ALGEBRAIC SPECIFICATION OF SYNCHRONISATION AND
ERRORS: A TELEPHONIC EXAMPLE

Brigitte Biebow (*) and Jacques Hagelstein (**)

{*) Laboratoires de Marcoussis
C.R.C.G.E.
Route de Nozay
¥-91460 Marcoussis
France

(**) Philips Research Laboratory
Avenue van Becelaere, 2
B-1170 Brussels
Belgium

ABSTRACT

This paper presents an algebraic specification of the switching
module, a component of a telephone switching system. This module exhi-
bits interesting synchronisation properties which lead to consider it as a
process. The specification is first presented without error handling, and
then refined tc include a non trivial error recovery strategy. Thus, we
additionally show how error handling, which often obscures specifications,
may be postponed and become a systematic refinement of a simpler
specification.

1. Introduction

This paper aims al presenting an algebraic specification for a component of a
telephonic exchange called a ‘switching module’, exhibiting synchronisation properties
and possible erronecus behaviours. These two aspects admittedly raise problems in the
abstract data type framework. We show, on this example, how these problems may be
overcome. Incidentally, the switching module is usually implemented in hardware. This
paper shows that a common specification language between hardware and software is by
no means impossible.

Specification methods able to describe the behaviour of processes cover various levels
of abstraction, from cperational {e.g. Petri nets) to axiomatic ones {e.g. ACP). In this
paper, we are specifically interested in specifying processes by using the classical alge-
braic approach to data type specification.

285

An algebra is formed by a collection of ‘sarts’ -- sets of objects ~- and a collection of
functions over the sorts. It may be defined by providing the signature of the functions
and a set of axioms, thus enabling .an axiomatic style of specification. Classically [GM 84],
the sorts are used to model data types in programming languages, whereas the functions
over the soris model the functions defined in the preogramming language. Several
approaches have been proposed to use the algebraic framework for the specification of
processes.

ACP([BK 83]) provides operators to combine atomic actions inte individual processes
and sets of cooperating ones. These operators are defined axiomatically and form an
‘algebra of communicating processes’ in which specifications can be written. Currently,
ACP suffers from a lack of integration with classical algebraic specifications of data types.

Ancther approach describes processes by means of auxiliary data types, specified in
the algebraic style. In [Jul 83], processes communicate by applying the functicns ‘pro-
duce’ (for the sender) and “consume’ {for the receiver) to a shared cbject belonging to a
‘communication type’. This object is described axiomatically, but the specification has to
include an operational part, described by means of a variant of weakest preconditions.

In this article, we propose an algebraic specification technique for processes which is
more similar to the one used for abstract data types: in the same way as stacks belong to
some sort in the algebra of stacks, processes will belong to some sort in some algebra.
The elements of the sort will be the various possible states in which the process may be,
all along its life. The functions applicable to these objects will correspond to the various
events in which the process may be involved. These ideas will be developed in Section 3.

As proned in [Gog 77], the specification of a program should include all exceptional
behaviours. All information necessary to the handling of the exceptional state, and only
that information, should be kept in case of error. To follow these principles without
obscuring the specification with too many details, we propose to provide the specification
in three steps: first, just describing the circumstances of errors, secondly, providing
error diagnostics, and thirdly, specifying the chosen error handling. These ideas will be
developed in Section 4.

In the next section, we present an informal description of the switching moduie.

2. The switching module

The switching module is a component of a *time multiplexed digital telephonic system’.
A telephonic system is digital when the conversations are transmitted in digital form. To
achieve this, the analogic signal delivered by the microphone is sampled 8000 times per
second, i.e. every 125 microseconds. A sample takes slightly less than 4 microseconds to
be transmitted. It is therefore possible for a line to transmit repeatedly the samples of
32 different conversations {(figure 1). This technique is called "time multiplexing". The
periodical interval of time allocated to a conversation is called a "channel”, and there are
thus 32 channels on a line. A channel is allocated to a user for the duration of his talk.

