
ALGFA~RMC SPECIFICATION OF SYNCHRONISATION AND
ERRORS: A TEIJ~HONIC EXAMPLE

~ g i t t e B~ebow (*) and Jacques Itagelstein (**)

{*) h a b o r a t o i r e s de Marcoussis
C.R.C.G.E,

Route de Nozay
F-91460 ldarcouss is

F r a n c 8

(**) Ph ihps R e s e a r c h L a b o r a t o r y
Avenue van Bece lae re , 2

B-1170 Brusse ls
Belgium

ABSTRACT

This paper presents an algebraic specification of the switching
module, a component of a telephone switching system. This module exhi-
bits interesting synchronisation properties which lead to consider it as a
process. The specification is first presented without error handling, and
then refined to include a non trivial error recovery strategy. Thus, we
additionally show how error handling, wtfich often obscures specifications,
may be postponed, and become a systematic refinement of a simpler
specification.

1. In t roduct ion

This paper adms at presenting an algebraic specification for a component of a
telephonic exchange called a 'switching module', exhibiting synchronisation properties
and possible erroneous behaviours. These two aspects admittedly raise problems in the
abstract data type framework. We show, on this example, how these problems may be
overcome, Incidentally, the switching module is usually implemented in hardware. This
paper shows that a common specification language between hardware and software is by
no means impossible,

Specification methods able to describe the behaviour of processes cover various levels
of abstraction, from operational (e.g. Petri nets) to axiomatic ones (e.g, ACP), In this
paper, we are specifically interested in specifying processes by using the classical alge-
braic approach to data type specification.

295

An algebra is formed by a collection of 'sorts ' -- sets of objects -- and a collection of
functions over the sorts. It may be defined by providing the signature of the functions
and a set of axioms, thus enabling,an axiomatic style of specification. Classically [GM 84],
the sorts are used to model data types in programming languages, ~zhereas the functions
over the sorts model the functions defined in the programming language. Several
approaches have been proposed to use the algebraic framework for the specification of
processes.

ACP([BK 83]) provides operators to combine atomic actions into individual processes
and sets of cooperating ones. These operators are defined axiomatically and form an
'algebra of communicating processes' in which specifications can be written. Currently,
ACP suffers from a lack of integration with classical algebraic specifications of data types.

Another approach describes processes by means of auxiliary data types, specified in
the algebraic style. In [Jul 83], processes communicate by applying the functions 'pro-
duce' (for the sender) and 'consume' (for the receiver) to a shared object belonging to a
'communication type' . This object is described axiomatically, but the specification has to
include an operational part, described by means of a variant of weakest preconditions.

In this article, we propose an algebraic specification technique for processes which is
more similar to the one used for abstract data types: in the same way as stacks belong to
some sort in the algebra of stacks, processes wig belong to some ~sort in some algebra.
The elements of the sort will be the various possible states in which the process may be,
all along its life. The functions applicable to these objects will correspond to the various
events in which the process may be involved. These ideas will be developed in Section 3.

As proned in [Cog 77], the specification of a program should include all exceptional
behaviours. All information necessary to the handling of the exceptional state, and only
that information, should be kept in case of error. To follow these principles without
obscuring the specification with too many details, we propose to provide the specification
in three steps: first, just describing the circumstances of errors, secondly, providing
error diagnostics, and thirdly, specifying the chosen error handling. These ideas will be
developed in Section 4.

In the next section, we present an informal description of the switching module.

2. The switching module

The switching module is a component of a "time multiplexed digital telephonic system'.
A telephonic system is digital when the conversations are transmitted in digital form. To
achieve this, the anaiogic signal delivered by the microphone is sampled 8000 times per
second, i.e. every 125 microseconds. A sample takes slightly less than 4 microseconds to
be transmitted. It is therefore possible for a line to transmit repeatedly the samples of
~, different conversations (figure I). This technique is called "time multiplexing". The
periodical interval of time allocated to a conversation is called a "channel", and there are
thus 32 channels on a line. A channel is allocated to a use~" for the duration of his talk.

Still, a conversation is not t ransmit ted on one single channel: it 'follows a path formed
by several physical lines connected through nodes. It may be the case that it uses the
channel 7 before a node and the channel 30 after it. Therefore, the nodes consist of

296

%ul ~m2 ~38 %~34

O- 4- 8 125 129 > time (ps)

%ui = 1st s ample of conversa t ion 1

~ 2 = 1st sample of conversa t ion 2

w 8 3 = 2nd sample of conver sa t ion 1

w 3 4 = 2nd sample of conver sa t ion 2

f~u re 1

'switching module# performing the switching of the channels. We assume that the net-

work is synchronous (at least around a switching module), i.e. when it is channel 7's time

before a node, it is channel 7's time after it ~too. Therefore, the switching module can only

move the samples from one channel to another by delaying them. Of course, the amount

of delay depends on the two channels which must be connected: if incoming channel 7

should be switched to 30, all samples reaching the switching module on channel 7 should

be delayed by 23 channels, i.e around 90 ps.

