
APPLICATION OF PROLOG
TO TEST SETS GENERATION FROM ALGEBRAIC ~ECIFICATIONS

L. Boug~ (*), N. Choquet (**), L. Fribourg (**), M.C. Gaudel (***)

(*) I/TP, Universit~ Paris 7, 8 place Jussieu, 75851 Paris Cedex 05, France
(**) Laboratoires de Marcoussis-C.G.E, route de Nozay, 91460 Marcoussis, France

(***) LRI, Universit~ Paris Sud, 91405 0rsay, France

A B ~ C T

We present a method and a tool for generating test sets from algebraic data type
specifications. We give formal definitions of the basic concepts required in our approach
of functional testing. Then we discuss the problem of testing algebraic data types imple-
mentations. This allows the introduction of additional hypotheses and thus the description
of an effective method for generating test sets. The method can be improved by using
PROLOG. Indeed, it turns out that PROLOG is a very well suited tool for generating test
sets in this context. Applicability of the method is discussed and a complete example is
given.

INTRODUCTION

Functional or "black-box" testing has been recognized for a long t ime as an impor tant
aspect of software validation [Howd 80], [ABC 88]. It is especially important for large-
sized, long-lived systems for which successive versions have to be delivered. In this case,
non-regression testing may be long, difficult and expensive. It should depend only on the
functional specifications of the system [Paul 83].

However, most of the studies on test data generation have focused on program dependent
testing [Harnl 75], [Clar 76], since it was possible to use the properties of a formal object:
the program. Of course such an approach is necessary but not sufficient [Gout 83]. The
emergence of formal specification methods makes it possible to found functional testing
on a rigorous basis. In this paper we present a method and a tool for generating test sets
from algebraic data type specifications. We consider hierarchical, positive conditional
specifications with preconditions. More precisely, we study how to test an
implementation of a data type against a property (an axiom) which is required by the
specification. The formal specification is used as a guideline to produce relevant test
data.

As asser ted in [BA 82], i t is especially dangerous, when studying test ing and cor rec tness
to use informal definitions, even if they seem obvious. For instance, it is shown in [BA 82]
tha t two different, but ra ther similar, formal definitions of what an "adequate tes t set" is,
lead to very dissimilar issues.

The first par t of this paper is therefore devoted to formal definitions of several concepts:
first we give the fundamental proper t ies of what we call a col lect ion of t e s t sets; then we
state the hypotheses which are assumed during the test ing process and ensure the
acceptabi l i ty of the considered collections of tes t sets. This notion of acceptabil i ty is

262

defined and discussed with r e spec t to the classical p rope r t i e s requi red for t e s t select ion
c r i t e r i a [GG 75]: rel iabil i ty, validity and lack of bias.
in the second par t , we show tha t usin~ a lgebraic da ta types allows the in t roduct ion of
further hypotheses and enables the test sets generation,
The third part describes how to ~Jnprove this method using PROLOG. It turns out that
PROLOG is a very well suited tool for generating test sets in this context. In particular it
automatically provides partitions of the domains of the variables. Of course, the use of
PROLOG somewhat limits the kinds of specifications and properties which can be
considered. However these limitations could be alleviated by extensions of PROLOG (e.g.
[Komo 80], [Nais 82], [DJ 84], [GM 84], [Frib 843, etc.)

L BASIC NOTIONS IN TESTING THEORY

It is now widely recognized that a sound theory of testing must focus not only on the
question 'q%qqat is a test?", Goodenough and Gerhart [GG 75] took a decisive step
forward by enlarging this question to '~Vhat is a test criterion?". A criterion makes it
possible to decide whether a given set of data can be validly considered as a test, [Bou~ '
82] suggests one more step: one globally considers the whole testing process, or at].east
a model of it. Indeed, the properties of test data are not independent from the method
used to perform testing and to handle results.