Still, a conversation is not transmitted on one single channel: it follows a path formed
by several physical lines connected through nodes. It may be the case that it uses the
channel 7 before a node and the chanmel 30 after it. Therefore, the nodes consist of

296

w! wE w33 w34
O 4: 8 125 129 > time (us)

w]} = 1st sample of conversation 1
w2 = ist sample of conversation 2

w33 = 2nd sample of conversation 1
w34 = 2nd sample of conversation 2

figure 1

‘switching modules' performing the switching of the channels. We assume that the net-
work is synchronous (at least around a switching module), i.e. when it is channel 7's time
before a node, it is channel 7's time after it too. Therefore, the switching module can only
move the samples from one channel to ancther by delaying them. Of course, the amount
of delay depends on the two channels which must be connected: if incoming channel 7
should be switched to 30, all samples reaching the switching medule on channel 7 should
be delayed by 23 channels, i.e around 90 us.

Suppose the unit of time is 125/32 us. Channel 1 is then handled at time 1, 33, 65, etc;
channel 7 is handled at time 7, 39, 71, etc. Consider the voice sample or ‘word’ w received
in the switching module at time 7, when channel 7 is handled. At the same time, an
irrelevant word {for the considered conversation) goes out, sent cn the culgoing channel
7. At time 30, an irrelevant word is received on the incoming channel 30, and the word w
is sent on the cutgeing channel 30.

Apart from the regularly incoming samples, there are two kinds of commands
addressed to the switching module: ‘connect’ and ‘disconnect’ specifying two channels to
connect or disconnect. Indeed, the channel connections are established and broken
dynamically. An input channel may be connected to several output channels, but the
reverse is not allowed. An cutput channe! connected to no input channel will contain gar-
bage.

The delicate points in the specification below come from synchronisation and error
handling aspects:

#+ At the same time a word is received and a werd is sent: input and output are synchro-
nous.

* Errors happen when trying to disconnect two channels not connected together, or to
connect an output channel which is already connected. This should not prevent the
medule to continue the transmission of words.

In the sequel, we make some simplifying assumptions, to avoid obscuring the
specification with useless details. For instance, we assume that the connect and discon-
nect commands are immediately effective, whereas this could require some time. These
simplifications can be rernoved without any problem, except the increasing size of the
specification.

297

3. Specification of synchronisation in the switching module

3.1. Algebraic specification of processes

Algebraic techniques apply nicely to the specification of objects entirely characterised
by the functions that one may invoke to create or modify them. Similarly, the stateof a
process is entirely characterised by the events that affected the process in the past, i.e.
the information that was input and output, and, if relevant, the identification of the origi-
nators and destinators. In the spirit of the algebraic approach, we will thus consider pro-
cess states as objects modified by the application of functions modeling the various
events.

Exaraple:

Consider a process which may receive from the outside the messages *start’, ‘stop’
and ‘busy?. It may issue the messages ‘busy!” and ‘notbusy!’. The signature of the
algebra modeling the process’s behaviour will thus include the following functions:

start: Proc --> Proc
stop: Proc --> Proc
busy?: Proec --> Proc
busyh: Pree -> Proc
notbusy!: Proc --> Proc

In addition, the function ‘new’ preduces a process that no event has affected yet.
new: --> Proc

An expression such as "stop(start(new))’ describes the state of a process which was
created, received the message ‘start’, and then received the message ‘stop’.

The behaviour of the process will be described by stating which sequences of events
lead to identical states. As usually, this is achieved by equating expressions formed with
the available functions.

In the example above, the equation
stop(new) = new
expresses that a message "stop’ has no effect on a newly created process.

The behaviour of the process is also described by stating which sequences of events
are not allowed. For the process above, one may want o state that a stopped process
may not issue "busy?. A discussion about how to state such facts is given in Section 4.

