i t  unti l  a c e r t a i n  mome n t .  3~ose events ,  m o d e l e d  by funct ions ,  

a r e  of the  following kinds:  

* c r e a t i o n  of a new switch}ng module  t h a t  no even t  has  af fec ted y e t  

* swi tching  of a channel ,  a t  r egu l a r  in te rva l s  of t ime;  th is  cons i s t s  in the  r e c e p t i o n  of a 

~ o r d  be longing  to  t h a t  channe l  u p s t r e a m  f rom t h e  switching module  and the  s imul-  

t a n e o u s  emis s ion  of a word on the  s a m e  channel  d o w n s t r e a m  

* r e c e p t i o n  of a c o m m a n d  to connec t  two channe ls  

* r e c e p t i o n  of a c o m m a n d  to d i s connec t  two channe ls  

The channe l  t h a t  is swi tched  by t h e  even t  of t he  s econd  kind n e e d s  no t  be  spec i f ied  

b e c a u s e  t h e  channe l s  a r e  hand led  in  sequence :  t h e  n l h  switching hand les  t he  channe l  

n u m b e r  n modulo  32° 

The c o n s t r u c t o r s  of t he  so r t  Sm (for  "switching module ' )  c o r r e s p o n d  to  t h e  even t s  

above.  Note t ha t  the  switching o p e r a t i o n  will be  mode l e d  by one s ingle  c o n s t r u c t o r ,  as  

the  r e c e p t i o n  of one word and  the  emis s ion  of a n o t h e r  one a r e  s imul t aneous .  The d a t a  

t h a t  is r e c e i v e d  a p p e a r s  as  a r g u m e n t  while t he  d a t a  being p r o d u c e d  a p p e a r s  as  resu l t .  

The c o n s t r u c t o r s  a r e  the  following ones:  

* ~ i t  p r o d u c e s  a n  ini t ial  s t a t e ,  

* inou~(s,w) mode l s  the  switching of a c e r t a i n  channe l  on which w is rece ived;  t he  chan-  

nel  d e p e n d s  on the  n u m b e r  of t i m e s  "inout" has  b e e n  appl ied  to p r o d u c e  the  Sm s; t he  
o p e r a t i o n  p r o d u c e s  two things:  a new S m s '  and  a word w'; s" is i den t i ca l  to s, e x c e p t  
t h a t  one m o r e  switching even t  has  t a k e n  place,  dur ing  which the  word  ~ has  b e e n  
r e c e i v e d  and  w '  has  b e e n  sent ;  we shal l  no te  ~r~ouSd (s ,~)  and  i rm~g(s ,w) ,  t he  f irst  a n d  
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second  value of i n o u t ( s , w ) ,  

* cor~nec$( s , i j )  p r o d u c e s  a S m s ;  ident ica l  to  s excep t  t h a t  t he  inpu t  channe l  i is now 

c o n n e c t e d  to t he  o u t p u t  channe l  j ,  

* d&scar~nect.(s,iO') p r o d u c e s  an  Sm s ' ,  ident ica l  to s excep t  t ha t  the  inpu t  channe l  i is 
now d i s c o n n e c t e d  f rom t h e  o u t p u t  c h a n n e t j .  

We provide  also some  o b s e r v e r s  : 

* c h a n n e l ( s )  is t h e  channe l  to which t h e  nex t  mvitching of t he  Sm s will r e fe r ,  

* 4z~enf{~(s,c)  is t h e  input  channe l  c o n n e c t e d  to  t he  ou tpu t  channe l  c in the  Sm s, 

* l a s t i n ( s , c )  is the  l as t  word inpu t  on t h e  channel  c o n n e c t e d  to the  ou tpu t  channe l  c in 
t he  S m s .  ~; 

The spec i f i ca t ion  of Sm uses  t he  predef ined  spec i f ica t ions  CHAIN ( in t ege r s  f rom 1 to 32, 
with add i t i on  modulo  32) and  WORD. The funct ions  ~s a n d / s ~ o t  a r e  def ined  in CHAN a n d  

d e n o t e  t he  equa l i ty  and  non-equa l i ty  among ob jec t s  of the  sor t .  