I.L DEFINITIONS

The Test ing Process Diagram (fig. 1) is an a t t e m p t to model the sequence of
opera t ions tha t t ake p lace between the p rob lem definit ion ("Does this sys tem validate
this proper ty?") and the conclusion ('~/es, as far as I can assure it" or "No, definitely
not' 9.

concrete
ZeveZ

E-algebra Test Set
+ ~ Application J

Axioms
Isuccess ,faf lurel

I
Formalization Selec t ion

; I
abs~rsc~ Testing Cons t ruc t ion ~ Collection of
revel Context Test Sets

fig. I Testing Process Di.~jram

Here we cons ider an hnplementa t ion to be a E-algebra (i.e. a se t of opera t ions on
some se ts of values) and we want to t e s t whether this a lgebra satisfies a set of axioms.
However, the definitions we give are general .
The p rob lem to be solved is formally s t a t e d as a Test ing Context C. It is mainly made
up of the p rope r ty A to be t e s t ed (the axioms) and previous knowledge about the
sys tem under t es t (the given algebra). The idea of test ing a par t ia l ly def ined/known
objec t has recen t ly been in t roduced by De Mfllo eL al. [BDLS 80], [Budd 81], [Howd 82].
We think it is quite fundamental. One never knows the object under test perfectly. One
only knows that it satisfies some properties H, which come from the context or from

263

previous tests or proofs.
In the case of a program, one knows the semantics of its e lementary components, bu t
no t its behavior over its whole domain. In the case of a E-algebra, one knows the
behavior of lower-level type operations (Integer, Boolean...), perhaps some axioms
which are a priori satisfied by this algebra (using some previous validation results),
bu t certainly not the whole functional behavior of the algebra. Hopefully the algebra
present ly under tes t satisfies properties H.

Once a testing context C has been stated, the next step in the testing process is to
build a c611ecUon of tes t sets from C. Such a collection is a family of tes t sets (Tn)
indexed by positive integers. We require this family to be a s y l n p ~ c a l l y reliable: it
means tha t if Tn+ I is successful then Tnis successful. This new notion is introduced to

express the idea that increasing the size of a test set increases the quality of testing.
In fact, here the classical concept of test selection criterion is replaced by the notion
of collection: the (Tn) are all the tes t sets possibly selected by the given criterion. We

will later show that the qualities of a cri terion can be expressed as constraints on the
sequence (Tn).

In this paper, testing is trying to answer a finite number of e lementary questions of
the form (at least in the case of an equational specification)

"Does the ~.-algebra X satisfy equation t=t" ?"
The straightforward way to do this is to consider all the possible instant iat ions of the
variables occurring in the equation and to compute both sides of the equation in X.
Each T n is a subset of the possible instant iat ions of the equation. We shall note

The last step to perform in the testing process is to select a test set ~ and to

compute it in the ~-algebra. If all the equations ti=t' i are satisfied then the result of

the testing process is "success"; if not, it is "failure" and one can conclude that the ~-
algebra, i.e. the data type implementation, is faulty.
The criterion for choosing n is of course strongly related to cost/quaiity
requirements.

1.2. FUNDAMENTAL PROPERTIES OF A COLLECTION OF TEST

The significance of the testing process conclusion is highly related to the quality of
the test sets collection. Goodenough and Gerhart required reliability and validity for
test selection criteria, leading to ideality, They proved that the success of the
application of a test set selected by an ideal criterion implies correctness. Here we
follow a similar approach.

Reliability is a consistency requirement. A collection of test sets is said to be reliable
if a test set of higher index is '~better" than a test set of lower index whatever
potential ~-algebra is considered. This can be formally written as follows

vn ~ 1% (H u %+~) t- T~

This requi rement is slightly weaker than Goodenough and Cerhart 's and, is called
asymptot ic reliability. It captures the fact tha t testing is fundamental iy an
incrementa l process.

Validity means that any incorrect behavior will be revealed by some tes t data in some
T n, Le.

(HU (u %)) I -A

264

If test ing is successful using all tes t sets T n then the algebra fulfills the required
properties. A collection which satisfies this property is said to be asymptot ical ly
valid.