Suppose the un i t of t ime is 125/32 ps. Channel 1 is t h e n handled a t t ime 1, 33, 65, eta;

channe l 7 is handled a t t ime 7, 39, 71, etc. Consider the voice sample or 'word' w received

in the switching module a t t ime 7, when channe l 7 is handled. At the s ame time, an

i r re levant word (for the cons idered conversa t ion) goes out, s en t on the outgoing channe l

7, At t ime 80, an i r re levant word is rece ived on the incoming channel 30, and the word zv

is sen t on the outgoing channe l 30.

Apart f rom the regular ly incoming samples, there are two kinds of c o m m a n d s

addressed to the switching module: ' connec t ' and 'd i sconnec t ' specifying two channels to

connec t or d isconnect , indeed, the charmel corm.ections a re es tabl i shed and b r o k e n

dynamically. An input channel may be connec t e d to several ou tput channels , bu t the

reverse is no t allowed. An ou tpu t channe] connec t e d to no input channel will con ta in gar-

bage.

The del icate poin ts in the specif icat ion :below come from synchronisa t ion and e r ro r

handling aspects :

* At the s ame t ime a word is received and a word is sent: input and output are synchro-

nous.

* Errors h a p p e n when t rying to d i sconnec t two channels not connec ted together , or to

connec t a n o u t p u t channe l which is a l ready connected . This should not p reven t the

module to con t inue the t r a n s m i s s i o n of words.

In the sequel, we make some simplifying assumpt ions , to avoid obscuring the

specif icat ion with useless details. For ins tance , we a s sume tha t the connec t and discon-

nec t c o m m a n d s are immedia te ly effective, whereas this could require some time. These

simplif ications c a n be removed without any problem, except the increasing size cf the

specification.

297

S ~ t i o n of synchrunisation in the switching module

1. Algebraic speciflcatiaa d processes

Algebraic techniques apply nicely to the specification of objects entirely characterised
by the functions that one may invoke to create or modify them. Similarly, the state of a
process is entirely characterised by the events that affected the process in the past, i.e.
the information that was input and output, and, ff relevant, the identification of the origi-
nators and destinators. In the spirit of the algebraic approach, we will thus consider pro-
cess states as objects modified by the application of functions modeling the various
events.

Example:
Consider a process which may receive from the outside the messages "start', 'stop'
and 'busy?'. It may issue the messages 'busy!' and "notbusy!'. The signature of the
algebra modeling the process's behaviour will thus include the following functions:

start: Proc --> Proc
stop: Proc --> Proc
busy?: Proc --> Proc
busy!: Proc --> Proc
notbusy!: Proc --> Proc

In addition, the function 'new' produces a process that no event has affected yet.

new: --> Proc

An expression such as "stop(start(new))' describes the state of a process which was
created, received the message 'start ' , and then received the message 'stop'.

The behaviour of the process will be described by stating which sequences of events
lead to identical states. As usually, this is achieved by equating expressions formed with
the available functions.

In the example above, the equation

stop(new) = new

expresses that a message "stop' has no effect on a newly created process.

The behaviour of the process is also described by stating which sequences of events

are not allowed. For the process above, one may want to state that a stopped process

may not issue "busy!'. A discussion about how to state such facts is given in Section 4.

In the simple example above, the functions take no arguments in addition to the pro-

cess itself. There is thus a function for each possible event. In general, a function will

model a whole family of events, distinguished by the value of possible arguments of the

function. It is up to the specifier to cluster the events in an appropriate way, but the

problem is generally quite clear. For example, to specify a proce~ able to receive a cer-

tain request accompanied by varying data, there would be a function identifying this kind
of event and taking the data as argument.

Although it is not mandatory, we found it natural to let incoming messages appear as

298

a r g u m e n t s of the .function model ing the r ecep t ion , and outgoing m e s s a g e s a p p e a r as
add i t iona l va lues p r o d u c e d by the func t ion model ing the emiss ion. Cons ider for i n s t ance ,

a p r o c e s s of t y p e 'Connec tor ' which m a y rece ive the m e s s a g e ' c o n n e c t ' ask ing for t h e
c o n n e c t i o n of two channels , and will, when the eovmect ion is c o m p l e t e d , i s sue the mes -

sage ' c o n n e c t e d ' spec i fy ing again t he two channels . I ts s i gna tu re will inc lude the func-

t ions

connec t : Connec tor * Charmel * Channel - > Connec to r

c o n n e c t e d : Connector - > Connec tor * Channel * Channel

When seve ra l r e c e p t i o n s or emiss ions a r e g u a r a n t e e d Lo be synchronous , t hey fo rm

one s ingle even t and a re thus mode l ed by one single funct ion. This will be i l l u s t r a t e d in

t he spec i f i ca t ion of the switching module .

:].2. Formal specification of the switch]ng module

In the sequel , we will use the a lgeb ra i c spec i f ica t ion language PLUSS ([BBGGG 84]). I t

is b a s e d upon a s e t of spec i f ica t ion-bui ld ing o p e r a t o r s de r ived f rom t h o s e of ASL ([Wir

83]) which allow to d e s c r i b e s t r u c t u r e d a b s t r a c t d a t a types spec i f i ca t ions of r ea l i s t i c

size. I t i nc ludes t he not ion of m u l t i - t a r g e t a lgeb ra s ([BGP 83]) which we will use to spec i fy
e x c e p t i o n handl ing in a lgeb ra i c d a t a types . E r r o r s will however only be c ons ide r e d in See-

Lion 4.