In the simple example above, the functions take no arguments in addition to the pro-
cess itself. There is thus a function for each possible event. In general, a function will
model a whole family of events, distinguished by the value of possible arguments of the
function. It is up to the specifier to cluster the events in an appropriate way, but the
problem is generally quite clear. For example, to specify a process able to receive a cer-
tain request accompanied by varying data, there would be a function identifying this kind
of event and taking the data as argument.

Although it is not mandatory, we found it natural to let incoming messages appear as

208

arguments of the function modeling the reception, and outgoing messages appear as
additional values produced by the function modeling the emission. Consider for instance,
8 process of type 'Connector’ which may receive the message ‘connect’ asking for the
connection of two channels, and will, when the connection is completed, issue the mes-
sage ‘connected’ specifying again the two channels. Its signature will include the func-
tions

conneect: Connector * Channel * Channel ~> Connector
connected: Connector —> Connector * Channel * Channel

When several receptions or emissions are guaranteed to be synchronous, they form
one single event and are thus modeled by one single function. This will be illustrated in
the specification of the switching module.

3.2. Formal specification of the switching module

In the sequel, we will use the algebraic specification language PLUSS ([BBGGG 84]). It
is based upen a set of specification-building operators derived from those of ASL {[Wir
83]) which allow to describe structured abstract data types specifications of realistic
size. It includes the notion of multi-target algebras ({BGP 83]) which we will use to specify
exception handling in algebraic data types. Errors will however only be considered in Sec-
tion 4.

The algebraic model of the switching module is an object that records the history of
events that have affected it until a certain moment. Those events, modeled by functions,
are of the fellowing kinds:

crestion of a new switching module thal no event has affected yel

+ switching of a channel, at regular intervals of Lime; this consists in the reception of a
word belonging to that channel upstream from the switching module and the simul-
taneous emission of a word on the same channel downstream

+ reception of a command to connect two channels
* preceplion of a command to disconnect two channels

The channel that is switched by the event of the second kind needs not be specified
because the channels are handled in sequence: the nth switching handles the channel
number 1 modulo 32.

The constructors of the sort Sm (for ‘switching module’) correspond to the events
above. Note that the switching operation will be modeled by one single constructor, as
the reception of one word and the emission of another one are simultaneous. The data
that is received appears as argument while the data being produced appears as result.
The constructors are the following ones:

* 4nif produces an initial state,

inouf(s,w) models the switching of a certain channel on which w is received; the chan-
nel depends on the number of times ‘inout’ has been applied to produce the Sm s; the
operation produces two things: a new Sm s’ and a word w', s’ is identical to 5, except
that one more switching event has taken place, during which the word w has been
received and w’ has been sent; we shall note inouti{sw) and tnout2(s,w), the first and

299

second value of inout(s,w),

* connect{s,ij) produces a Sm s’, identical to s except that the input channel 1 is now
connected to the output channel j,

¢ disconnect(s,t,j) produces an Sm s’, identical to s except that the input channel £ is
now disconnected from the output channel j.

We provide also some observers :

* channel{s) is the channel to which the next switching of the Sm s will refer,

* identin(s,c) is the input channel connected to the output channel ¢ in the Sm s,

* lastin(s,c) is ;he last word input on the channel connected to the output channel ¢ in
the Sms. °

The specification of Sm uses the predefined specifications CHAN (integers from 1 to 32,
with addition modulo 32) and WORD. The functions is and isnot are defined in CHAN and
denote the equality and non-equality among objects of the sort.

specif SM =

enrich WORD, CHAN by

sorts Smy;

Junctions
init: --> Sm;
inout: Sm *Word -> Sm * Word;
connect: Sm * Chan * Chan --> Sm;
disconnect: Sm *Chan * Chan —> Smy;
channel: Sm --> Chan;
identin: Sm * Chan --> Chan;
lastin: Sm *Chan -> Word;

variohles
8,5": Sm;
w: Word;
i,j,k,1: Chan;