One more proper ty is required for test seLs collections. It is the lack of bias. Any
correct algebra should pass any tes t set T n. It is precisely the converse of validity:

YI~ E N, (H u A) I- T n

If a tes t using the tes t set Tp selected from the collection (Tn) fails then the algebra
does not satisfy the axioms. It tu rns out tha t most "natural" tes t selection cri ter ia
satisfy this proper ty (for instance, see Goodenough and Gerhart 's criteria). A similar
proper ty is considered in [Gout 83].

A (asymptotically) reliable, (asymptotically) valid and unbiased collection of tes t sets
is said to be acceptable.]~nese three properties ensure that the higher the index of
the selected tes t set, the be t te r the conclusion of the test ing process. The existence
of an acceptable collection of tes t sets is strongly related to the propert ies of A and H
(see [Bong 82] and [Boug 83] for details). An interest ing feature of algebraic data
type specifications is tha t they do not involve any existential quantifiers. This ensures
the existence of such a collection under s tandard extra hypothes~s to be listed below.

1.~ REGULARITY AND UNIFORMITY HYPOTHESES

The problem of testing axioms for a E-algebra is thus reduced to seeking an
acceptable collection of tes t sets for a testing context, It is only possible if some
powerful assumptions on the E-algebra are available. Such assumptions are left
implicit in mos t test ing methods. For notat ional convenience, let us assume hereafter
tha t we are test ing an axiom of the form t(x)=t'(x). Thus, in the following, tes t sets T n

are sets of ins tant ia t ions of this equation.

1.3.1. Regularity hypotheses

Let us assume it is possible, in some way, to associate a level of complexity with
each e lement of Y.-algebra carriers. The regular i ty hypothesis s ta tes tha t the axiom
under tes t behaves regularly with respect to this measure. If it holds for any object
of complexity less than k (k being a parameter) , then it holds for any object.

Yx (complexity(x)<-k => t(x)=t'(x)) => Vx (t(x)=t'(x))

Typically, complexity will be the length of a representat ive E- term denoting an
object. In the case of program testing, it corresponds to the computat ion
complexity. Thus regular i ty hypotheses reflect path analysis testing strategies
[Howd 76], [WHH 80].

1.3.2. Uniformity hypotheses

If no complexity measure is available , we are faced with the well-known problem of
part i t ioning variable domains in such a way that the axiom under tes t "behaves
uniformly" on these subdomains. Formally speaking, it means that the following
. n i f o r m i t y hypothesis is satisfied for each subdomain

j x (t(x)=t'(x)) => Vx (t(x)=t'(x))

It is modelled by introducing a new constant c of suitable type, a recta-constant .

265

The value of such a constant is intuitively a random value of the subdomain. The
hypothesis can thus be expressed as well by

(t(c)=t'(c)) => Yx (t(x)=t'(x))

T]ds typically leads to random testing strategies and subdomain testing strategies
[WC 80]. [ZW 8i] .

APPLICATION OF THE THEORY TO hLGEBRhIC DATA TYPE SPECIFICATION TESTING

We now focus on the specific kind of testing we are dealing with: testing a data type
implementa t ion against an algebraic data type specification.

2.1. THE PROBLEM

Algebraic specifications of data types are widely recognized as a useful formal
specification method. See for instance [BH 85]. A specification is given by

a many-sorted signature Z, i.e. a list of functional symbols on a set of sorts 5', and
a set of Z-axioms E.