The a l g e b r a i c m o d e l of the switching modu le is an ob jec t t ha t r e c o r d s t h e h i s to ry of

even t s t h a t have a f fec ted i t unti l a c e r t a i n mome n t . 3~ose events , m o d e l e d by funct ions ,

a r e of the following kinds:

* c r e a t i o n of a new switch}ng module t h a t no even t has af fec ted y e t

* swi tching of a channel , a t r egu l a r in te rva l s of t ime; th is cons i s t s in the r e c e p t i o n of a

~ o r d be longing to t h a t channe l u p s t r e a m f rom t h e switching module and the s imul-

t a n e o u s emis s ion of a word on the s a m e channel d o w n s t r e a m

* r e c e p t i o n of a c o m m a n d to connec t two channe ls

* r e c e p t i o n of a c o m m a n d to d i s connec t two channe ls

The channe l t h a t is swi tched by t h e even t of t he s econd kind n e e d s no t be spec i f ied

b e c a u s e t h e channe l s a r e hand led in sequence : t h e n l h switching hand les t he channe l

n u m b e r n modulo 32°

The c o n s t r u c t o r s of t he so r t Sm (for "switching module ') c o r r e s p o n d to t h e even t s

above. Note t ha t the switching o p e r a t i o n will be mode l e d by one s ingle c o n s t r u c t o r , as

the r e c e p t i o n of one word and the emis s ion of a n o t h e r one a r e s imul t aneous . The d a t a

t h a t is r e c e i v e d a p p e a r s as a r g u m e n t while t he d a t a being p r o d u c e d a p p e a r s as resu l t .

The c o n s t r u c t o r s a r e the following ones:

* ~ i t p r o d u c e s a n ini t ial s t a t e ,

* inou~(s,w) mode l s the switching of a c e r t a i n channe l on which w is rece ived; t he chan-

nel d e p e n d s on the n u m b e r of t i m e s "inout" has b e e n appl ied to p r o d u c e the Sm s; t he
o p e r a t i o n p r o d u c e s two things: a new S m s ' and a word w'; s" is i den t i ca l to s, e x c e p t
t h a t one m o r e switching even t has t a k e n place, dur ing which the word ~ has b e e n
r e c e i v e d and w ' has b e e n sent ; we shal l no te ~r~ouSd (s ,~) and i rm~g(s ,w) , t he f irst a n d

299

second value of i n o u t (s , w) ,

* cor~nec$(s , i j) p r o d u c e s a S m s ; ident ica l to s excep t t h a t t he inpu t channe l i is now

c o n n e c t e d to t he o u t p u t channe l j ,

* d&scar~nect.(s,iO') p r o d u c e s an Sm s ' , ident ica l to s excep t t ha t the inpu t channe l i is
now d i s c o n n e c t e d f rom t h e o u t p u t c h a n n e t j .

We provide also some o b s e r v e r s :

* c h a n n e l (s) is t h e channe l to which t h e nex t mvitching of t he Sm s will r e fe r ,

* 4z~enf{~(s,c) is t h e input channe l c o n n e c t e d to t he ou tpu t channe l c in the Sm s,

* l a s t i n (s , c) is the l as t word inpu t on t h e channel c o n n e c t e d to the ou tpu t channe l c in
t he S m s . ~;

The spec i f i ca t ion of Sm uses t he predef ined spec i f ica t ions CHAIN (in t ege r s f rom 1 to 32,
with add i t i on modulo 32) and WORD. The funct ions ~s a n d / s ~ o t a r e def ined in CHAN a n d

d e n o t e t he equa l i ty and non-equa l i ty among ob jec t s of the sor t .

s ' pec i l SM =

en~/t WORD, CHAN by

sorts Sm;

2~c~ons

init:

inout:

connect:

disconnect:

channel:

identhn:

lastin:

~ a ~ b l e s

s,s' : Sm;
w : Word;

i,j,k,1 : Chan;

- > Sm;
Sm *Word --> Sm * Word;

S m * Chart * Chan --> Sin;
S m * Chart *Chan --> Sin;

Sm -> Chan;

S m * Chan --> Chan;

S m *Chan --> Word;

% ¢ and k a r e used for inpu t channels , j and I for ou tpu t channels . %

o ~ r t ~ 8

% The following ax iom is the h e a r t of the specif icat ion. I t s t a t e s which word is ou tpu t e a c h

t ime a switching t a k e s p lace (i.e. a t r egu la r in tervals) . This word, the s econd value of

¢ n o ~ , is the l as t word t h a t e n t e r e d the input channel to which the c u r r e n t ou tpu t chan-
nel is connected. %

[Wordl inout2(s,w) = lastin(s,channel(s));

% The following axioms describe cl~nnsl. They express that a new channel is handled

each time qnout is invoked. Note that channel(s) denotes the channel that the next ~zo~t
will handle. 70