% 1 and k are used for input channels, j and I for output channels. %

azioms
% The following axiom is the heart of the specification. It states which word is output each
time a switching takes place (i.e. at regular intervals). This word, the second value of
inout, is the last word that entered the input channel to which the current output chan-
nel is connected. %

{Word] inout2(s,w) = lastin(s,channel(s));
% The following axioms describe channel. They express that a new channel is handled
each time inout is invoked. Note that channel(s) denotes the channel that the next #nout

will handle. %

{Chan] channel{init) = 1;

300

channel{inouti(s,w)) = channel{(s)+1;
channel{connect(s,ij)) = channel(s);
channel{disconnect(s,i,i)} = channel(s);

% The following axioms describe lastin. lastins,j) is the last word entered on the input
channel connected to j, i.e. on identin(s,j). %

fWord] chennel{s) is identin(s,j} ==> lastin{inouti(s,w}.,j} =w;
channel(s) isnot identin{s,j) ==> lastin({inout1(s,w).j) = lastin(s,j);
lastin{conneci(s,k,1),j) = lastin(s,j);
lastin{disconnect(s.k,1},j) = lastin(s.j);

7% The following axioms describe identin. %

{Chan} iisl ==> identin{conneci{s,ij).l}) =1
jisnot 1 ==> identin{connect(s,i])]) = identin{s,1);
jisnot 1 ==> identin{disconnect(s,ij).l} = identin(s,1);
identin{incut1{s,w),j) = identin(s,});

end SN;

Note that the words arriving on a channel connected to itself are not transmitted
instantanecusly, but delayed by 32 channels. Instantaneous transmission would have been
sllowed by replacing the first axiom by:

{Word! incuil(s,w} = lastin{inoui (s, w),channel(s));

4. Error handling

When defining an abstract data type, one has to consider so called error situations.
These are produced by operations which are meaningless with the given arguments, for
instance popping an empty stack.

Errors raise difficulties in the algebraic framework ({BG 83] for a survey, [Bid 84}), and
it is tempting to just exclude them. This can be done by providing a conventional valid
object as result of a meaningless operation. For instance, the following equation specifies
that popping the empty stack has no effect:

pop{empty-stack) = empty-stack

This strategy has two drawbacks. First, it violates the principle of separaticn of con-
cerns; both the reader and the writer of a specification will gain in considering first the
normal cases, leaving the error handling for later. Second, it provides only a very specific
way to handle errors, i.e. invisible recovery.

Other error handlings may be desirable: it may be needed to recognise in the value

produced by a function, that an error just happened; this is not the case if the error pro-
duces a valid cbject. While doing so, it may also be needed to distinguish varicus errors

301

one from the other. A classical example requiring a more flexible error handling than
invisible recovery is a tolerant stack ({[BBGGG 84]). It may be popped when empty, but
only once before being pushed again. Popping the empty stack twice should lead to an
unrecoverable error. This behaviour is described very easily if ‘pop{empty-stack)’ is an
error object which behaves like ‘empty-stack’ when passed as argument to ‘push’ (error
recovery), but preduces a new error when passed ta ‘pop’ {error propagation).

The second goal:of this paper is to propose a method for the description of general
error handlings. This stralegy proceeds in three steps and is based on the definition of
disjoints sorts, separating the valid objects from the erroneous ones.

4.1. Multitarget algebras

The simultanecus definition of several sorts is based on multi-target algebras ({BGP
831}, in which functions may produce values in several sorts:

pop: BStack --> Stack v Stack-err;

When multi-target operators :oceur in a term, it is necessary to state the sort of the
term, in a unique way. This is expressed by declarations, such as

{Stack-err] pop(empty-stack);

stating that ‘pop(empty-stack)’ belongs to the sort ‘Stack-err’. The axioms and declara-
tions are extended to positive:conditional ones ([Bie 84]). Their general form is:

[f<sort>}] [<condition> ==>] <term> [= <term> J;

with the opticnal parts between brackets. Such an expression states that, [when the con-
dition is verified], the left term belongs to the specified sort {and is equal to the right
term]. The sort associated with an axiom indicates the sort on which the property
expressed by the axiom is valid. This sort may be omitted if it is the same as the one of
the previous axiom.