The problem is: are the axioms of E satisfied by a given Z-algebra X.

speeif queue-of-int =
enr/zh bool, int by
sort queue;
oper~.ions

emptyq : -> queue
append : queue * int -> queue
remove : queue -> queue
first : queue -> int
isempty : queue -> bool

v ~ b l s s
Q,Q'; queue
]; int

precondiHon
pre(first,q) = (isempty(q)=false)

ax/oms
AI: isempty(emptyq)=true
A2: isempty(append(Q,I)) =false
AS: remove (emptyq) = emptyq
A4: isempty(Q)=true => remove(append(Q,i))=emptyq
AS: isempty(Q)=false => remove(append(Q,I))=append(remove(Q),I)
A6: isempty(Q)=true => first(append(Q,I))=I
A7: isempty(Q) = false => first(append(Q,I)) = first(Q)

.fig.2,5~ec~,flc~ion o.f ~eue e I I~tegers

Usually, one deals with hierarchical abs t rac t data types [GH 78], [Dido 81], [BDPP 88].
A sort of in te res t s i is distinguished in S, and Z is accordingly split into s ignature Z i (i
standing for interest) and Zp (p standing for primitive). Z i contains operations where

at least one input or output variable is of sort s i.

Hierarchical algebraic data types induce in a natural way a similar structure into the

266

testing process: lower level modules are first tested against their specification, then
higher level ones. Of course, the testing of higher level modules can use the fact that
lower level modules were successfully tested.

We consider only a res t r ic ted class of algebraic specifications characterized as follows:
hierarchical specifications;
a predefined boolean specification with two constants, t r ue and false;
precondit ions on operators and conditional equations, with a res t r ic ted form.

Premises of precondit ions and conditional equations are res t r ic ted to be boolean
equations, i.e. equations of the form t = t r u e or t=false where t is a t e rm of boolean
sort. The reasons for this res t r ic t ion appear in par t 3. An example of such a
specification is given On figure 2.
Conditional axioms such as A6 or A7 of figure 2 are valid for an algebra X if for any
ins tant ia t ion of Q and t which satisfies the precondit ions and premises, both sides of
the conclusion equation yield the same value in X.

2.2. BASIC HYPOTHESES FOR TEST SETS GENERA'flON

The basic assumption for test construction in such a framework is the Correlation
principle

"There exists a narrow correlat ion between specification s t ruc ture and
implementation structure."

This is a postulate. It may definitely not be the case for our specific algebra X. In fact,
because of the increasil~g use of construction methods guided by specifications [B2G3
84], using top-down, bottom-up, stepwise refinement, this principle is more and more
valid as time goes. This principle is closed to the so-called competent programmer
hypothesis [Budd 8]]. It is more or less assumed by most of testing methodologies.

This principle is used to derive the follo~4nlg three hypotheses.

Finitely generated and non-trivial algebras

The first hypothesis restricts the considered algebras to be finitely generated with
respect to]~derarchy [WPP 83], [SW 83]. It means that any element of X can be
denoted abstractly by application of operations of Z i (the operations of interest) to

elements of lower sort, In the queue example of figure 2, any queue element of X can
be then obtained as a sequence of remove and append operations on emptyq. This
hypothesis states that the specification under test covers all parts of X. Any element
Of Xean thus be denoted as a formal term of the specification.

It is necessary to avoid trivial algebras, i.e. algebras where any property is satisfied.
We assume therefore that the implementation of predefined booleans satisfies the

property true~ false.

Uniformity hypotheses for lower sorts

The specification under test is hierarchical. At testing time, lower level modules
already exist (or can be simulated) and have been successfully tested against their
specification. If the specification is hierarchically consistent then the correctness of
lower types is preserved. One is therefore entitled to set uniformity hypotheses about
lower level domains. For instance in the queue specification (see figure 2) the values
of integer operands are not significant.

267

Regulari ty hypothesis for the sort of in t e re s t

The sort of in teres t is the actual subject of the testing process. Because algebras are
finitely generated, the computat ional complexity of objects is directly connected to
the syntact ical complexity of their denotation. A possible complexity measure of an
e lement z of X is then the length of the smallest Ei-term denoting x. Having in mind
such a complexity measure, a regulari ty hypothesis directly arises. If the
implementa t ion works in all simpler cases, it will do so in more complex cases. The
dist inct ion between "simpler" and "more complex" cases is s ta ted by choosing a
complexity level k. We call k the level of the tes t set.