~Chanl channel(init) = I;

300

charmet(inout t (s,w)) = channe l (s)+ t;
ehannel (connect (s , i , j)) = channel (s) ;

channel(disconn~ect(s, i , j)) = channel (s) ;

The following axioms d e s c r i b e tasti , n. las t i~ t (s , j) is t h e las t word e n t e r e d on the input

channe l c o n n e c t e d to j, i.e. on id~nt ir~(s , j) .

lWordl channel (s) is ident in(s , j) ==> l a s t in (inou t l (s ,w) , j) = w;

channel (s) isnot ident in(s , j) = = > l a s t i n (i n o u t l (s , w) , j) = last in(s , j) ;

l as t in(connect (s ,k , l) , j) = las t in(s , j) ;
- tast in(disconnect(s ,k, l) , j) = tast in(s , j) ;

The following a ~ o m s d e s c r i b e / d e ~ , ~ n . %

tCh,~l

end SM;

j is 1 ==> ident in(connect (s , i , j) , t) = i;

j i snot I ==> iden t in(connec t (s , i , j) , l) = identin(s,1);

j i snot 1 ==> iden t in(d isconnec t (s , i , j) , l) = identin(s,1);

ident in(incut l (s ,w) , j) = ident in(s , j) ;

Note t ha t t he words arr iving on a channe l c o n n e c t e d to i tself a re not t r a n s m i t t e d

ins tan taneous ly , bu t de layed by 32 channels . I n s t a n t a n e o u s t r a n s m i s s i o n would have b e e n

allowed by rep lac ing the f irst ax iom by:

{Wordl inout2(s,w) = lastin(inout1(s,w),cham~el(s));

Fawor handling

When defining a n a b s t r a c t d a t a type , one has to c o n s i d e r so ca l led e r r o r s i tua t ions .

These a r e p r o d u c e d by ope ra t ions which a r e m e a n i n g l e s s with the given a rgume n t s , for

ins t ance popping a n e m p t y s t ack .

E r ro r s r a i s e diff icul t ies in t he a l g e b r a i c f r a m e w o r k ([BG 63] for a survey, [Bid 84]), and

i t is t e m p t i n g to ju s t exc lude them. This c a n be done by providing a convent iona l valid

ob jec t as r e su l t of a mean ing less ope ra t ion . For ins tance , the following equa t ion specif ies

t ha t popping the e m p t y s t a c k has no effect:

p o p (e m p t y - s t a c k) = e m p t y - s t a c k

This s t r a t e g y has two drawbacks . F i rs t , i t v io la tes the pr inc ip le of s e p a r a t i o n of con-
cerns : b o t h the r e a d e r and the w r i t e r of a spec i f i ca t ion will ga in in cons ider ing f i rs t the

no rma l cases , leaving the e r r o r handl ing for l a t e r . Second, i t p rovides only a very specif ic

v~ay to handle e r ro r s , i.e. invisible r ecovery .

Other e r r o r handl ings may be des i rab le : i t m a y be n e e d e d to recognise in t he value
p r o d u c e d by a funct ion, t ha t a n e r r o r j u s t happened ; th i s is no t the case if the e r r o r pro-
duces a valid object . While doing so, i t m a y also be n e e d e d to d is t inguish var ious e r r o r s

301

one f rom the o ther . A c lass ica l example requir ing a m o r e flexible e r r o r handl ing t h a n

invisible r e c o v e r y is a t o l e r an t s t a c k ([BBGGG 84]). I t may be popped when empty , bu t

only once before being pushed again. Popping the e m p t y s t a c k twice should l ead to an

un recove rab le e r ro r . This behaviour is d e s c r i b e d very eas i ly if ' p o p (e m p t y - s t a c k) ' is an
e r r o r ob j ec t which behaves l ike ' e m p t y - s t a c k ' when p a s s e d as a r g u m e n t to ' push ' (e r r o r

r ecovery) , b u t p r o d u c e s a new e r r o r when p a s s e d to ' pop ' (e r r o r p ropaga t ion) .

The s e c o n d goal ~of this p a p e r is to p ropose a m e t h o d for t he d e s c r i p t i o n of gene ra l

e r r o r handlings. This s t r a t e g y p roceeds in t h r e e s t e p s and is b a s e d orA t h e defini t ion of
d is jo in ts sor t s , s e p a r a t i n g the va l id ob jec t s f rom the e r r o n e o u s ones.

