
A PROLOG Environment for

Developing and Reasoning about Data Types ~

Jieh Hslang Mandayam K. Srivaa
Department of Computer Science

Sta~e University of New York at Stony Brook
Stony Brook, NY 11794

U.S.A.

Abstract

PROLOG is a programming language based on first order logic. The feature that
distinguishes PROLOG from most other programming languages is that the execution of
PROLOG programs is based on subgoal reduction and unification. Unfortunately, the
reliance on unification for execution has also inhibited PROLOG from utilizing some recently
developed concepts in programming languages such as abstract data types. In this paper we
introduce a discipline for incorporating abstract data types into PROLOG, and study the use
of PROLOG as a uniform programming environment for the specification, implementation,
and verification of PROLOG programs. We illustrate the application of the environment to
the development of abstract data types in PROLOG.

In addition to producing executable specifications, the proposed discipline also provides
automatic means of refining a specification into an implementation. We also present a
PROLOG-based inductive theorem proving method for proving properties of data types and
correctness of implementations.

1. In t roduc t ion

In this paper, we study the use of PROLOG as a uniform environment for the systematic
development of data types in PROLOG. That is, its use for the specification, implementation
and verification of data types represented and used as PROLOG programs.

The idea that PROLOG can naturally be used as a specification cum implementation
language is well-known. It has been used in [Day82] and [HATS2] for systematically
developing PROLOG programs. However, none of these works address the formal
development of abstract data types, nor do they provide proof facilities for verification. In
order to incorporate all three aspects of data type development, our environment consists of a
PROLOG interpreter augmented with three primitives - Refine, Ver Cond._Gen, and
Ind..Prove. Refine is a program transformation processor; Ver CondGen generates
verification conditions that have to be proved to establish the correctness of a data type
implementation; Ind.Prove is the theorem proving primitive that proves the correctness of
the verification conditions and properties of PROLOG programs in general. We have
implemented a system (in a version of CPROLOG for the VAXI1-780 machine} that supports
our methodology. The environment assists in performing the following activities in the

development of data types.

:~e~e~rcb sapported ia part by the N~tionaJ Science Foundatio~ under ~aats DCR-8401624 and DCR-83199~6

277

(1) The design and specification o/ abstract data types: Our discipline requires the

separation of the operations of data types ([Gull781, [GTW78]) into two categories:
constructors - operations which uniquely define the terms in the domain of the data types,

and defined operations - operations that are defined in terms of the constructors. Only the
constructors are represented as functors while the defined operations are represented as
predicates. Therefore a specification of a data type consists of PROLOG programs that
define the defined operations as relations on the constructor terms. Such an approach not
only eliminates the need for any special unification algorithm {as required by other
approaches such as [Kor83] and [SuY84]), but also produces executable specifications.

(2) Implementation of data types: Since the specifications written using the
aforementioned discipline are executable PROLOG programs, there is no need for a different
implementation. However, sometimes for reasons of efficiency and convenience of
representation, one would want to implement the data types (and their operations)
differently. We propose methods (that are implemented by Refine) for mechanically deriving
an implementation for a defined operation of a data type from its specification once an
implementation for the constructors are given. The proposed discipline for building
specification enables the transformation methods to be easily automated. The methods can
also be used to transform a program that uses the specification of a data type into one that
uses an implementation of the data type.

(3) Proving Properties of Programs: Data type verification includes mainly two aspects:
(i) proving that the data types defined (as specifications) have the desired properties (such as
associativity for append), and (ii) an implementation of the data type is correct with respect
to the specification. If the implementation is derived automatically as described above, the
correctness of the implementation is guaranteed as long as the implementation of the
constructors is correct. If the user wishes to derive the implementation himself (manually),
then to prove the correctness, the user has to specify the representation invariant and the
representation equivalence that characterize the representation scheme used by the
implementation. Ver Cond_Gen, the verification condition generator, will then generate the
verification conditions, which wilt, in turn, be proved with the help of Ind_Prove. The task
of generating the verification conditions is considerably easier in PROLOG than in other
program languages with verification capability since the verification conditions are
representable in the same language.

In order to carry out the entire verification step in PROLOG, we introduce an new
inductive theorem proving method. This method has the ability to prove universally
quantified properties expressed in Horn clauses, in particular those which require structural
induction. It is also tailored to utilize the existing PROLOG facilities such as backtracking,
and can be easily built into the PROLOG machinery. While a detailed design of this
PROLOG based inductive theorem prover is given in [HsS84a], in this paper we give an
overview of the method, and use it to carry out the verification of programs in our
environment.

AFFIRM [MusS0] and OBJ [GOT70] are two examples of (non-PROLOG based) systems
built for the verification of abstract data types. Neither, however, has been able to unify the
different phases of program development into one language framework. In AFFIRM the
programs are written in Pascal while the statement of the verification conditions and their

278

proofs arc carried out in a framework based on rewrite rule theory [HuOS0]. OB3 is a system
for writing and testing algebraic program specifications. Although it can in principle be used
as a programming language (since it allows algebraic specifications to be executed), it lacks
the expressive power of a general purpose language. The important advantages of our system
over the above term rewriting based systems are that (1) ours does not need a Knuth-Bendix
type completion procedure, that is potentially non-terminating, for proving inductive
theorems, and (2) ours can handle conditionally defined axioms more effectively.

The next section describes how abstract data types can be specified in PROLOG.
Section 3 is concerned with implementation of abstract data types. It discusses several
transformation techniques for transforming a specification of a data type into an
implementation. Section 4 deals with the formulation and generation of the verification
conditions for proving correctness of abstract data type implementations. Section 5 gives an
overview of the inductive PROLOG theorem prover Ind_Prove. The last section has the

concluding remarks.