2.3. TEST SETS GENEP~TION AIf~RITI-IM FOR EQUATIONAL SPECIFICATIONS

Consider an equational axiom of the form
t(x, xm)=t'(x x=)

both sides being te rms of the sort of interest . Under the three hypotheses above, we
can describe an acceptable collection of tes t sets (Tn). Test set T k is the finite set
~ti=t'i] of all the closed instantiat ions of the axiom under tes t obtained as follows.

Instanciation algorithm (equational case)
f o r i = 1 t o m d o

if x i is a variable of the sort of in teres t

then ins tant ia te it by all the te rms of size tess than k
which contain no variable of the sort of in teres t

done

for each of the result ing instanciated equations do
for each variable y do

ins tant ia te y by a new meta -cons tan t c, one for each uniformity
subdomain of the sort of y

done
done

Ruzming tes t set T k simply consists of checking the validity of all its totally
ins tant ia ted equations t i=t ' ~ on the E-algebra under tes t X. Because no variables are
left, this is simply done by computing each side of the equation and checking that
both yield the same value. When computing, random values of the corresponding
subdomain are subs t i tu ted for meta-constants .

Consider the case where a set of c o n s t x u ~ (see section 3.2) is given together with
the specification of the type of interest. Hypotheses can then be strengthened by
assuming that X is actually finitely generated with respect to those constructors.
Instantiation may thus be limited to those terms of size less than k which are
combinations of constructors. The number of generated instantiations is then
considerably decreased. This corresponds precisely to optimizing a test set by
discarding redundant tests. This optimization is usually left implicit in testi~g
methodologies.

Our specifications generally contain conditional axioms (see fig. 2). It may then
happen tha t no t e rm of size less than level k validates the premise of some axiom. It
would thus be declared valid because it is vacuously satisfied for all those terms.
Some check m u s t therefore be added to ensure tha t all axioms have actually be
tes ted (premises are satisfied in enough representat ive cases). However, another

268

more efficient approach is to selectively generate terms that validate some premise.
This is the subject of the next section.

3. TEST SETS GENERATION FOR CONDITIONAL AXIOMS

3.1. Use at PROLOG to satisfy re la t ions

A PROLOG program is made up of Horn clauses. A Horn clause is a conditional formula
made of a head par t and a body part; the head par t is a relat ion P over terms, and the
body par t is a list of conditions under which the head par t is true.
A PROLOG in te rpre te r uses automatic deduction methods (resolution) to compute the
te rms which satisfy a relat ion characterized by the clauses of the program.
When a re la t ion P(X) is wri t ten in PROLOG, then given the goal: ?-P(X), the in te rpre te r
ins tant ia tes X with the te rms satisfying P.

Example:
What are the values of X such that }(>2?
Booleans are defined by t rue and false.
Integers are built on 0 and succ, with in addition an operator le: hat * int - > bool,
defined in PROLOG by:

te(0,X, true).
le(succ(X),0,false).
le(suce(X),succ (Y),B):- Ie(X,Y,B).

Given the goal
?- le(X, succ(succ(0)),false).

the in t e rp re t e r provides the general solution:
x = succ(succ(suec(Y))),

where Y takes any value.

Theoretically, the resolution s trategy underlying PROLOG provides all the solutions for
a goal [Clar 77].
A solution computed by the PROLOG in te rp re te r is ei ther a fully hastantiated t e rm or
a t e rm containing variables; in the la t ter case, the computed t e rm embodies a whole
class of solutions, since any ins tant ia t ion of the computed t e r m is a part icular
solution of the goal. This PROLOG computat ion feature is used hereafter.
One advantage of PROLOG in our framework is the handling of conditional axioms.
However some limitations, due to the fact tha t equality is not handled, still exist. But
some propositions are present ly being submit ted to alleviate this res t r ic t ion [DJ
84],[GM 84],[Frib 84].