4.1. Multi-target algebr~

The s i m u l t a n e o u s def ini t ion of s eve ra l so r t s is b a s e d on m u l t i - t a r g e t a lgeb ra s ([BGP

88]), in which funct ions m a y p r o d u c e values in severa l sor t s :

pop: S t a c k --> S t a c k u S tack -e r r ;

When m u l t i - t a r g e t o p e r a t o r s :occur in a t e rm, i t is n e c e s s a r y to s t a t e t he sor t of the
t e r m , in a unique way. This is e x p r e s s e d by dec la ra t ions , such as

}Stack-err] p o p (e m p t y - s t a c k) ;

s t a t i ng tha t ' p o p (e m p t y - s t a c k) ' be longs to the so r t "S tack-er r ' . The ax ioms and dec la ra -

t ions a r e e x t e n d e d to posi t ive :condit ional ones ([Bie 84]). Their gene ra l form is:

[f<s0r t>]] [<condi t ion> ==>] < t e r m > [= < t e r m >];

with t h e op t iona l p a r t s be tween b r a c k e t s . Such an exp re s s ion s t a t e s tha t , [when the con-

d i t ion is verified], t he lef t t e r m belongs to the specif ied so r t [and is equal to the r ight

t e rm] . The s o r t a s soc i a t ed with a n :axiom indica tes t he s o r t on which the p r o p e r t y

e x p r e s s e d by the ax iom is valid. ~ This sor t may be omi t t e d if i t is t he s a m e as the one of
the previous axiom.

4.2. The m e t h y l

This idea of m u l t i - t a r g e t a lgeb ra s is used as follows to spec i fy excep t ions :

* In a f irst s tep , t h e domains of the funct ions include only valid ob jec t s , while the ranges

m a y con ta in e r r o r objects . Declara t ions spec i fy when e r r o r s t ake place , and when valid

t e r m s a r e p roduced . The handling of e r r o r s is thus not cons ide red ; only the i r p roduc-
t ion is specif ied.

* The second s t e p s t i l l does not cons ide r e r r o r handling: i t p rov ides e r r o r diagnost ic , i.e.

i t specif ies t he c o n s t r u c t o r s of t he e r r o r sor t s . Approp r i a t e a r g u m e n t s a r e given to

t h e s e funct ions and new ax ioms as soc ia t e t hem with the e r r o r ca ses previously
defined. These ax ioms r ep l ace t he dec l a ra t ions i n t r o d u c e d da r ing s t e p 1.

In a las t s tep , the de s i r ed e r r o r handl ing is desc r ibed . The s i g n a t u r e is modif ied to
e x t e n d t h e domains of funct ions which can now a c c e p t e r r o n e o u s a rgume n t s . The

r anges of t h e s e funct ions may have to be e x t e n d e d too, depend ing on the chosen e r r o r
handling. The ax iom se t has to be a l t e r e d for two reasons : (1) to spec i fy t h e behaviour

of funct ions with a r g u m e n t s in the ex tens ion of the d o m a i n (specifying a t the same

302

t i m e %he ~cype of t h e resu l t , in case of e x t e n d e d range) , and (2) to a d a p t p rev ious

ax ioms re ly ing on s m a l l e r domains o r ranges . This will be i l l u s t r a t ed in t h e sequel . New

e r r o r ob j ec t s and s o r t s xnay need to be def ined, a s a r e su l t of e r r o r p ropaga t ion .

Note t h a t t he spec i f i ca t ion p r o d u c e d in t h e s econd s t e p does not p r e c l u d e any e r r o r

handl ing if the t e r m f lescr ib ing an e r r o r r e co rds any in fo rmat ion t ha t could be u s e d for
t he e r r o r handl ing. This can be done by choosing a p p r o p r i a t e a r g u m e n t s for t h e con-
s t r u c t o r of t he e r r o r objec t .

Consider , for ins tance , the func t ion 'clef-array" which c r e a t e s a n a r r a y with given

u p p e r and lower bounds . I t is a n e r r o r to define an a r r a y with i ts uppe r bound in fe r io r to

i t s lower bound. Therefore , the f irst s t ep of the e r r o r spec i f ica t ion would inc lude t h e sig-
na tu re :

de f - a r r ay : Nat '* Nat - > Array u Array-er r ;

and the dec la ra t ious :

~Arrayt y >= x ==> def-ar ray(x ,y) ;

IAr ray -e r r l y < x ==> def-ar ray(x ,y) ;

In t he s e c o n d s tep , vee would add the funct ion:

e r r o r - d e f - a r r a y : Nat * Nat --> Ar ray-e r r ;

i n t e n d e d to d e s c r i b e t h e e r r o r r a i s ed when "clef-array' is invoked with i n a p p r o p r i a t e a rgu-

m e n t s . The foUowil3g ax iom would r e p l a c e the s e c o n d one above:

~Array-err t y < x ==> def -a r ray(x ,y) = e r ro r -de f -a r ray(x ,y) ;

The t e r m ' e r r o r - d e f - a r r a y (x , y) ' r e c o r d s al l i n fo rmat ion avai lable abou t t h e e r ro r : t he
ax iom a s s o c i a t e s the n a m e ' e r ro r -c le f -a r ray ' with a n i m p r o p e r use of ' d e f - a r r a y ' , while t he

a r g u m e n t s te l l s what ~ndices p r o d u c e d t h e e r ro r . Cer ta in e r r o r handl ings m a y indeed

r equ i r e to know the value "of x and y. For i n s t a n c e ' e r ro r -de f - a r r a y (x ,y) ' could be h a n d l e d

as ' de f -a r ray(x ,x) ' , i.e. the ope ra t ion would define an a r r a y of one e l emen t , wi th x as
index.

4.3. The t o l e r a n t s t a c k

As a l a r g e r example , le t us cons ide r the s t a c k tha t may be p o p p e d once when emp ty .