4.2. The method
This idea of multi-target algebras is used as follows to specify exceptions :

* Ina first step, the domains of the functions include only valid objects, while the ranges
may contain error objects. Declarations specify when errors take place, and when valid
terms are produced. The handling of errors is thus not considered; only their produc-
tion is specified.

* The second step still does not consider error handling: it provides error diagnostic, i.e.
it specifies the constructors of the error sorts. Appropriate arguments are given to
these functions and new axioms associate them with the error cases previously
defined. These axioms replace the declarations introduced during step 1.

* In a last step, the desired error handling is described. The signature is modified to
extend the domains of functions which can now acceplt erronecus arguments. The
ranges of these functions may have to be extended too, depending on the chosen error
handling. The axiom set has to be altered for two reasons: (1) to specify the behaviour
of functions with arguments in the extension of the domain (specifying at the same

302

time the type of the result, in case of extended range), and (2) to adapt previous
axioms relying on smaller domains or ranges. This will be illustrated in the sequel. New
error objects and sorts may need to be defined, as a resull of error propagation.

Note that the specification produced in the second step does not preciude any error
handling if the term describing an error records any information that could be used for
the error handling. This can be done by choosing appropriate arguments for the con-
structor of the error object.

Consider, for instance, the function ‘def-array’ which creates an array with given
upper and lower bounds. It is an error to define an array with its upper bound inferior to
its lower bound. Therefore, the first step of the error specification would include the sig-
nature:

def-array: Nat '* Nat. - Array v Array-err;
and the declarations:

fArray} y >=x ==> def-array{x,y);
fArray-err] y<x ==> def-array{x,y);

In the second step, we would add the function:
error-def-array: Nat * Nat - Array-err;

intended to desecribe the error raised when ‘def-array” is invoked with inappropriate argu-
ments. The following axiom would replace the second one above:

{Array-err] y < x ==> def-array(x,y) = error-def-array(x,y);

The term ‘error-def-array(x,y) records all information available about the error: the
axiom associates the name ‘error-def-array’ with an improper use of *def-array’, while the
arguments tells what indices produced the error. Certain error handlings may indeed
require to know the value of x and y. For instance ‘error-def-array(x,y)’ could be handled
&s ‘defarray{x,x)’, i.e. the operation would define an array of one element, with x as
index.

4.3. The tolerant stack

As @ larger example, let us consider the stack that may be popped once when empty.
We will define the soris ‘Stack’ and ‘Stack-err’ for erronecus stacks. The first
specification describes the valid behaviour and specifies when valid arguments lead teo
erronecus values. It includes the following functions (we omitted ‘top’):

empty-stack: -—> Stack;
push: Stack *Elem -2 Stack;
pop: Stack - Stack v Stack-err;

No functicn may be applied to erroneous stacks, and only ‘pop’ may produce such stacks.
The first set of axioms gives the usual property of stacks and tells when the value of *pop’
belongs to Stack or Stack-err {s € Stack; x € Elem) :

303

{Stack] pop(push(s,x)) = s;
{Stack-err} pop{empty-stack);

In a second step, we introduce constructors for the error sorts. There is only one
declaration for erroneous objects. Thus, we need only intreduce one function:

bad-pop: -> Stack-err;

Bad-pop does not take any argument, because there is no need to distinguish the varicus
circumstances in which the error may take place (there is enly one: popping the empty
stack). The second declaration is replaced by the following axiom:

{Stack-err{ pop{empty-stack) = bad-pop;