3.2. Convert ing a spvc~ca t ion in to PROLOG

A specification which satisfies the syntact ical restr ic t ions we have introduced on
algebraic specifications in par t 2.1 can generally be t ransla ted into PROLOG, (a similar
t rans la t ion is developed in [HS 85]).
Axioms are viewed as definitions of function symbols. Syntactically, a function symbol
f is defined by a set of axioms of the form :

(a (u) = t ~ e) a (b (u ') = ~) => f(v)=g(~), (*)
where f and g are function symbols; u, u', v, w are vectors of terms, and a, b are
symbols of boolean functions; a(u)=true and b(u')=false are the cons t r a in t equations.

Axioms are thus implicitly oriented. The symbol f appearing ha the axiom above is said
to be specified. A function symbol specified by no axiom of the specification is called a

269

basic symbol or cons t ruc to r . In this paper , we assume tha t there is no equation
be tween cons t ruc tors .

Axioms are t r ans la ted into Horn clauses. The first s tep is to modify the signature. All
the funct ion symbols of ar i ty n specified by axioms in the original specif icat ion are
r ep laced in the new specif icat ion by relat ion symbols of ar i ty n+ l . For instance, the
operator remove(q) (see fig. 2) becomes the r e l a t ion remove(Q1,Q2). The only
remaining t e r m s in the t rans la t ion are those formed with cons t ruc to r s and var iables
only. For instance, the cons t ruc tors of the queue type are emptyq and append.
Terms hke emptyq and append(Q,I) are preserved.

In a second step, ax ioms are tu rned into Horn clauses. For simplicity, consider an
axiom such as (*), where u, u' , v are made of cons t ruc to rs and variables only. It
becomes:

I(v,Z) : - a (u . t rue) . b(u ' . fa lse) . R(X,Z).
where X is the set of variables appearing in v, and R(X,Z) expresses in a relation form
the functional equation: Z=g(w). Intuitively speaking, Z is no more than an
intermediate result.
When u, u', or v contain derived operators, there is a preliminary transformation in
order to reduce this case to the previous one.

The las t s t ep is to plug possible precondi t ions on f into the Horn clause. If the re is
pre(f,x) = p(x) in the original specification, then the final clause is

f(v,z) : -a (u , t rue) , b(u ' , fa lse) , p(v, t rue) , R(X:Z).
An example is given in figure 3.

CI: isempty(ernptyq, true).
Ca: isempty(append(Q I),false).
C8: remove(emptyq,emptyq).
C4: remove(append(O,I),emptyq):-isempty(Q,true).
C5: remove(append(Q,I),append(O',I)):- isempty(Q,false),rernove(Q,Q').
C6: first(append(Q,l),l):- isempty(append(Q,l),false)gsempty(Q,true).
C7: first(append(QJ),J):- isempty(append(Q,l),false),isernpty(Q,false),first(QoJ).

f i g .3 Translo2ion of the queue spec i f i ca t ion into PROLOG

3.3. Constraint-driven generation of t e r m s

General ly speaking, each clause C derived from the specif icat ion is of the form:
f(I ,O):-A(I), R(I,O), where A(I) expresses the precondi t ions and the p remises of the
original axiom. Terms satisfying A(I) are prec ise ly those needed at the end of sect ion
a.3 to t e s t this original axiom in a non-trivial way. These t e rms are obtained by
submit t ing the goal ?-A(I) to PROLOG.
Consider for ins tance clause C5 in fig.3. In the queue example, the re levant t e rms are
obta ined by submit t ing 7- isempty(Q,false). This yields the genera l answer
Q = append(Q',I).

This example is a s imple one. Let us consider a more in teres t ing example - i n s e r t i o n
i~to a sor ted l is t -, which is complete ly given in appendix.
Consider the clause C6 in this new example.