s ' pec i l  SM = 

en~/t WORD, CHAN by 

sorts Sm; 

2~c~ons 

init: 

inout: 

connect: 

disconnect: 

channel: 

identhn: 

lastin: 

~ a ~ b l e s  

s,s' : Sm; 
w : Word; 

i,j,k,1 : Chan; 

- >  Sm; 
Sm *Word --> Sm * Word; 

S m *  Chart * Chan --> Sin; 
S m *  Chart *Chan  --> Sin; 

Sm -> Chan; 

S m *  Chan --> Chan; 

S m  *Chan --> Word; 

% ¢ and  k a r e  used  for  inpu t  channels ,  j and  I for ou tpu t  channels .  % 

o ~ r t ~ 8  

% The following ax iom is the  h e a r t  of the  specif icat ion.  I t  s t a t e s  which word  is ou tpu t  e a c h  

t ime  a switching t a k e s  p lace  (i.e. a t  r egu la r  in tervals) .  This word, the  s econd  value of 

¢ n o ~ ,  is the  l as t  word t h a t  e n t e r e d  the  input  channel  to which the  c u r r e n t  ou tpu t  chan-  
nel is connected. % 

[Wordl inout2(s,w) = lastin(s,channel(s)); 

% The following axioms describe cl~nnsl. They express that a new channel is handled 

each time qnout is invoked. Note that channel(s) denotes the channel that the next ~zo~t 
will handle. 70 

~Chanl channel(init) = I; 
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charmet( inout  t (s,w)) = channe l ( s )+  t; 
ehannel (connect (s , i , j ) )  = channel (s ) ;  

channel(disconn~ect(s, i , j))  = channel (s ) ;  

The following axioms d e s c r i b e  tasti ,  n.  las t i~ t ( s , j )  is t h e  las t  word e n t e r e d  on the  input  

channe l  c o n n e c t e d  to j, i.e. on id~nt ir~(s , j ) .  

lWordl channel (s )  is ident in(s , j )  ==> l a s t in ( inou t l ( s ,w) , j )  = w; 

channel (s )  isnot  ident in(s , j )  = = >  l a s t i n ( i n o u t l ( s , w ) , j ) =  last in(s , j ) ;  

l as t in(connect (s ,k , l ) , j )  = las t in(s , j ) ;  
- tast in(disconnect(s ,k, l ) , j )  = tast in(s , j ) ;  

The following a ~ o m s  d e s c r i b e / d e ~ , ~ n .  % 

tCh,~l 

end SM; 

j is 1 ==> ident in(connect (s , i , j ) , t )  = i; 

j i snot  I ==> iden t in(connec t ( s , i , j ) , l )  = identin(s,1); 

j i snot  1 ==> iden t in(d isconnec t ( s , i , j ) , l )  = identin(s,1); 

ident in( incut l ( s ,w) , j )  = ident in(s , j ) ;  

Note t ha t  t he  words  arr iving on a channe l  c o n n e c t e d  to  i tself  a re  not  t r a n s m i t t e d  

ins tan taneous ly ,  bu t  de layed  by  32 channels .  I n s t a n t a n e o u s  t r a n s m i s s i o n  would have b e e n  

allowed by  rep lac ing  the  f irst  ax iom by: 

{Wordl inout2(s,w) = lastin(inout1(s,w),cham~el(s)); 

Fawor handling 

When defining a n  a b s t r a c t  d a t a  type ,  one has  to  c o n s i d e r  so ca l led  e r r o r  s i tua t ions .  

These a r e  p r o d u c e d  by ope ra t ions  which a r e  m e a n i n g l e s s  with the  given a rgume n t s ,  for  

ins t ance  popping  a n  e m p t y  s t ack .  