We will define the s o r t s ' S t a c k ' and 'S tack-er r" for e r roneous s tacks . The f i rs t

spec i f i ca t ion d e s c r i b e s the valid behaviour a n d specif ies when valid a r g u m e n t s l ead to
e r r o n e o u s values. It inc ludes the following funct ions (we o m i t t e d ' top ') :

e m p t y - s t a c k : - > Stack;
push: S t a c k * E lem - > Stack;

pop: S t a c k - > S t ack u S tack-e r r ;

No func t ion m a y be a p p l i e d to e r roneous s tacks , and only "pop' m a y p roduc e s u c h s t acks .
The f irst s e t of ax ioms gives the usua l p r o p e r t y of s t a cks and te l ls when the value of ' pop '
be longs to S t a c k or S t a c k - e r r (s ~ Stack; x ~ Elem) :

303

{Stackt
I S t a c k - e r r l t

Note t ha t the s econd
of a r g u m e n t s .

[S tack l pop(push(s ,x)) = s;

[S tack-e r r] p o p (e m p t y - s t a c k) ;

In a second s t ep , we i n t r o d u c e c o n s t r u c t o r s for the e r r o r sor t s . There is only one

d e c l a r a t i o n for e r r o n e o u s objects . Thus, we need only i n t roduce one funct ion:

bad-pop: - > S tack-er r ;

Bad-pop does not t ake any a r g u m e n t , because t h e r e is no need to d i s t inguish t h e var ious

c i r c u m s t a n c e s in which the e r r o r m a y t a k e place (the re is only one: popping the e m p t y

s tack) . The s e c o n d d e c l a r a t i o n is r e p l a c e d by the following axiom:

}S tack-e r r l p o p (e m p t y - s t a c k) = bad-pop;

In a th i rd s tep , we want to spec i fy how 'push ' and 'pop ' handle t he e r r o r ob jec t ' bad-

pop ' . The two domains a r e e x t e n d e d to include 'S t ack -e r r ' . As "push" will r ecove r t h e

e r ro r , i ts r a n g e is s t i l l l im i t ed to 'S tack ' . However, "pop' will p roduc e an un recove rab l e

e r ro r , of t h e new s o r t ' S t a c k - e r r l ' , when given 'bad-pop ' as a rgument . The a r i t y of the

funct ions thus becomes :

push: (S t ack u S t a c k - e r r) * Elem --> Stack;

pop: S t a c k u S t a c k - e r r --> S tack u S t a c k - e r r u S t a c k - e r r l ;

New ax ioms a r e a d d e d to spec i fy t he behaviour of the funct ions on e r r o r a rgume n t s :

push(bad-pop ,x) = push(empty-s t ack , x);
pop(bad-pop) ;

ax iom c o m p l e t e s t he speci f ica t ion of the type of "pop' for all k inds

As S t a c k - e r r l does no t be long to the domain of 'pop ' and 'push ' , t e r m s such as

' pop(pop(bad-pop)) ' o r ' push(pop(bad-pop) ,x) ' s imply do no exis t tn the d e s c r i b e d model .

This is p a r t of t he e r r o r handl ing we chose to specify: no fu r t he r c o m p u t a t i o n is al lowed

a f t e r popp ing t h e e m p t y s t a c k twice. Another possibi l i ty would have been to allow such
compu ta t ions , and to con t inuous ly ob ta in the s ame objec t in ' S t a c k - e r r l ' .

4.4. FaTor hnndling in the switching module

Let us now app ly the previous s t r a t e g y to the 'switching module ' example . Er rors m a y
h a p p e n in t he following cases :

* when d i sconnec t ing two channe ls which a r e not connec t ed toge ther ,

* when connec t ing an ou tpu t channe l which is a l ready connec ted (an ou tpu t channel

m a y only be c o n n e c t e d to one input , a l though an input m a y be c o n n e c t e d to severa l
ou tpu ts) .

* when de t e rmin ing the inpu t channe l connec t ed to a non connec t ed ou tpu t channel ,

* when d e t e r m i n i n g the word coming out of channel j when t h e r e is no input channe l
c o n n e c t e d to it.

For each so r t in t h e r ange of ' connec t ' , "disconnect ' , "identin" and ' l as t in ' , we have to

Let Sin-err , Chart-err and Word-err deno te the e r r o r define a corresponding error sort.

304

sorts corresponding respectively to Srn, Ch~rt and Word. The functions 'is' and 'isnot' are
defined in Chart u C~-eT'r and denote the equality and non-equality among objects of

the sorts.

We introduce a new observer, free, to ease the expression of error cases: free(s,e) is
true if and only if the output channel c is not connected to any input channel in the Sms.

We thus use the predefined specification BOOL in addition Lo WORD and CHAN.