270

C6: insert(ap(L,X),Y, ap(ap(L,kg,Y)):- sorted(ap(L,X),true),le(X,Y, true).
The cons t ra in ts here a re : sorted(ap(L,X),true) and le(X,Y, true),
where le (~) is descr ibed by:

le(O,X, t rue) .
le(succ(X),O,false),
te(suce(X),succ(Y),B) :-Ie(X,Y,B).

and so r ted is desc r ibed by:
sor ted(e l , t rue) .
sor ted(ap(el ,X), t rue) .
sorted(ap(ap(L,X),Y),B) :- le(X,Y, true),sorted(ap(L,X),B).
sorted(ap(ap(L,X),Y),false) :- le(X,Y, false).

The cons t ra in t on C6 is solved with the goal
?-sorted(ap(L,X),true),le(X,Y,true). If we l imit L to l is ts of length

L=ap(el, I), t he goal becomes
?- sorted(ap(ap(el,I),X),true),le(X,Y, t rue) . We obtain the answers:
I = O , X = O , Y = _ ;
I = 0, X = suet(0) , Y = succ(_);
I = succ(0), X = succ(0), Y = succ(--);
ere ..o

These answers cor respond to the t r iples <I,X,Y> of t e rms of the form:
< suecm(O) , succn(O), succn(__) >, with O -< m ~ n

A s t anda rd PROLOG in t e rp re t e r , using a depth-f i rs t s t ra tegy, wilt go into an infinite
branch. I t will genera te a col lect ion of solutions With increasing complexity, satisfying
the goal. Unfor tunate ly some b ranches might be ignored. If we stop execut ion af te r a
finite n u m b e r of s teps, we do not have all the t e rms t such t ha t complexity(t)-<-k.
To ge t an accep tab le t e s t sets collection, all b ranches mus t be explored. This requires
active cont ro l of t he sea rch s t r a t egy . This control is provided in PROLOG extensions
such as hCJ-PROLOG and METALOG [Nais 83] [DL 84]. tt is then possible to ge t all the
t e rms of length less t han some bound k.
PROLOG may provide t e r m s with variables. These t e rms cor respond to a class of
solutions. Thus PROLOG automat ica l ly provides some uniformity h}qootheses. Variables
correspond to recta-constants (see section 2.3) .

Specif icat ion] Axiom under t e s t - -

[Set of clauses I~-'~ Constraint
. . . . ~ . (goal A(I))

level of the t e s t ----> PROLOG

1
Set of ins tant ia t ions
satisfying cons t ra in t

Test se t of level n <

[-~--aigebra 1
$

tfailure,success~

fig.4 I~gram of test sets generation

271

The method is summarized in figure 4. For each clause we generate te rms satisfying
the constraints of the clause: PROLOG will generate all of them, provided we can
control the exploration of infinite branchem We take this set of te rms as a domain on
which we make regular i ty hypotheses. PROLOG helps us to par t i t ion i t into uniformity
sub-domains, ~rom which we extract tes t data through the use of meta-constants .
Thus, the definition domain has been par t i t ionned into regulari ty and uniformity sub-
domains. The genera ted test sets collection is "acceptable" according to the theory
described in section 1.3, provided the search strategy is complete.

CONCLUSION

The idea of using PROLOG, or some extension of PROLOG, to generate tes t sets seems
promising. In this paper we suggest a method which is based on the theory of testing
presented in section 1. This method is applicable provided the hypotheses of section 1
are satisfied; the specifications can be t ranslated into PROLOG; and it is possible to
control the search strategy in the PROLOG interpreter . Algebraic specifications are
especially well suited to such an application since it is possible to define some'
restr ic t ions on them, such as those presented in section 2, ~o that the two first
requi rements of the method are satisfied.
This paper applies the method to positive conditional algebraic specifications using
search s trategy control provided by METALOG. The method was applied to tes t real-
t ime software such as al ternating bit protocol implementat ions and telephone
switching modules. PROLOG provides a part i t ion into uniformity domains. METALOG
is very convenient for defining general search strategies which correspond to
regulari ty hypotheses: when working with a new specification it is only necessary to
define the complexity of the tes t data for the sort of interest .
However, to be generally applicable, this method m u s t be improved in two directions.
First the cost in t ime and space of PROLOG implementat ions mus t be decreased. The
main limitations experienced using the examples were those of the computat ion t ime
and memory overflows.
Second the class of considered specifications mus t be enlarged as far as possible in
order to avoid rewriting the specifications for generating tes t sets. There is an
inl lerent l imitation to the method since the tested properties must ensure the
existence of an acceptable tes t sets collection. Such is not the case if there is an
existential quantifier in the property. However it would be possible to consider full
positive conditional axioms if equality were handled by PROLOG. We are working on
such a PROLOG with equality, which extends the class of specifications under
considerat ion and allows equations between constructors.