E r ro r s  r a i s e  diff icul t ies  in t he  a l g e b r a i c  f r a m e w o r k  ([BG 63] for a survey,  [Bid 84]), and  

i t  is t e m p t i n g  to  ju s t  exc lude  them.  This c a n  be  done  by  providing a convent iona l  valid 

ob jec t  as r e su l t  of a mean ing less  ope ra t ion .  For  ins tance ,  the  following equa t ion  specif ies  

t ha t  popping  the  e m p t y  s t a c k  has no effect:  

p o p ( e m p t y - s t a c k )  = e m p t y - s t a c k  

This s t r a t e g y  has  two drawbacks .  F i rs t ,  i t  v io la tes  the  pr inc ip le  of s e p a r a t i o n  of con- 
cerns :  b o t h  the  r e a d e r  and the  w r i t e r  of a spec i f i ca t ion  will ga in  in cons ider ing  f i rs t  the  

no rma l  cases ,  leaving the  e r r o r  handl ing  for  l a t e r .  Second,  i t  p rovides  only a very  specif ic  

v~ay to handle  e r ro r s ,  i.e. invisible r ecovery .  

Other  e r r o r  handl ings  may  be des i rab le :  i t  m a y  be  n e e d e d  to recognise  in t he  value 
p r o d u c e d  by  a funct ion,  t ha t  a n  e r r o r  j u s t  happened ;  th i s  is no t  the case  if the  e r r o r  pro-  
duces  a valid object .  While doing so, i t  m a y  also  be  n e e d e d  to  d is t inguish  var ious  e r r o r s  
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one f rom the  o ther .  A c lass ica l  example  requir ing  a m o r e  flexible e r r o r  handl ing t h a n  

invisible r e c o v e r y  is a t o l e r an t  s t a c k  ([BBGGG 84]). I t  may  be  popped  when empty ,  bu t  

only once before  being pushed  again.  Popping the  e m p t y  s t a c k  twice should  l ead  to  an  

un recove rab le  e r ro r .  This behaviour  is d e s c r i b e d  very eas i ly  if ' p o p ( e m p t y - s t a c k ) '  is an  
e r r o r  ob j ec t  which behaves  l ike ' e m p t y - s t a c k '  when p a s s e d  as  a r g u m e n t  to  ' push '  ( e r r o r  

r ecovery) ,  b u t  p r o d u c e s  a new e r r o r  when p a s s e d  to ' pop '  ( e r r o r  p ropaga t ion ) .  

The s e c o n d  goal  ~of this  p a p e r  is to  p ropose  a m e t h o d  for  t he  d e s c r i p t i o n  of gene ra l  

e r r o r  handlings.  This s t r a t e g y  p roceeds  in t h r e e  s t e p s  and  is b a s e d  orA t h e  defini t ion of 
d is jo in ts  sor t s ,  s e p a r a t i n g  the va l id  ob jec t s  f rom the  e r r o n e o u s  ones.  

4.1. Multi-target algebr~ 

The s i m u l t a n e o u s  def ini t ion of s eve ra l  so r t s  is b a s e d  on m u l t i - t a r g e t  a lgeb ra s  ([BGP 

88]), in which funct ions  m a y  p r o d u c e  values  in severa l  sor t s :  

pop: S t a c k  --> S t a c k  u S tack -e r r ;  

When m u l t i - t a r g e t  o p e r a t o r s  :occur in a t e rm,  i t  is n e c e s s a r y  to s t a t e  t he  sor t  of the  
t e r m ,  in a unique way. This is e x p r e s s e d  by  dec la ra t ions ,  such  as  

}Stack-err ]  p o p ( e m p t y - s t a c k ) ;  

s t a t i ng  tha t  ' p o p ( e m p t y - s t a c k ) '  be longs  to the  so r t  "S tack-er r ' .  The ax ioms and dec la ra -  

t ions  a r e  e x t e n d e d  to posi t ive  :condit ional  ones ([Bie 84]). Their  gene ra l  form is: 

[ f<s0r t>]  ] [ <condi t ion> ==>  ] < t e r m >  [ = < t e r m >  ]; 

with t h e  op t iona l  p a r t s  be tween  b r a c k e t s .  Such an  exp re s s ion  s t a t e s  tha t ,  [when the  con- 

d i t ion  is verified],  t he  lef t  t e r m  belongs to the  specif ied so r t  [and  is equal  to  the  r ight  

t e rm] .  The s o r t  a s soc i a t ed  with a n  :axiom indica tes  t he  s o r t  on  which the p r o p e r t y  

e x p r e s s e d  by the  ax iom is valid. ~ This sor t  may  be omi t t e d  if i t  is t he  s a m e  as  the  one of 
the  previous  axiom. 