2. Abstract Data Types and Thelr Speciflcatlons

2.1. Des|gnlng Data Types in PROLOG

A major issue that has to be addressed in building abstract data types into PROLOG is
to determine how the operations of the data types should be specified. Two main approaches
have been used for incorporating data types into PROLOG. The predicate approach, which
is practiced commonly, represents all the operations of a data type as predicates on List and
Nat (natural number) which are readily available in PROLOG. Such an approach treats all
operations in a data type on a flat structure. The functional approach (egs., tKor83],
[SuY84]) encourages representing operations as functors. The axioms that the terms
constructed using the operations satisfy are treated in the unification process by some
additional mechanisms. The functional methods provide the convenience of having nested
terms, but their additional unification mechanisms may become a source of inefficiency or,
worse yet, they may change the semantics of the programs.

We use a hybrid approach. We partition the operation set of a data type into two
groups: the constructors and the defined operations [HullS0]. The constructors are a set of
operations that can generate every value of the data type nniquely. (Such a restriction
excludes data types such as Set from our domain of application, since the constructors of Set
do not construct values uniquely. However, if the constructors of the data type exhibit
properties such as associativity and commutativity for which special purpose complete
unification algorithms exist ([Sti81], [Fag84]), our method still applies provided such a special
purpose unification algorithm is implemented in the PROLOG system.) The defined
operations perform other interesting computations, and are defined in terms of the
constructors. In our approach only the constructors are represented as functors, and the
defined operations are represented as predicates. An n-sty defined operation p (xi, • • • ~x n)
is represented as the (n+l}-place predicate p (x l , . ' ' ,x~,x,+l). Thus, in our system
(functional) terms appearing in a PROLOG program contain only constructors of data types.

Consider the data type List tha t is commonly used in PROLOG. The constructors for
List are the empty list [], and the cons operator denoted as [A [L]. All other operations

279

on List can be specified in terms of the above constructors, and are considered as defined
operations. As a second example, consider the data type Tree intended to model binary
trees that can store arbitrary information in their nodes. Tree can be designed in PROLOG
by choosing two new constructors emptytree and mktree: ¢mptytree constructs an empty
binary tree; mktree (L , N , R } is a ternary constructor that builds a binary tree with L and
R as its left and right subtrees, and N as the label at its root. Predicates such as Itree and
rtree that extract the left and the right subtree, and isin that checks the membership of a
node in a tree, are some of the defined operations of Tree.

The most significant difference between our approach and functional approaches is that
our method does not need a unification process different from the one in PROLOG. Most
functional approaches require more elaborated unification procedures in order to unify terms
which satisfy additional (functional} axioms. In paramodulation-type approaches, such as
[Kor83], such a unification algorithm affects the efficiency considerably; in others, especially
those that use term rewriting-based unification algorithms (such as [SuY84]), these unification
algorithms may result in a change in semantics due to incomplete or infinite unification
processes. (See [HulS0] for a discussion of unification algorithms for equational theories based
on term rewriting.) Other significant advantages, all of which arise because of the separation
of constructors from defined operations, of our approach over the other two approaches are
that ours provides (1) the ability to successfully execute specifications of data types, (2) the
ability to automatically transform specifications into implementations, and (3) the ability to
use structural induction in a natural way while proving properties.

2.2. Specification of Data Types

The Specification of a data type consists of defining (as PROLOG programs) each of the
defined operations as a relation on the constructor terms of the type. The specification of a
data type is always executable because, firstly, it is a PROLOG program, and secondly, the
constructor terms uniquely construct the values of the data type. For example, the operation
append on List can be specified as follows.

Specification of append

append: List X List X List

append([], L, L).
append(IX 1L 1], L 2, IX 1 53]) :- append(L 1, L2, 53) .

As a second example, consider the data type Tree with a defined operation isin which
checks the membership of a node inside a given tree. We assume that there exist data types
Node and Bool (constructors true and false) specified elsewhere; cliff is a predicate on nodes
that checks syntactic inequality on nodes (egs., d i~X ,X) fails, and dii~X, Y) succeeds where
X and Y are unbound variables), and or is a Bool predicate. Then isin can be specified as
a predicate relating the terms constructed out of the constructors of Tree as follows.

280

Spec|flcatlon of Tree

Funetors emptylree : ~ Tree

mktree : Tree X Node X Tree --* Tree

Predicate isin : Tree X Node X Boolean

isin (emptytree , E, false).
isin (mktree (L, N, R), N, true).
isin(mktree(L, N, R }, E, B) : - diff(N, E), lain(L, E, B1)

lain(R, E, B2), or(B1, B2, B).

It is important to note that the purpose of our methodology is to help structure
PROLOG programs hierarchically using the data abstraction discipline. Our environment
does not perform type checking or type inference [Mis84] in PROLOG, For instance, the
environment does not ensure that the arguments to an invocation of append are List objects.
Another issue that we do not address is parameterized data types ([Ehr81], [Gog82], [Pad82]).

3. Imp lemen ta t i on of Da ta Types

Since the specifications of data types written using our discipline are executable
PROLOG programs, there is no need for a different implementation. However, sometimes for
reasons of efficiency and convenience of representation, one might want to implement the
data types (and their operators} differently. The user can implement a data type either
manually, or automatically with the help of Refine.

3.1. Manua ! Implementa t ion

Implementing a data type (T) consists of (i) picking a representation scheme for the
objects of T in terms or the objects of a chosen representation type R , and (ii)
implementing the constructors and defined operations of T in terms of the constructors and
defined operations of R . We discuss the two approaches to implementation in the next two
sections.