In a third step, we want to specify how ‘push’ and ‘pop’ handle the error object ‘bad-
pop’. The two domains are extended to include ‘Stack-err’. As ‘push’ will recover the
error, its range is still limited to ‘Stack’. However, ‘pop’ will preduce an unrecoverable
error, of the new sort ‘Stack-errl’, when given ‘bad-pop’ as argument. The arity of the
functions thus becomes:

push: (Stack v Stack-err) * Elem -~ Stack;
pop: Stack v Stack-err --> Stack v Stack-err v Stack-erri;

New axioms are added to specify the behaviour of the functions on error arguments:

{Stack] push(bad-pop,x} = push{empty-stack,x);
{Stack-erri! pop{bad-pop);

Note that the second axiom completes the specification of the type of ‘pop’ for all kinds
of arguments.

As Stack-errl does not belong to the domain of ‘pop’ and ‘push’, terms such as
‘pop{pop(bad-pop))’ or *push(pop(bad-pop),x)’ simply do no exist in the described model.
This is part of the error handling we chose to specify: no further computation is allowed
sfter popping the empty stack twice. Another possibility would have been to allow such
computations, and to continuously obtain the same object in ‘Stack-erri’.

4.4. Error handling in the switching module

Let us now apply the previous strategy to the ‘switching module’ example. Errors may
happen in the following cases:

* when disconnecting two channels which are not connected together,

* when connecting an output channel which is already connected {an output channel
may only be connected to one input, although an input may be connected to several
outputs).

* when determining the input channel connected to a non cennected output channel,

* when determining the word coming out of channel j when there is no input channel
connected to it.

For each sort in the range of ‘connect’, ‘disconnect’, ‘identin’ and ‘lastin’, we have to
define a corresponding error sort. Let Sm-err, Chan-err and Word-err denote the error

sorts corresponding respectively to Sm, Chan and Word. The functions 'is’ and "isnot’ are
defined in Chan v Chan-err and denote the equality and non-equslity among cobjects of

the sorts.

We introduce a new observer, free, to ease the expression of error cases: free(s,c) is
true if and only if the output channel ¢ is not connected to any input channel in the Sm s.

304

We thus use the predefined specification BOOL in addition to WORD and CHAN.

In the first.step, we just define when errors take place (for brevity, we will denote X' u

X-err by means of Xer):

Junctions
init:
inout: Sm
connect: Sm
disconnect: Sm
channel: Sm
free: Sm
identin: Sm
lastin: Sm
variables
5,8 : Sm;
w: Word;
ii.k,1: Chan;
azioms

* Word
* Chan * Chan
* Chan * Chan

* Chan
* Chan
* Chan

Sm;

Sm * Worder;
Smer;

Smer;

Chan;

Bool;

Chaner;
Worder;

% The word output at each switching may be an erronecus one. %

fWorder] inout2(s,w) = lastin(s,channel(s));

% channel is never applied to an erroneous Sm. Its axioms are left unchanged %

{Chan] channel{init) = 1;
channel{inout1(s,w)) = channel(s)+1;
channel{connect(s,i,j}) = channel(s);
channel(disconnect(s,i,i)) = channel(s);

% The following axioms define free. %

{Boolj free(init,j) =

irue;

free(inout1{s,w),j) = free(s,});
jis 1 ==> free{connect(s,ij}.]) = false;

jisnot 1 ==> free(connect(s,i,j).1l} = free(s,l);
{is 1 ==> free{disconnect(s,i,j).l) = true;
jisnot 1| ==> free(disconnect(s,i,j),1) = free(s,l);

305

% lastin(s,j), the last word entered on the input channel connected to 7, is erroneous if j
is free or if its connection to an input channel is too recent and no word arrived yet on
this channel. 7%

fWord) channel{s) is identin(s,j} ==> lastin(incuti{s,w),j} =w;

fWord-err] 1lisj ==> lastin{connect(sk,1),i};
free(s,j) ==> lastin(s,j);