4.2. The  m e t h y l  

This idea  of m u l t i - t a r g e t  a lgeb ra s  is used  as  follows to spec i fy  excep t ions  : 

* In a f irst  s tep ,  t h e  domains  of the  funct ions  include only valid ob jec t s ,  while the  ranges  

m a y  con ta in  e r r o r  objects .  Declara t ions  spec i fy  when e r r o r s  t ake  place ,  and  when valid 

t e r m s  a r e  p roduced .  The handling of e r r o r s  is thus  not  cons ide red ;  only the i r  p roduc-  
t ion  is specif ied.  

* The second  s t e p  s t i l l  does  not  cons ide r  e r r o r  handling:  i t  p rov ides  e r r o r  diagnost ic ,  i.e. 

i t  specif ies  t he  c o n s t r u c t o r s  of t he  e r r o r  sor t s .  Approp r i a t e  a r g u m e n t s  a r e  given to 

t h e s e  funct ions  and new ax ioms as soc ia t e  t hem with the  e r r o r  ca ses  previously  
defined. These ax ioms r ep l ace  t he  dec l a ra t ions  i n t r o d u c e d  da r ing  s t e p  1. 

In a las t  s tep ,  the  de s i r ed  e r r o r  handl ing is desc r ibed .  The s i g n a t u r e  is modif ied to 
e x t e n d  t h e  domains  of funct ions  which can  now a c c e p t  e r r o n e o u s  a rgume n t s .  The 

r anges  of t h e s e  funct ions  may  have to  be e x t e n d e d  too, depend ing  on the  chosen  e r r o r  
handling.  The ax iom se t  has to be a l t e r e d  for two reasons :  (1) to spec i fy  t h e  behaviour  

of funct ions  with a r g u m e n t s  in the  ex tens ion  of the  d o m a i n  (specifying a t  the  same  
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t i m e  %he ~cype of t h e  resu l t ,  in case  of e x t e n d e d  range) ,  and  (2) to  a d a p t  p rev ious  

ax ioms  re ly ing  on  s m a l l e r  domains  o r  ranges .  This will be i l l u s t r a t ed  in t h e  sequel .  New 

e r r o r  ob j ec t s  and  s o r t s  xnay need  to  be  def ined,  a s  a r e su l t  of e r r o r  p ropaga t ion .  

Note t h a t  t he  spec i f i ca t ion  p r o d u c e d  in t h e  s econd  s t e p  does  not  p r e c l u d e  any  e r r o r  

handl ing if the  t e r m  f lescr ib ing  an  e r r o r  r e co rds  any  in fo rmat ion  t ha t  could  be  u s e d  for 
t he  e r r o r  handl ing.  This can  be  done  by choosing a p p r o p r i a t e  a r g u m e n t s  for  t h e  con- 
s t r u c t o r  of t he  e r r o r  objec t .  

Consider ,  for  ins tance ,  the  func t ion  'clef-array" which c r e a t e s  a n  a r r a y  with  given 

u p p e r  and  lower bounds .  I t  is a n  e r r o r  to define an  a r r a y  with  i ts  uppe r  bound  in fe r io r  to  

i t s  lower bound.  Therefore ,  the  f irst  s t ep  of the  e r r o r  spec i f ica t ion  would inc lude  t h e  sig- 
na tu re :  

de f - a r r ay :  Nat '* Nat - >  Array  u Array-er r ;  

and  the  dec la ra t ious :  

~Arrayt y >= x ==> def-ar ray(x ,y) ;  

IAr ray -e r r l  y < x ==> def-ar ray(x ,y) ;  

In  t he  s e c o n d  s tep ,  vee would add the  funct ion:  

e r r o r - d e f - a r r a y :  Nat  * Nat --> Ar ray-e r r ;  

i n t e n d e d  to  d e s c r i b e  t h e  e r r o r  r a i s ed  when "clef-array' is invoked with i n a p p r o p r i a t e  a rgu-  

m e n t s .  The foUowil3g ax iom would r e p l a c e  the  s e c o n d  one above: 