In the first step, we just define when errors take place (for brevity, we will denote XD

X-e'rr by m e a n s of Xer):

fzt~.c ~/,o~ts

ini t :

inout :

connect:

disconnect:

channel:

free:

i den t i n :

lastin:

variables

s ,s ' : S m ;
w : Word;

i,j,k,1 : Chan;

- > Sin;

S m " Word --> S m * Worder;

S m * C h a n * Chan --> Smer ;

S m * Chan * C h a n --> Smer ;

Sm --> Chan;

S m * C h a n --> Bool;

Sm * C h a n --> Charier;

Sm " Chan --> Worder;

Z The word output at each switching may be an erroneous one. %

IWorderl inoutE(s,w) = lastin(s,ehannel(s));

% c h a n n e l is n e v e r a p p l i e d Lo a n e r r o n e o u s Srn. Its ax ioms a r e lef t u n c h a n g e d %

Ic~nl c h a n n e l (i n i [) = 1;
e h a n n e l (i n o u t l (s ,w)) = ehapmel(s)+ 1;

c h a n n e l (c o n n e c t (s , i , j)) = channe l (s) ;

c h a n n e l (d i s c o n n e c t (s , i ,])) = channe l (s) ;

% The following ax ioms def ine f r ee . %

IBool~ f ree(in i t , j) - t r u e ;

f r e e (i nou t l (s ,w) , j) = free(s,]);

j is 1 ==> f r ee (connec t (s , i , j) , l) = false;

j i sno t l ==> f r ee (connec t (s , i , j) , l) = free(s, l) ;

j is I = = > f r ee (d i sconnec t (s , i , j) , l) = t rue ;
] i sno t l = = > f ree(d iseonnect (s , i ,~) , l) = free(s,1);

305

Z tazti~z(s,j), the last word en te red on the input channel connec ted to j, is e r roneous if~
is free o r if its connec t ion to an input channel is too r ecen t and no word arr ived ye t on
this channel. Z

lWordl
IWord-err]

~Worderj

channel(s) is identin(s,j) ==> lastin(inoutl(s,w),j) = w;
l is j = = > lastin(connect(s,k,1),j);
free(s,j) = = > lastin(s,j);
charmel(s) isnot identin(s,j) == > lasUn(inoutl(s,w),j) = lastin(s,j);
I isnot j ==> lastin(eonnect(s,k,l) , j) = lastin(s,j);
I isnot j ==> lastin(disconnect(s,k,l), j) = lastin(s,j);

id~b~r~(s ,¢) is er roneous if no input channel is connec ted to c in s. Z

}chanl
IChan-errJ
}Chaner~

j is I = = > identin(connect(s,i,j),l) = i;

free(s,j) ==> identin(s,j);
j isnot 1 ==> identin(connect(s,i , j) , l) = identin(s,1);
j isnot t ==> identin(disconnect(s,i , j) , l) = identin(s,1);
identin(inout l(s ,w),j) = identin(s ,j);

Z The following declarat ions specify the type of co~,~c~ and d i sconnec t . Z

~SmJ

ISm-err I

free(s,j)) ==> connect(s,i , j);
identin(s,j) is i ==> disconnect(s,i,j);

not(free(s,j)) ==> connect(s,i , j);
identin(s,j) isnot i ==> disconnect(s,i,j);

In a second step, we define, for each declara t ion of an e r ro r sort , a cons t ruc to r associ-
a t ed with the corresponding error . For brevity, we will limit ourselves to the cons t ruc to r s
of Sm-err:

bad-connect : S m * Chan *Chan --> Sin-err;
bad-disconnect : Sm *Chan *Chan - > Sin-err;

The following axioms replace the two last declarat ions above:

tSm-err l not(free(s,j)) ==> connect(s,i,j) = bad-cormect(s,i,j);
identin(s,j) isnot i ==> disconnect(s,i , j) = bad-disconnect(s,i , j);

In the third step, we will specify a non trivial error handling. As suggested in Section 2,

bad connections or disconnections are without effect on the transmission of words but

will prevent the effect of any other operation (i.e. further connect or disconnect). It is up

to the controller of the switching module to reinitialise it in such cases. This is an exam-

ple of partial recovery of errors.

To describe this behaviour, the second value of "incur" will not be affected by the error,

but its first value will belong to b-err if an error object is given as argument. Both

306

'connect' and 'disconnect' also produce an element of Sm-eTr when taking one as argu-

ment. The new ar i ty of the funct ions is as follows (the domain of chsr~ne~ has not b e e n

ex tended to Sm-e~r as it is never applied to e r ro r objects):

init: - > Sin;

inout: Smer ~ Word --> Smer * Warder;

connect : Smer * Chan ~ Chan - > Smer;

disconnect : Smer *Chan * Chan - > Smer;

channel : Sm - > Chan;

free: Smer * Chan - > Boal;

identin: Smer *Chan - > Charier;

lastin: Smer * Chan --> Warder;

bad-cormect: S m * Chan * Chan -> Sin-err;

bad-disconnect : S m * Chan * Chan - > Sin-err;

The axiom given for iv~out in the first s tep specifies its behaviour when i ts first argu-

m e n t belongs to S m (the var iable s is typed). The following ones are conce rned with

a r g u m e n t s in Srn-err. They specify a par t ia l e r ro r recovery: words con t inue to be ou tpu t

as if no e r ror had arisen. %

IWorderl inout2(bad-disconnect(s , i , j) ,w) = inout2(s,w);

inout2(bad-connect(s , i , j) ,w) = inouta(s,w);