Suppose we want to implement Tree using a sequential representation scheme in which
a tree T is represented as a pair (list} of lists iLl, L~]. L 1 is the in-order enumeration of
the nodes of T~ L 2 is a list that keeps track of the position of the root of every subtree of T
in the in-order enumeration of the nodes of that subtree. In generating L 2 the subtrees of T
are themselves considered in a preorder sequence. Such a representation scheme is convenient
for checking membership in a tree as well as decomposing trees into and building trees from
smaller on~. A few example representations are given below.

T1 = emptvtree [[], i l l
T 2 = mktree(T1, C, T,) [[C], [1]]
T 3=mktree(r2 , B, T2) [[C B C] , [2 1 1 H
T4=mktree(T3, A,mldree(T1, E, Tl)) [[C B C A E],[4211111

The PROLOG program shown below gives an implementation for isin based on the
above representation scheme. Note that the implementation is more efficient than the
specification of isin, because in the latter a given node would be searched in the right subtree

281

even if it was already located in the left subtree. In the following the predicate that
implements an operation of Tree uses the name of the operation in uppercase so that the
correspondence between them is apparent. (We use this convention throughout the paper for
convenience although PROLOG does not allow predicate names to begin with an upper case
letter.) The implementation also assumes the existence of a data type Nat (for natural
numbers) with constructors zero and plus 1.

Implementa t ion o f Tree

EMPTYTREE([[l, [l]).

MKTREE ([[], []], N , [R 1, R 2], [[N I R 1], [11 R 2]]).
MKTREE([[XI]L 1], IX2 I L2]], N , [R 1, R2], [[XI I TI] , [I, X 2 I T2]]):-

MKTREE([L1, L2], N , [RI , R2], [T1, [J I T2]]), I = plusl(J).

ISIN ([[1, R 1], X , false).
ISIN ([[X I] L 1], R 1], X1, true).
ISIN ([[X1] L 1], R 1], Y, B) :- diB[X l, Y), ISIN ([L 1, R 1], Y, B).

3.2. A u t o m a t i c T r a n s f o r m a t i o n of Specifications

Another way to obtain an implementation is by automatically transforming the
specification. We refer to an implementation obtained in this fashion a
direct implementation since they are obtained directly from a specification. We present two
methods for transforming a specification into an implementation, both of which are
incorporated into Refine in our environment. Both the methods assume that there exist
implementations (which the user is expected to furnish) for a small subset of operations of the
data type, and produce implementation for the rest of the operations. The first method
assumes the existence of implementations for the constructors of the type, and produces
implementation for each of the defined operations. The second method assumes the existence
of implementations for the constructors as well as a (predefined) set of basic defined
operations, and derives implementations for the rest of the defined operations in terms of the
former. A direct implementation derived using the second method is usually more efficient
than the one derived by the first one because we have a larger (and a more versatile) set of
predicates that can be used as primitives in the direct implementation. The two methods are
described below.

Although a direct implementation might not always be as efficient as a user defined
implementation, it is still useful because it is guaranteed to be correct provided the
implementation of the operations in terms of which the direct implementation is derived is
correct. A direct implementation can be used to test a given representation scheme before
designing an implementation that is more efficient but also more intricate than the direct
implementation.

Note that the methods of transformation given below can very well be used to refine a
program that uses the specification of a data type to one that uses an implementation of the
data type. This is because in our method the formalism of a program that uses the
specification of a data type is no different from that of the specification itself.

282

3.2.1. Method I

A defined operation (predicate) p of a data type T is specified as a relation on the
constructor terms of T. The clauses in the specification of p contain the constructors and
the defined operations of T. An implementation of p has to define a predicate P that
expresses a relation on the constructor terms of the representation type R . Thus, one way of
transforming a specification of p into an implementation is the following: Replace the
constructors and defined predicates of T in every clause in the specification by the predicates
implementing them. For a defined operation the replacement is trivial since both the
operation and its implementation take the form of predicates. For a constructor the
replacement is not so obvious because a constructor, which is a functor in specification,
appears as a predicate in the implementation. Also, a constructor may appear as a part of a
nested term.

A constructor term has to be "flattened" before the constructors are replaced by their
corresponding implementing predicate. For example, a constructor term f (g (X), h (Y)) is
replaced by a new variable Z, and the conjunction of predicates
F(X1, YI, Z), G(X, Xl) , H(Y, Y1) is prefixed to the body of the clause in which the
constructor term appears. (F , G, and H are the predicates implementing the constructors
f , 9, and h, respectively.) Thus, a clause of the form

p(] (g(X}, h(Y)), L):- q(X, Y, L),
where p and q are two defined operatior, s of T is transformed into the following clause:

P(Z, L):- F(X1, Y1, Z), G(X, X1), H(Y, Y1), Q(X, Y, n).

There is, however, one problem with the above transformation. The execution of the
transformed clause can be quite inefficient. This is especially so when the representation
scheme is such that there are several different values of R representing the same value of T.
In such a case there can be several different values for X and Y for a given Z such that the
conjunction of the predicates F , G, and H is satisfiable in the above clause. The behavior
of Q is identical on each of the possible values of X and Y because (1) these values are
equivalent representations of Z, and (2) the predicates implementing the operations of T are
congruent with respect to the class of equivalent representations. However, an execution of
the above program in PROLOG would unnecessarily consider each of these values while
backtracking. This could even cause infinite computation if the class of equivalent
representations of an abstract value is infinite. The above problem can be avoided by fixing,
with an appropriate use of ~'cut", the instantiations generated for X and Y at the end of the
processing of the conjunction of predicates replacing the constructor term. One way of doing
this is to substitute a new goal newp (X, Y, Z), where newp is a predicate symbol that does
not clash with any other symbols in use, for the conjunction of predicates obtained by
flattening the constructor term. Newp is defined to be the conjunction of predicates followed
by a "cut". Hence, we transform the clause shown above into the following two clauses.