~Array-err t  y < x ==> def -a r ray(x ,y)  = e r ro r -de f -a r ray(x ,y ) ;  

The t e r m  ' e r r o r - d e f - a r r a y ( x , y ) '  r e c o r d s  al l  i n fo rmat ion  avai lable  abou t  t h e  e r ro r :  t he  
ax iom a s s o c i a t e s  the  n a m e  ' e r ro r -c le f -a r ray '  with a n  i m p r o p e r  use  of ' d e f - a r r a y ' ,  while t he  

a r g u m e n t s  te l l s  what  ~ndices p r o d u c e d  t h e  e r ro r .  Cer ta in  e r r o r  handl ings  m a y  indeed  

r equ i r e  to  know the  value  "of x and y. For  i n s t a n c e  ' e r ro r -de f - a r r a y (x ,y ) '  could  be  h a n d l e d  

as  ' de f -a r ray(x ,x ) ' ,  i.e. the  ope ra t ion  would define an  a r r a y  of one e l emen t ,  wi th  x as  
index.  

4.3.  The t o l e r a n t  s t a c k  

As a l a r g e r  example ,  le t  us cons ide r  the  s t a c k  tha t  may  be p o p p e d  once  when emp ty .  

We will define the  s o r t s  ' S t a c k '  and  'S tack-er r"  for e r roneous  s tacks .  The f i rs t  

spec i f i ca t ion  d e s c r i b e s  the  valid behaviour  a n d  specif ies  when valid a r g u m e n t s  l ead  to  
e r r o n e o u s  values.  It inc ludes  the  following funct ions  (we o m i t t e d  ' top ' ) :  

e m p t y - s t a c k :  - >  Stack;  
push:  S t a c k  * E lem - >  Stack;  

pop: S t a c k  - >  S t ack  u S tack-e r r ;  

No func t ion  m a y  be  a p p l i e d  to e r roneous  s tacks ,  and  only "pop' m a y  p roduc e  s u c h  s t acks .  
The f irst  s e t  of ax ioms gives the  usua l  p r o p e r t y  of s t a cks  and te l ls  when the  value of ' pop '  
be longs  to  S t a c k  or  S t a c k - e r r  (s ~ Stack;  x ~ Elem) : 
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{Stackt 
I S t a c k - e r r l  t 

Note t ha t  the  s econd  
of a r g u m e n t s .  

[S tack l  pop(push(s ,x) )  = s; 

[S tack-e r r ]  p o p ( e m p t y - s t a c k ) ;  

In  a second  s t ep ,  we i n t r o d u c e  c o n s t r u c t o r s  for the  e r r o r  sor t s .  There  is only one 

d e c l a r a t i o n  for e r r o n e o u s  objects .  Thus, we need  only i n t roduce  one funct ion:  

bad-pop:  - >  S tack-er r ;  

Bad-pop does  not  t ake  any  a r g u m e n t ,  because  t h e r e  is no need  to  d i s t inguish  t h e  var ious  

c i r c u m s t a n c e s  in  which  the  e r r o r  m a y  t a k e  place  ( the re  is only one:  popping  the  e m p t y  

s tack) .  The s e c o n d  d e c l a r a t i o n  is r e p l a c e d  by the  following axiom: 

}S tack-e r r l  p o p ( e m p t y - s t a c k )  = bad-pop;  

In a th i rd  s tep ,  we want  to spec i fy  how 'push '  and 'pop '  handle  t he  e r r o r  ob jec t  ' bad-  

pop ' .  The two domains  a r e  e x t e n d e d  to include 'S t ack -e r r ' .  As "push" will r ecove r  t h e  

e r ro r ,  i ts  r a n g e  is s t i l l  l im i t ed  to  'S tack ' .  However, "pop' will p roduc e  an  un recove rab l e  

e r ro r ,  of t h e  new s o r t  ' S t a c k - e r r l ' ,  when given 'bad-pop '  as a rgument .  The a r i t y  of the  

funct ions  thus  becomes :  

push:  (S t ack  u S t a c k - e r r )  * Elem --> Stack;  

pop: S t a c k  u S t a c k - e r r  --> S tack  u S t a c k - e r r  u S t a c k - e r r l ;  