{Worder] channel(s) isnot identin(s,j) ==> lastin{inouti{s,w).j} = lastin(s,j);
lisnot j ==> lastin{connect(sk.1]},j) = lastin{s,j);
lisnot j ==> lastin(disconnect(s,k,1),j) = lastin(s,j);

% identin(s,c) is erroneous if no input channel is connected to ¢ in 5. %

{Chanj jis1 ==> identin{connect{s,Li.l) = i;

{Chan-err] free(s,j) ==> identin{s,j);

{Chaner! jisnot 1 ==> identin{connect(s,i,j),1) = identin(s,1);
jisnot 1 ==> identin{disconnect(s,ij}.l) = identin(s,1);
identin{inout i{s,w),j) = identin{s,j);

% The following declarations specify the type of connect and disconnect. %

{Sm] free(s,j)) ==> connect(s,i,j);
identin(s,j) isi ==> disconnect(s,i,j);
{Sm-err} not{free(s,j}) ==> connect(s,ij);

identin(s,j) isnot i ==> disconnect(s,i,j);

In a second step, we define, for each declaraticn of an error sort, a constructor associ-
ated with the corresponding error. For brevity, we will limit curselves to the constructors
of Sm-err:

bad-connect: Sm * Chan * Chan -3 Sm-err;
bad-disconnect: Sm * Chan * Chan - Sm-err;

The following axioms replace the two last declarations above:

{Sm-err} not(free(s,j)) ==> connect(s,ij) = bad-connect(s,ij);
identin(s,j) isnot i ==> disconnect(s,i,j) = bad-disconnect(s,i,j);

In the third step, we will specify a non trivial error handling. As suggested in Section 2,
bad connections or disconnections are without effect on the transmission of words but
will prevent the effect of any other operation (i.e. further connect or disconnect). It is up
to the controller of the switching module to reinitialise it in such cases. This is an exam-
ple of partial recovery of errors. '

To describe this behaviour, the second value of ‘inout’ will not be affected by the error,
but its first value will belong to Syn-err if an error object is given as argument. Both

306

‘connect’ and ‘disconnect’ also produce an element of Sm-ery when taking one as argu-
ment. The new arity of the functions iz as follows {the domain of channel has not been
extended to Sm-err as it is never applied to error objects):

init: ->» Sm;

inout; Smer * Word —-> Smer * Worder;
connect: Smer * Chan *Chan ~-> Smer;
disconmnect: Smer * Chan *Chan —~> DSmer;

channel: Sm --> Chan;

free: Smer * Chan --> Bool;

identin: Smer * Chan --> [Chaner;

lestin: Smer * Chan -->» Worder;
bad-connect: Sm *Chan * Chan -->» Sm-err;

bad-disconnect: Sm * Chan * Chan —-> Sme-err;

The axicm given for inout in the first step specifies its behavicur when its first argu-
ment belongs to Sm (the variable s is typed). The following ones are concerned with
arguments in Sm-err. They specify a partial error recovery: words continue to be cutput
as if no error had arisen. %

{Worder} inout2({bad-disconneci{s,1.j),w) = inout2(s,w);
inout2(bad-connect(s,1}),w) = inout2(s,w);

On the other hand, the errors are propagated by connect, disconnect and the first
value of inout:

{Sm-err} inout 1{bad-disconnect(s,i,j},w) = bad-disconnect(inout1(s,w),1j);
connect({bad-disconnect(s,i,j),k,1) = bad-disconnect(s,i,j);
disconnect{bad-disconnect(s,ij).k,1) = bad-disconnect(s,i,j);

The auxiliary functions chennel, free, lastin, and ideniin are only used to deflne the
word output by inout. As this word is not affected by connection errors, the functions will
recover the error. We add the following axioms:

{Bool free(bad-disconnect(s,i,j),1) = free{s.l);
{Worder| lastin(bad-disconnect(s,i,j),1) = lastin{s,1);

{Chaner] identin(bad-disconnect(s,i,j),1) = identin(s,1);