P(Z, L):- newp(X, Y, Z), Q(X, Y, L).
newp(X, Y, Z):- F(XI, Y1, Z), G(X, XI) , H(Y, Y1), !.

It should be noted that the introduction of "cut" as described above is completely
automatic, and is not left to the discretion of the user. Although the implementation derived
is not in pure PROLOG, the semantics of the program will not be changed. This is because
(1) the constructors of T create the values of T uniquely, and (2) the instantiations

283

discarded by the use of "cut" are equivalent to (with respect to a particular value of T) the
first instantiations generated by newp. Note that condition (1) has to be satisfied for the
transformation to work. The reason for this is explained at the end of the section.

A precise description of the transformation steps to be performed on every clause in the
specification is given below:

(1) Constructor replacement: Every constructor term of t that appears in the clause is
subjected to the following constructor-replacement steps.
(a) Flatten the term t into a conjunction of predicates G as informally illustrated

above. Let XI, • • - ,X~ be the variables in t , and Z be the new variable in G
that the whole term stands for.

(b) Replace every occurrence of t in the clause by Z.
{c) Add the new goal newpred{Xl, • • • ,X n ,Z} to the front of the body of the clause,

where ~ewpred is a new predicate symbol (chosen so that it does not clash with
any existing predicate symbol in the program) defined by the clause given in step
(d) to follow.

{d) Add the following new clause to the program: newpred (Xl, • • . ,X n ,Z) :- G, !.

(2) Defined oper~2tion replacement: Every occurrence of a defined operation of the data
type (such as, isin) is replaced by its corresponding implementing predicate (ISIN, in
our example).

For example, an application of the above transformation steps on the specification of
isin would result in the direct implementation shown below.

A Direct Implementation of Isin

ISIN (T , E, false) :- newpred l(T).
IS IN(T , N , true):- newpred2(L, N , R , T).
IS IN(T , E, B) :- newpred3(L, N , R , T), diI~N, E),

ISIN(L, E, B 1), ISIN(R, E, B2), or(B 1, B2, B).

newpred 1(T) :- EMPTYTREE (T) , !.
newpred2(L, N, R , T): - MKTREE(L, N, R , T), !.
newpred3(L, N, R , T): - MKTREE(L, N, R , T), !.

This kind of mechanical transformation cannot be applied in a system like FUNLOG
([SuY84]) for transforming FUNLOG programs into PROLOG programs without nested
terms. This is because terms in FUNLOG may contain, as functors, constructors as well as
defined operations of data types. Hence, the terms that are being transformed have an
equivalence relation (that is not identity) defined on them by a set of axioms. This can
create problems when the semantic unification (used in [SuY84]} of terms results in more
than one unifier. In such a case the corresponding transformed PROLOG program can run
into an infinite loop while try'lag to backtrack. For instance, consider the following clause in
FUNLOG, and its corresponding translation by Refine into PROLOG. f and g are defined
functions on Integer whose predicate counterparts are F and G.

284

P (/ (9 ix))) :- q ix) . (In FUNLOC)
p(Z) :- F (X1 , Z), G (X , X1), q(X). (Transformed into PROLOG)

Let us suppose that f (#(X)) = 1 has more than one unifier, one of which satisfies q. (This
can happen if f and g are many-to-one.) Then, the execution of the query p(1) may run
into an infinite loop in the PROLOG program while the FUNLOG program gives an answer.
This can happen if the first value for X1 generated by PROLOG does not give the right
value for X , and e maps infinitely many values to the same value. In this case PROLOG
never gets an opportunity to backtrack to F to get an alternate value for X1 since it is busy
resatisfying G infinitely- many times. Note that in this case one cannot introduce "cut" as
described earlier because different possible instantiations generated for X and X 1 in this ease
are not equivalent.

3.2.2. Method 2

As mentioned earlier, method 2 produces an implementation assuming that there exist
implementations for the constructors and a special set of basic defined operations, called the
deeomposers and constructor-checkers, of the type. Hence, this method can only be
applied to a special class of data types, called expressively rich data types [KaS80], that have
the decomposers and constructor-checkers as part of their operation set.

To automate this method it is necessary to identify the operations of the type that can
serve as the decomposers and the constructor-checkers of the type. In general, we need a
theorem prover for this purpose because it is necessary to check if an operation satisfies the
properties that characterize a decomposer (or a constructor-checker). Since our environment
has the required theorem proving ability (in the form of IndProve) the method can be
mechanized without much difficulty.

The decomposers and constructor-checkers of a type permit one to decompose and
uniquely determine the structure of the constructor terms of the type. For example, the data
type Tree introduced earlier would become expressively rich when augmented with the
operation components (extracts the left subtree, the right subtree, and the root of the tree),
isempty (checks if a tree is empty), and isnonerapty (checks if a tree is nonempty). The
operation eompohents, acts as the decomposer; isernpty and isnonempty can be used as
constructor-checkers for the constructors emptytree and mktree, respectively. The
specifications and implementations of these operations are given in Appendix I.

This method derives an implementation for a defined operation with respect to the
decomposers and constructor-checkers. It is similar to the previous method except that the
constructor replacement is done in terms of the decomposers and constructor-checkers. More
details of the method can be found in [HsS84b].