New ax ioms  a r e  a d d e d  to  spec i fy  t he  behaviour  of the  funct ions on e r r o r  a rgume n t s :  

push(bad-pop ,x)  = push(empty-s t ack ,  x); 
pop(bad-pop) ;  

ax iom c o m p l e t e s  t he  speci f ica t ion of the  type  of "pop' for all  k inds  

As S t a c k - e r r l  does  no t  be long to the  domain  of 'pop '  and  'push ' ,  t e r m s  such  as  

' pop(pop(bad-pop) ) '  o r  ' push(pop(bad-pop) ,x ) '  s imply  do no exis t  tn the  d e s c r i b e d  model .  

This is p a r t  of t he  e r r o r  handl ing we chose to specify: no fu r t he r  c o m p u t a t i o n  is al lowed 

a f t e r  popp ing  t h e  e m p t y  s t a c k  twice. Another  possibi l i ty  would have been  to allow such  
compu ta t ions ,  and  to con t inuous ly  ob ta in  the  s ame  objec t  in ' S t a c k - e r r l ' .  

4.4. FaTor hnndling in the switching module 

Let us now app ly  the  previous  s t r a t e g y  to the  'switching module '  example .  Er rors  m a y  
h a p p e n  in t he  following cases :  

* when d i sconnec t ing  two channe ls  which a r e  not  connec t ed  toge ther ,  

* when connec t ing  an  ou tpu t  channe l  which is a l ready  connec ted  (an ou tpu t  channel  

m a y  only be c o n n e c t e d  to  one input ,  a l though an  input  m a y  be c o n n e c t e d  to severa l  
ou tpu ts ) .  

* when de t e rmin ing  the  inpu t  channe l  connec t ed  to a non connec t ed  ou tpu t  channel ,  

* when d e t e r m i n i n g  the  word  coming  out  of channel  j when t h e r e  is no input  channe l  
c o n n e c t e d  to it. 

For  each  so r t  in t h e  r ange  of ' connec t ' ,  "disconnect ' ,  "identin" and  ' l as t in ' ,  we have to  

Let  Sin-err ,  Chart-err and  Word-err deno te  the  e r r o r  define a corresponding error sort. 
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sorts corresponding respectively to Srn, Ch~rt and Word. The functions 'is' and 'isnot' are 
defined in Chart u C~-eT'r and denote the equality and non-equality among objects of 

the sorts. 

We introduce a new observer, free, to ease the expression of error cases: free(s,e) is 
true if and only if the output channel c is not connected to any input channel in the Sms. 

We thus use the predefined specification BOOL in addition Lo WORD and CHAN. 

In the first step, we just define when errors take place (for brevity, we will denote XD 

X-e'rr by  m e a n s  of Xer): 

fzt~.c ~/,o~ts 

ini t :  

inout :  

connect: 

disconnect: 

channel: 

free:  

i den t i n :  

lastin: 

variables 

s ,s '  : S m ;  
w : Word; 

i,j,k,1 : Chan; 

- >  Sin; 

S m "  Word --> S m  * Worder;  

S m  * C h a n  * Chan  --> Smer ;  

S m *  Chan  * C h a n  --> Smer ;  

Sm --> Chan; 

S m *  C h a n  --> Bool; 

Sm * C h a n  --> Charier;  

Sm " Chan --> Worder; 

Z The word output at each switching may be an erroneous one. % 

IWorderl inoutE(s,w) = lastin(s,ehannel(s)); 

% c h a n n e l  is n e v e r  a p p l i e d  Lo a n  e r r o n e o u s  Srn. Its ax ioms  a r e  lef t  u n c h a n g e d  % 