Note that most axioms given for free, lastin, and identin in the first step rely on the
assumption of a smaller domain. For instance,

{Booll jis1 ==> free{disconnect(s,ij) 1) = true;

was only valid because free did only take elements of Sm as argument, and thus

307

disconnect(s,i,j) was assumed not to be an error object. This is not the case any more.
The condition of this axiom has to be strengthened to guarantee that *disconnecti(s,i,j) is
a valid object. We replace it by:

{Bool] (identin(s,}) isi}and (jis 1) ==> free(disconneci(s,i,j).]) = true;

A similar transformation is applied to the other axioms, when needed. This completes the
specification of the switching module, with error handling.

8. Conclusions

The first goal of the paper was to show that processes may, tc a certain extend, be
specified in the algebraic style, in the same way as passive cbjects. The key idea is in the
appropriate interpretation of the meaning of a function. The advantage of this approach
is to provide a uniform framework for the description of parallel and sequential parts of
system. However, this goal is not yet reached. What we have illustrated is the local
specification of the behaviour of a process, and not yet the specification of the interac~
tion of several ones. This work is currently going on.

Another limitation of this formalism is that it does not, in its current form, allow for
real-time specifications, i.e. specifications involving absclute values of time. For instance,
we cannot say that ‘inout' takes place every 125 us. This limitation is common to most
other specification techniques.

The second goal of the paper was to propose a systematic approach to the
specification of error handling. This contribution is more of a methedological nature. The
idea to distinguish the specification of normal cases and error situations is an illustration
of the principle of separation of concern. Considering the size of an actual specification,
its writing, reading or medification would nearly be possible without a clever application
of this principle. But it is alsc important to introduce early the error cases. What we pro-
pose is to distinguish at the very beginning error cases from normal ones in an economic
way, and to postpone the real choices of error handling.

6. Acknowledgements
We thank Professor Marie-Claude Gaudel for her helpful suggestions.

7. Bibliography

[BBGGG 84] M. Bidoit, B. Biebow, M-C. Gaudel, G. Guiho, C. Gresse, "Exception Handling:
Formal Specification and Systematic Program Construction”, International
Conference on Software Engineering, Orlando, Florida, March 1984.

[Bid 84] M. Bidoit, "Algebraic specification of exception handling and error recovery by
means of declarations and equations", Proceedings [CALP 84, [NCS 172.

[Bie B4}

[BG 83]

[BGP 83]

[BK 83]

[GM 84]

[Gog 77)

[Jul 83]

[Wir 83]

308

B. Biebow, "Application d'un langage de spécification algébrigue & des exem-
ples téléphoniques”, 3rd cycle thesis of the University of Paris 8, Paris,
France, February 1984.

M. Bidoit, M-C. Gaudel, "Etude des méthodes de spécification des cas
d’'exceptions dans les lypes abstraits algébriques”, Actes du Séminaire
d'Informatique Theéorique du LITP 1982-1883, Paris 6, Paris, France.

¥. Boisson, G. Guiho, D. Pavot, ""Algébres & Opdrateurs Multicibles”, LRI report,
Orsay, France, June 1983.

J.A. Bergstra, J.W. Klop, "Process Algebra for Communitation and Mutual
Exclusion”, Report IW 218/83, Mathematisch Centrum, Amsterdam.

J.A. Goguen, I. Meseguer, "An initiality primer”, SRI International, Computer
Seience Laboratory, Menlo Park CA 94025, USA.

J.A. Goguen, "Abstract errors for abstract data types”, Description of Pro-
gramming Concepts, E.J.Neuhol Ed., North Holland, New York, 1977.

J. Julliand, "Spéeification algébrigue de la communication entre processus
parallgles”, Technique et Science Informatiques, Veol. 2 Nr 4, 1983,

M. Wirsing, "Structured Algebraic Specifications: A Kernel Language”, Tech-
nische Universitdt Minchen, 1983.