4. Expressing Properties to be Proved

Two kinds of properties concerning data types need to be verified: (1) properties that a
specification ought to satisfy, and (2) correctness of an implementation of a data type. Since
our theorem prover primitive Ind_Prove is within the PROLOG framework, these properties
should be formulated as PROLOG clauses as well. While properties in (1) have to be given
by the user manually, the verification conditions in (2) can be generated with the assistance

285

of another primitive, Ver Cond._Gen of our system.

Let the property to be proved be V.~b(X}, where ~b(X) is the Horn clause
V2(PI(.~, ~?)h ' ' ' A P ~ (X , Z) D Q(-~, ?)). The formula ~b(.~} is converted into the
PROLOG clause:

prop(.V.):-Pl('X , Z) , " " . , P~{X , Z},Q(-~, Z).

with the consequent Q (X, Z) as the last subgoal to be satisfied. Prop will be used only as
an input to the theorem prover Ind._Prove, and not for any other purposes.

Note that the logical meaning of prop is not tautologically equivalent to ~b. This
discrepancy does not have any deleterious effect because prop is only used as a means of
representing the property to be proved and not as a predicate in any other clause. Moreover,
our theorem prover requires the antecedents (Pi 's) to be processed before the consequent
(Q). The left-to-right evaluation strategy of PROLOG and the order of predicates in prop
accomplish this ordering requirement automatically.

4.1. Correctness of Abstract Data Types

Proving the correctness of an implementation of a data type consists of first specifying
the intended representation scheme, and then showing that the algebra defined by the
specification is an homomorphic image of the one defined by the implementation under the
intended representation scheme.

The representation scheme is specified by means of two predicates:
representation invariant, and representation equivalence. The representation invariant
characterizes the (sub)set of values (of the representation type) that are permitted to
represent the abstract values. The representation equivalence characterizes an equivalence
relation that relates all valid representation values representing t.bc same abstract value. In
the Tree implementation, for example, the representation invariant is expressed in two parts
{for convenience) both of which have to be satisfied, lay 1 expresses the constraint that "if a
pair of lists [LI, L2] is a valid representation of a tree then L 1 and L 2 have the same
length". Inv 2 expresses the constraint necessary on the numbers in L2: the first element in
L2 which denotes the position of the root in L 1 has to be a number between 1 and the length
of L2; the two segments of L 2 that represent the two subtrees should also satisfy this
constraint. The representation equivalence in this case is just "equality on pairs of lists"
because every tree has a unique representation as a pair of lists.

iuv 1([], [], true)
inv 1([X1 ILl] , IX2 1L2], true):- inv l (L1 , L2, true).
inv 1{[],IX2 1L 2], false).
inv 1(IX 1 I L 1], [], false).

inv 2([], true).

inv 2{[X I L], true) :- length (IX I L], N), ge (X, D, ae (N, X),
pref i z (L , X , L 1), postf i~t(L, X , L 2),
inv 2(L 1, true), inv 2(L 2, true).

repeqniv ([A 1, A 2], [B 1, B2], true) :- A 1 = A 2, B 1 = B 2.

286

repequiv ([A 1, A 2], [B 1, B 2], false) :- di~A ~, A 2), B 1 # B 2.
repequiv ([A 1, A 2], IB 1, B 2], false) :- A 1 :--- A 2, B 1 # B 2.
repequiv([A 1, A 2], IB1, B2], false) :- di~A 1, A 2), B I = B2.

Given the specification of a data type, an implementation of it, and a definition of the
representation invariant and representation equivalence, Ver..Cond..Gen generates the
verification conditions as described below.

Verification Conditions for the Constructors

These conditions ensure that the values constructed using the predicates implementing
the constructors satisfy the invariant. Thus, there is a verification condition for ever)"
predicate implementing a constructor that says "if the arguments to the predicate satisfy the
invariant, then so does the value constructed by the predicate". For example, the verification
conditions which ensure that the implementation satisfies the constraint expressed by inv 1 is
given below.

invprop I(L 1, L2):- EMPTYTREE([L 1, L2]), inv I(L 1, L 2, B), B--~true .
invprop 2(L 1, L 2, R 1, R 2) :-

iuv I(L 1, L 2, true), inv I(R 1, R 2, true),
MKTREE([L1, L2], N, JR1, R2], [T1, T2]), invl(T1, T2, B), B = t r u e .

Just as a reminder, invprop I and invprop 2 are two clauses representing properties to be
proved by the theorem prover. The logical meaning corresponding to invprop 1 is:

EMPTYTREE(IL 1, L 2])Ainv I(L 1, L 2, B) D B =true,

where all the variables are universally quantified.

Verification Conditions for the Defined Operatlon~

These conditions ensure that the implementation satisfies the homomorphism property.
There is a verification condition corresponding to every clause in the specification of a defined
operation. The verification condition for each clause is derived from the clause as follows:

(1) Subject every constructor term in the clause to the following steps:
(a) Flatten the constructor term, and attach the resulting conjunction of predicates to

the body of the clause. {Same as Step 1.a in Section 3.2.1.)
(b) Replace every occurrence of the term by a new variable Z. {Same as Step 1.b in

Section 3.2.1.)

(2) Replace every defined operation in the clause by its corresponding implementing
predicate. (Same as Step 2 in Section 3.2.1.)

(3) Replace every equality on the representation values by the representation equivalence.

(4) Express the logical implication characterized by the PROLOG clause as a conjunction of
goals according to the form required by Ind._Prove.