Ic~nl c h a n n e l ( i n i [ )  = 1; 
e h a n n e l ( i n o u t  l (s ,w))  = ehapmel(s)+ 1; 

c h a n n e l ( c o n n e c t ( s , i , j ) )  = channe l ( s ) ;  

c h a n n e l ( d i s c o n n e c t ( s , i , ] ) )  = channe l ( s ) ;  

% The following ax ioms  def ine  f r ee .  % 

IBool~ f ree( in i t , j )  - t r u e ;  

f r e e ( i nou t l ( s ,w) , j )  = free(s,]);  

j is 1 ==> f r ee (connec t ( s , i , j ) , l )  = false; 

j i sno t  l ==> f r ee (connec t ( s , i , j ) , l )  = free(s, l) ;  

j is I = = >  f r ee (d i sconnec t ( s , i , j ) , l )  = t rue ;  
] i sno t  l = = >  f ree(d iseonnect (s , i ,~) , l )  = free(s,1); 
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Z tazti~z(s,j),  the  last  word en te red  on the input channel connec ted  to j, is e r roneous  if~ 
is free o r  if its connec t ion  to an  input  channel  is too r ecen t  and no word arr ived ye t  on  
this channel. Z 

lWordl 
IWord-err] 

~Worderj 

channel(s)  is identin(s,j) ==>  lastin(inoutl(s,w),j) = w; 
l is j = = >  lastin(connect(s,k,1),j); 
free(s,j) = = >  lastin(s,j); 
charmel(s) isnot identin(s,j) == >  lasUn(inoutl(s,w),j) = lastin(s,j); 
I isnot j ==>  lastin(eonnect(s,k,l) , j)  = lastin(s,j); 
I isnot j ==>  lastin(disconnect(s,k,l), j)  = lastin(s,j); 

id~b~r~(s ,¢)  is  er roneous  if no input channel  is connec ted  to c in s. Z 

}chanl 
IChan-errJ 
}Chaner~ 

j is I = = >  identin(connect(s,i,j),l) = i; 

free(s,j) ==> identin(s,j); 
j isnot 1 ==> identin(connect(s,i , j) , l)  = identin(s,1); 
j isnot t ==> identin(disconnect(s,i , j) , l)  = identin(s,1); 
identin(inout l(s ,w),j) = identin(s ,j); 

Z The following declarat ions  specify the type  of co~,~c~ and d i sconnec t .  Z 

~SmJ 

ISm-err  I 

free(s,j)) ==> connect(s,i , j);  
identin(s,j) is i ==> disconnect(s,i,j); 

not(free(s,j)) ==> connect(s,i , j);  
identin(s,j) isnot i ==> disconnect(s,i,j); 

In a second step,  we define, for each  declara t ion of an e r ro r  sort ,  a cons t ruc to r  associ- 
a t ed  with the corresponding error .  For brevity, we will limit ourselves to the cons t ruc to r s  
of Sm-err:  

bad-connect :  S m *  Chan *Chan --> Sin-err; 
bad-disconnect :  Sm *Chan *Chan - >  Sin-err; 

The following axioms replace  the two last declarat ions above: 

tSm-err l  not(free(s,j)) ==> connect(s,i,j) = bad-cormect(s,i,j); 
identin(s,j) isnot i ==> disconnect(s,i , j)  = bad-disconnect(s,i , j);  

In the third step, we will specify a non trivial error handling. As suggested in Section 2, 

bad connections or disconnections are without effect on the transmission of words but 

will prevent the effect of any other operation (i.e. further connect or disconnect). It is up 

to the controller of the switching module to reinitialise it in such cases. This is an exam- 

ple of partial recovery of errors. 