On the o ther hand, the e r ro r s a re propagated by connect, disconnec$ and the first

value of inaut:

ISm-errl inout 1 (bad-disconnect(s, i , j) ,w) = bad-d i sconnec t (inou t 1 (s,w),i,j);

connect(bad-disconnect(s , i , j) ,k ,1) = bad-disconnect(s , i , j) ;

disconnect(bad-disconnect(s , i , j) ,k ,1) = bad-disconnect(s , i , j) ;

The auxil iary funct ions channel, f ree , las~n, and/m!en/%n are only used to define the

word ou tpu t by inout. As this word is not affected by connec t ion errors , the funct ions will

recover the error . We add the following axioms:

~Bool]
~Worderl

~Chanerl

free(bad-disconnect(s , i , j) , l) = free(s,1);

ias t in(bad-disconnect(s , i , j) , l) = lastin(s,1);

ident in(bad-disconnect(s , i , j) , l) : identin(s, l) ;

Note tha t most axioms given for free, lasti:n, a n d / d e n t / ~ in the first s tep rely on the

a s sumpt ion of a smal le r domain. For ins tance,

~Bool~ j is t ==> free(disconneet(s , i , j) , l) = t rue ;

was only" valid because f~'ee did only take e l emen t s of Srn as a rgumen t , and thus

307

d~sce'n~ec$(s, ij) was assumed not to be an error object. This is not the case any more.
The condition of this axiom has to be strengthened to guarantee that 'disconnect(s,i,j)' is
a valid object. We replace it by:

~Bc~l~ (identin(s,j) is i) and (j is I) ==> free(disconnect(s,i,j),l) = ~ue;

A similar transformation is applied to the other axioms, when needed. This completes the
specification of the switching module, ~ t h er ror handling.

5. Conclusions

The first goal of the paper was to show that processes may, to a certain extend, be
specified in the algebraic style, in the same way as passive objects. The key idea is in the
appropriate interpretation of the meaning of a function. The advantage of this approach
is to provide a uniform framework for the description of parallel and sequential parts of
system. However, this goal is not yet reached. What we have illustrated is the local
specification of the behaviour of a process, and not yet the specification of the interac-
tion of several ones. This work is currently going on.

Another limitation of this formalism is that it does not, in its current form, allow for
real-time specifications, i.e. specifications involving absolute values of time. For instance,
we cannot say that 'inout' takes place every 125 pus. This limitation is common to most
o ther specification techniques.

The second goal of the paper was to propose a systematic approach to the
specification of error handling. This contribution is more of a methodological nature. The
idea to distinguish the specification of normal cases and error situations is an illustration
of the-principle of separation of concern. Considering the size of an actual specification,
its writing, reading or modification would nearly be possible without a clever application
of this principle. But it is also important to introduce early the error cases. What we pro-
pose is to distinguish at the very beginning error cases from normal ones in an economic
way, and to postpone the real choices of error handling.

K Acknowledgements

We thank Professor Marie-Claude Gaudel for her helpful suggestions,

7. Bibliography

[BBGGG 84] M. Bidoit, B. Biebow, M-C. Gaudel, G. Guiho, C. Gresse, "Exception Handling:
Formal Specification and Systematic Program Construction", International
Conference on Software Engineering, Orlando, Florida, March 1984.

[Bid 84] M. Bidoit, "Algebraic specification of exception handling and error recovery by
means of declarations and equations", Proceedings [CALF' 84, LNCS 172.

308

[Bie 84]

[BG 83]

[BGP 83]

[BKSS]

[GM 84]

[Gog vv]

[~e 83]

B. Biebow, "Application d'un langage de spdcification alggbrique fl des exem-
pies tdldphoniques", 3rd cycle thesis of the University of Paris 6, Paris,
France, February 1984.

M. Bidoit, M-C. Gaudel, "Etude des m~thodes de spdcification des cas
d'e×ceptions darts les types abstrai ts alg~briques", Acres du Sdminaire
d'Informatique Th4orique du LITP 1982,-1983, Paris 6, Paris, France.

F. Boisson, G. Guiho, D. Payor, "Alg~bres a Opdrateurs Multicibles", LRI report ,
Orsay, France, June 1983.

J.A. Bergstra, 5.W. [<lop, "Process Algebra [or Communication and Mutual
Exclusion", Report [W 218/83, Mathematisch Centrum, Amsterdam.

J.A. Goguen, J. Meseguer, "An initiahty primer", SRI International, Computer
Science Laboratory, Menlo Park CA 94025, USA.

J.A. Goguer~ "Abstract errors for abstract data types", Description of Pro-
gramming Concepts, E.J.Neuhol Ed, North Holland, New York, 1977.

J. Julliand, "Sp4cification algdbrique de la communication entre processus
parall~les', Tecl~wique et Science Informatiques, Vol. 2 Nr 4, 1983.

[Wir 83] M. Wirsing, "Structured Algebraic Specifications: A Kernel Language", Tech-
nische Universitfit Mfinchen, 1983.