The verification conditions generated by Ver_Cond_Gen for the operations isin of Tree are
given below, recall that isin is defined as:

287

isin (emptytree , E, false).
isin (mktree (L , N, R), N, true).
isin (mktree (L, N, R), E, B) : - di~N, E), isin (L, E, B 1)

isin(R, E, B2), or(B 1, B2, B).

Verification Condit ions for ISIN

prop I(L 1, R 1, E) :-
EMPTYTREE([L 1, R 1]), ISIN([L 1, R 1], E, B), B = false.

prop 2(L1, R1, N, L 2, R 2, N) :-
MKTREE([L1, R1], N, [L2, R2], T), ISIN(T, N, B), B = true

prop3(L1, R1, N, R2, L2, E) :-
MKTREE([L 1, R 1], N, [L2, R2], T), ISIN(T,N Result 1),
d i~g , E), ISIN ([L 1, R 1], E , B 1), ISIN([L 2, R 2}, E , B2),
or (B 1, B 2, Result 2), Result 1 = Result 2.

6. The T h e o r e m Prover Ind_Prove

In this section we present a brief and informal description of the theorem proving
method used in the verification phase of the environment. A more detailed description can be
found in [HsS84a].

The main task that our theorem prover needs to perform is to prove properties with
universally quantified variables. PROLOG, which can be regarded as a prover for proving
existentially quantified properties, is unable to fulfill this task. The conventional way of
dealing with universally quantified variables in a refutationalotype theorem prover (such as
PROLOG) is to treat them as skolem constants (after negating the target sentence, of course}
(e.g. [Sti84]}. Such a method does not work satisfactorily if the domain of variables are
defined inductively (such as List) since skolem constants cannot be unified with any of the
constructors.

We solve this problem by introducing a deductive theorem proving method for first order
inductive theory representable in Horn clauses. The basic inference mechanism in the
theorem prover is backward deduction, the same as in PROLOG. The first major notion we
introduce is a way of handling unsatisfiable goals whose unsatisfiability is due to the
appearance of skolem constants. For example, given a goal is append (sk,[],X), where sk is
a skolem constant, append(sk,[],X) is not satisfiable since sk unifies with neither [] nor
[A I L]. However, we know that this goal should be satisfiable since sk, being a list, has to
be either [] or [.4 ILl for some A and L. We handle this problem by delaying the
evaluation of this goal until later by temporarily unifying X with a list I which satisfies
append(sk ,[],1), without worrying about what 1 really is. In our notation, X is unified with
l](l :append {sic ,[],l)). This method of delaying the evaluation of goals and binding variables
is called f~-binding, and append(sk,[],1) is called the [~-eonstraint of X. A goal which can
be satisfied in such a way is called f~-satisf iable. A similar notion has also been used by
Kornfeld ([Kor83]) for enriching the unification to include equational axioms.

At the end of processing all the goals in the theorem to be proved (expressed as a Horn
clause), the n-constraints will be put together in a certain way to produce a Lemma. The
need of n-binding arises because the universally quantified variables have to be skolemized.

288

However, f]-binding does not ~oive the problem created by skolemization but merely
postpones the time of decision making to when the lemma is generated. Therefore it is
important to have some mechanism for ensuring that the n-constraints thus generated are
indeed "simpler" than the original problem. One way to achieve that is to delay the time of
skolemization. For this purpose, we introduce a technique called skolemize by need. Under
this method, we treat universally quantified variables as free variables, and skolemize them
only when necessary (that is, when a value for that variable has to be determined}. This
technique produces three effects: (1) It prevents the variables from being instantiated
indefinitely. (2) The variables are skolemized, automatically, according to the inductive
structures of the constructing terms. (3) The n-bindings produced by such process usually
contain unsatisfiable goals which are simpler than the original goals, and these unsatifiable
goals will sometimes lead to appropriate induction hypothesis. Because of the delaying of
skolemization, the skvlem constants so produced no longer cover the whole domain over
which the universally quantified variables are defined. Therefore we also provide, in the
prover, a mechanism of generating a complete set of skolemizations (not just one) to ensure
the completeness. The method is very similar to the PROLOG backtracking mechanism,
only we are more selective of the choice points for backtracking. We also use a limited
forward chaining mechanism for producing potential induction hypothesis from the f~-
constraints.

The prover can be (and has been} built without too much difficulty in PROLOG since
PROLOG already provides the basic mechanisms such as unification and backward
deduction. However, we do need to add an additional occur check mechanism in PROLOG
([Pla84]) to avoid overlapping of variables which may lead to inconsistency.

Due to the lack of space, we refer the interested readers to [HsS84a] for a detailed
description of the theorem proving method. Some examples of the proofs are given in
Appendix II.

6. Conclusions

We have investigated the use of PROLOG as a uniform e~vironment to carry out all
three phases - specification, implementation, and verification - of systematic program
development. For the specification part, we have proposed a methodolo~o-y of designing data
types in PROLOG that represents the constructors as functors and the defined operations as
predicates. This approach to data types not only provides executable specifications, but also
eliminates the need for an elaborate unification algorithm encountered in the other
approaches. We have given several transformation techniques for transforming specifications
into implementations. In particular, we have presented an automatic transformation method
in which "cut" is produced mechanically without changing the semantics of the program. In
order to verify PROLOG programs within PROLOG's own mechanism, we developed a
deductive theorem proving method for the first order inductive theory representable in Horn
clauses. This theorem prover, which can be easily incorporated into PROLOG, enables us to
prove universally quantified inductive properties of PROLOG programs. It also does not
employ, explicitly, any inductive inference rule. Methods for generating verification
conditions are also given.