To describe this behaviour, the second value of "incur" will not be affected by the error, 

but its first value will belong to b-err if an error object is given as argument. Both 
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'connect' and 'disconnect' also produce an element of Sm-eTr when taking one as argu- 

ment. The new ar i ty  of the funct ions  is as follows (the domain  of chsr~ne~ has not  b e e n  

ex tended  to Sm-e~r as it is never  applied to e r ro r  objects):  

init: - >  Sin; 

inout: Smer  ~ Word --> Smer  * Warder; 

connect :  Smer  * Chan ~ Chan - >  Smer;  

disconnect :  Smer  *Chan  * Chan - >  Smer; 

channel :  Sm - >  Chan; 

free: Smer  * Chan - >  Boal; 

identin:  Smer  *Chan  - >  Charier; 

lastin:  Smer  * Chan --> Warder; 

bad-cormect:  S m *  Chan * Chan -> Sin-err;  

bad-disconnect :  S m *  Chan * Chan - >  Sin-err;  

The axiom given for iv~out in  the first s tep  specifies its behaviour  when i ts  first argu- 

m e n t  belongs to S m  (the var iable  s is typed).  The following ones are conce rned  with 

a r g u m e n t s  in  Srn-err.  They specify a par t ia l  e r ro r  recovery: words con t inue  to  be ou tpu t  

as if no e r ror  had arisen.  % 

IWorderl inout2(bad-disconnect(s , i , j ) ,w) = inout2(s,w); 

inout2(bad-connect(s , i , j ) ,w) = inouta(s,w); 

On the o ther  hand,  the  e r ro r s  a re  propagated  by connect, disconnec$ and the first 

value of inaut: 

ISm-errl  inout  1 (bad-disconnect(s, i , j) ,w) = bad-d i sconnec t ( inou t  1 (s,w),i,j); 

connect(bad-disconnect(s , i , j ) ,k ,1)  = bad-disconnect(s , i , j ) ;  

disconnect(bad-disconnect(s , i , j ) ,k ,1)  = bad-disconnect(s , i , j ) ;  

The auxil iary funct ions  channel, f ree ,  las~n, and/m!en/%n are  only used to define the  

word ou tpu t  by inout.  As this  word is not  affected by connec t ion  errors ,  the  funct ions  will 

recover  the  error .  We add the  following axioms: 

~Bool] 
~Worderl 

~Chanerl 

free(bad-disconnect(s , i , j ) , l )  = free(s,1); 

ias t in(bad-disconnect(s , i , j ) , l )  = lastin(s,1); 

ident in(bad-disconnect(s , i , j ) , l )  : identin(s, l) ;  

Note tha t  most  axioms given for free,  lasti:n, a n d / d e n t / ~  in the first s tep rely on the  

a s sumpt ion  of a smal le r  domain.  For  ins tance,  

~Bool~ j is t ==> free(disconneet(s , i , j ) , l )  = t rue ;  

was only" valid because  f~'ee did only take  e l emen t s  of Srn as a rgumen t ,  and thus  
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d~sce'n~ec$(s, ij) was assumed not to be an error object. This is not the case any more. 
The condition of this axiom has to be strengthened to guarantee that 'disconnect(s,i,j)' is 
a valid object. We replace it by: 

~Bc~l~ (identin(s,j) is i) and (j is I) ==> free(disconnect(s,i,j),l) = ~ue;  

A similar transformation is applied to the other axioms, when needed. This completes the 
specification of the switching module, ~ t h  er ror  handling. 

5. Conclusions 

The first goal of the paper was to show that processes may, to a certain extend, be 
specified in the algebraic style, in the same way as passive objects. The key idea is in the 
appropriate interpretation of the meaning of a function. The advantage of this approach 
is to provide a uniform framework for the description of parallel and sequential parts of 
system. However, this goal is not yet reached. What we have illustrated is the local 
specification of the behaviour of a process, and not yet the specification of the interac- 
tion of several ones. This work is currently going on. 

Another limitation of this formalism is that it does not, in its current  form, allow for 
real-time specifications, i.e. specifications involving absolute values of time. For instance, 
we cannot say that 'inout' takes place every 125 pus. This limitation is common to most 
o ther  specification techniques. 

The second goal of the paper was to propose a systematic approach to the 
specification of error handling. This contribution is more of a methodological nature. The 
idea to distinguish the specification of normal cases and error  situations is an illustration 
of the-principle of separation of concern. Considering the size of an actual specification, 
its writing, reading or modification would nearly be possible without a clever application 
of this principle. But it is also important to introduce early the error cases. What we pro- 
pose is to distinguish at the very beginning error cases from normal ones in an economic 
way, and to postpone the real choices of error handling. 
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