289

There is plenty of scope for further work in the area. In the data type development area
we need to study more about the tradeoffs involved in representing the operations in
functional style as opposed to in a predicate style. It would be interesting to extend our
transformation method to data types (such as Set) where the constructors exhibit standard
properties such as associativity and eommutativity. It appears that when the equivalence
class of constructor terms defined by the properties is finite, the transformation method can
be extended by generating one clause for every term in the equivalence class. It would also
be interesting to see if more sophisticated transformation techniques ([Sri83 D can be used to
obtain better forms of direct implementation. In the theorem proving area we need to extend
the form of the properties that can be proved beyond the Horn clause form that can currently
be handled, such as incorporating Stickel's complete inference rule for PROLOG ([Sti84 D into
our system. It is also necessary to study if the method can be used to disprove properties.

Aeknow ledgements

We are thankful to Eric Johnson, C. Mohan, Jean-Luc Remy, and David S. Warren for
their helpful comments on earlier drafts of the paper.

1. References

[Dav82] R.E. Davis, "Runnable Specification as a Design Tool", in Logic Programming,
K. L. Clark and S. Tarnlund, (eds.), Academic Press, January 1982, 141-152.

[Ehr81] H. Ehrig, "Algebraic Theory of Parameterized Specifications with Requirements",
6th CAAP, 1981.

[Fag84] F. Fages, "Associative-Commutative Unification", 7th Conf. on Automated
Deduction, Nappa Valley, CA, May, 1984, 194-208.

[GTW78] J .A. Goguen, J. W. Thatcher and E. G. Wagner, "Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types", in
Current Trends in Programming Methodology, vol. 1V Data Structuring, R. T.
Yeh, (ed.), Prentice Hall (Automatic Computation Series), Englewood Cliffs, N J,
1978.

[GOT79] J.A. Goguen and J. J. Tardo, "An Introduction to OBJ: A Language for Writing
and Testing Formal Algebraic Program Specifications", Proceedings of the
Conference on Specification of Reliable Software, Cambridge, MA 02139, 1979.

[Gog82] J .A. Gogaen, "Parameterized Programming", Proceedings of the Workshop on
Reusability in Programming, 1982.

[Gull78] J .V. Guttag and J. J. Homing, "The Algebraic Specification of Abstract Data
Types", Aeta Information, 10, 1 (1978), 27-52.

[HAT82] A. Hansson and S. Tarnlund, "Program Transformation by Data Structure", in
Logic Programming, K. L. Clark and S. Tarnlund, (eds.), Academic Press,
January 1982, 141-152.

[HsS84a] J. Hsiang and M. K. Srivas, "On Proving First Order Inductive Properties in Horn
Clauses", Technical Report 84/75, SUNY at Stony Brook, Stony Brook, NY
11794, 1984.

290

tmSS4bl

[HuH80]

IHuOS0]

[HulS0]

[UaS80]

iKor83]

[MisS4]

[MusS0]

[PadS2]

[Pla84]

[Sri83]

[Sti81]

[Sti84]

[SuY84]

L Hsiang and M. K. Srivas, "A PROLOG Environmen~ for Developing and
Reasoning about Data Types", Technical Report 84/074, SUNY at Stony Brook,
Stony Brook, NY 11794, 1984.

G. Huet and J. M. Hullot, "Proofs by Induction in Equational Theories with
Constructors", ~lst IEEE Symposium on Foundations of Computer Science, 1980,
797-821.

G. Huet and D. C. Oppen, "Equations and Rewrite Rules: A Survey", in Formal
Languages: Perspectives and Open Problems, R. Book, (ed.), Academic Press,
1980.

J. M. Hullot, "Canonical Forms and Unification", 5th Conference on Automated
Deduction, Les Arcs, France, 1980, 318-&34.

D. Kapur and M. K. Srivas, "Expressiveness of the Operation Set of a Data
Abstraction", Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, January 28-30, 1980, 139-153.

W. A. Kornfeld, "Equality in Protog", Proc. 8th IJCAI, Karlsruhe, Germany,
August 1983, 514-519.

P. Mishra, "Towards a Theory of Types in Prolog", 1984 International
Symposium on Logic Programming, Atlantic City, New Jersey, Feb. 6-9, 1984,
289-298.

D. R. Musser, "Abstract Data Types in the AFFIRM System", IEEE, 1, 6 (Jan.
1os0),.
P. Padawitz, "Correctness, Completeness and Consistency of Equational Data
Type Specifications", in Ph.D. Thesis,, Technische Universitat, Berlin, 1982.

D. A. Plaisted, "The Occur-Check Problem in Prolog", 1984 International
Symposium on Logic Programming, Atlantic City, New Jersey, Feb. 6-9, 1984,
272-280.

M. K. Srivas, "A Rewrite Rule Based Approach to Program Transformation", The
Rewrite Rule Laboratory Workshop, Schenectady, NY 12345, September 1983.

M. E. Stickel, "A Unification Algorithm for Associative-Commutative Functions",
J. ACM, 28, (1981), 233-264.

M. E. Sticket, "A Prolog Technology Theorem Prover", 1984 International
Symposium on Logic Programming, Atlantic City, New Jersey, Feb. 6-9, 1984,
212-219.

P. A. Subrahmanyam and J. You, "Conceptual Basis and Evaluation Strate~es
for Integrating Functional and Logic Programming", 1984 International
Symposium on Logic Programming, Atlantic City, New Jersey, February 6-9,
1984, 144-153.

Appendix !

291

Specification of Tree

Constructors

emptytree: ~ Tree
mktree: Tree X Node X Tree --* Tree

Defined Operations

components: Tree X Tree × Node X Tree
isempty : Tree X Boolean
isnonempty: Tree X Boolean
isin : Tree X Node X Boolean

components (emptytree , error, error, error).
components (mktree (L , N , R), L , N , R).

isempty (emptytree , true).
isempty(mktree (L, N , R), false).

isnonempty (emptytree , false).
isnonempty(mktree (L, N , R), true).

isin (emptytree , E, false).
isin (mktree (L, N, R), N , true).
isin (mktree (L , N , R), E, B) :- d i~N , E), isin (L , E , BI)

i s i n (R , E , B2), or(B 1, B 2, B).

Implementation of Tree

EMPTYTREE([[], []]).

MKTREE and ISIN are given in Section 3.1.

ISEMPTY([[], [1], true).
ISEMPTY([X I i], [I [R 11, false).

ISNONEMPTY([[], []], false).
ISNONEMPTY([X[L], [I t R]I, true).

COMPONENTS(T, L e f t , N, Right) :-
L TREE (T , Le f t), NODEOF (T , N), R TREE (T , Right).

LTREE([[], [11, error).
LTREE([L 1, [I [L2]], [Tt, T2]) :-

prefixo)~ L 1,1, T I) , prefixol~L 2,l , T2).
{prefizoI(L ,I, T) extracts a list of length 1-1 at the head of L}

RTREE ([[1, Ill, error).
RTREE([LI, [I I Lu]], [TI, T2]) :-

postIizo~ L 1,I, TI) , postfixo](L ~,l , T2).
{postfixollL ,I, T) extracts the tail of L starting from (I+ l)th element}

292

NODEOF ([[], !]], error).
NODEOF ([L, [I I R]], N) :- ithelementof (L ,I, N).
{ithelementof (L,I , N) cheeka lithe ith element oiL is N.}

Appendix H

In the following we show the proof of some of the verification conditions (derived i~
section 4) for the implementation of Tree. We present the proof of int,prop 2 and prop 3 for
the implementation of lain. The prover generates a set of instantiations, each with a
premise (further constraint on the instantiations}, and a lemma. Assuming that the
instantiation is ~0, the logical interpretation of the triplet is:

For every X0 which also satisfies Premise, if Lemma is true, then prop (~0) is true.

1. P r o o f of Invprop$

In this case the proof generates a well-spanned set of four instantiations for the input
variables. For the first and second instantiation the lemma generated is true. For the third
and the fourth case, the lemma generated is an instance (for smaller argument values) of the
property being proved, and hence forms the induction hypothesis.

Invprop 2(L I,L 2,R I,R 2) :-
inv I(L 1,L2,true), inv I(R l,R2,true),
MKTREE ([L I,L 2],N ,JR t,R 2],[TI, T2]), inv 1(T 1, T2,B), B =true.

Instantiations Premise Lemma

(i l,[l,i],I l) true
([1,[],[YI I R ~I,[Yu I R2]) true
([Xll L1I,[X21 L2],[],[]) true
(IX~ILd,IX2IL2],[Y~IR,I,[Y21R21) tr,~e

true
true

in,prop 2(L ~,L 2,[1,[l)
invprop 2(L I,L ~,R 1,R2)

2. P roo f of Prop3

For prop 3, Ind_Prove generates nine sets of instantiations for the variables L and R
which span the domain List XList . Every Lemma generated is either trivially true, or is
implied by the induction hypothesis (derived from forward chaining), or can be proved to be
true by applying IndProve on it again. In the following the symbol ~ is used as a synonym
for the operation diff on nodes.

prop 3(L1,R1,N ,L 2,E) :. TREE ([L I,R I],N ,[L 2,R 2], T), ISIN (T ,N ,Resuit 1),
N ~ E, ISIN([L ~,R ,I,E,B~), tStN(IL~,R~],E,B2),
or (B1,B2,Result 2), Result 1-~-Res~lt 2.

Instantiations Premise Lemma

L l ~ [],N ~- .f/,E +-=
RI +- k l , R:~ , - -k2

(a) L2 *" II N ~ k true

293

(b) L 2 4--- [/~ I Z2]
(c) L 2 ~'- [~" I L2]

N ~ k true
:¢ ~ , ~ ~ E true

L I *'- [E I L l],N *- -h/,E . - / ~
RI *-/~l, R2 '--/~2

(a) L 2 *- [] N ~ :
(b) L~ *-- [E IL2] / ~ / ~ :
(e) L 2 4- [Y 1/,21 ~ B

true

true
true

L 1 .-- IX fL I],N *-- N , E ,---
RI *--/~1, R2 *'-/72

(a) L 2 * - - []
(b) 5 2 *- [~"]L~]
(e) L2 ~ [E IL2]

true propa(L 1, N, [], E)
prop3(L 1,/V, [~" I L2],/~)
TREE(IL v h l],/~/, lIE l L2I,RzI, T),
ISIN (T ,IE ,B). B =true.

P r o o f o f the Last L e m m a

To complete the proof of prop 3 we have to prove the last lemma generated above. We
use lnd_Prove once more to do this. The lemma is expressed as a new property to be proved
as follows. Note that the relevant constraints in the Premise should be made as a part of
the new property to be proved.

newprop(LI,R1,N ,L2,R2,E) :- N ~E,TREE([LI,R d,N,{[E I L2],R2],T),
ISIN (T ,E ,B), B = true.

Instantiations Premise Lemma

([1, [~1, N, L2, h~, P~) true
([XllLII,N, Lz, Re, ~) true

true
newpr°p([-'l, R1, 1V, L2, [~2, E)