Acknowledge~ments

We are very much indebted to Michel Bidoit who suggested the use of PROLOG and to
Jan Komorowski for his support. M.C. Gaudel thanks the members of IFIP-WG2.2 for
fruitful discussions and comments .
This research is supported by CIT-Alcatet.

272

R E ~ C I g S

[ABC 82] W,R. Adrion,M.A. Branstad and J.C. Cherniavsky, '~ralidation, verification and testing of computer
software", ACDI Cornp. Saw. 14, 2 (June 82).

[Bido Sl] M. Bidait, '~Putting together fair presentations of abstract data types into structured
specifications", Rept. No. 15/81, GRECO, France (1981).

[Bong 82] L Bough, "Mod~lisation de la notion de test de programme; application & la production de jeux de
tests", Th~se de 8~me cycle, Universit~ Paris 6, Paris (Oct. 1982),

[Boug 83] L. Bough, "A proposition for a theory of testing: an abstract approach to the testing process",
Rept. No. PB-160, DAIMI, Aarhus University, Denmark (may 83), to appear in T.heor. Comp, Science.

[Budd 81] T.A. Budd "Mutation analysis: ideas, examples, problems and prospects", in: Computer Program
Testing, B. Chandrasekran and So Radicchi, eds. (North-Holland, 1981) 129-148.

[BA 82] T.A. Budd and D. Ar4~lain, "Two notions of correctness and their relation to testing", Aeta Informatica
18 (1982) 81-¢5.

[BDLS 80] T.A. Budd, R.A. De Mitto, R.£ Lipton and F.G. Sayward, "Theoretical and empirical studies on usir~g
program mutation to test the functional correctness of programs", Prec. 7th Ann. ACM Syrup.
Princ. Prog. Lang., Las Vegas (Jan. 1980) 2219-238.

[BH 85] B. Biebow and J. Hagelstein, "Algebraic specLfieation of synchronization and errors: a telephonic
example", Proe. Coll. Soft. Eng., Berlin (19B5), this volume.

[B2G8 84] M. Bidoit, B. Biebow, M.C. Gaudel, D. Gresse and G. Guiho, "Exception handling: formal specification
and systematic program construction", Prec. Int. Conf. Soft. Eng., Orlando, Florida (1984).

[Clar 77] KL. Clark, "Predicate logic as a computational formalism", Research Rept., Dept of Computing,
ivaperiai College, London (1977).

[Clar 76] L Clarke, "A system to generate test data and symbollicaly execute programs", [NEE Trans. Soft.
Eng. SE~2, 8 (I978) 215-2ZZ.

[DJ 84] N. Dershowitz and N.A. Josephson, "Logic programming by completion", Prec. 2nd Int. Logic
Programming Conf, Uppsala, Sweden (July 1984) 313-3219.

[DL 84] M. Dincbas and LP. Le Pape, "Metaeontrol in logic programs in METALOG", 5th Generation Conf.,
Tokyo, Japan (Nov. 1984),

[Frib 84] L. Fribourg, "Oriented equational clauses as a programming language", J. Logic Pi'ogramming, 2
(Oct. 1984) 185-177.

[Gour 83] £S. Gourlay~ "A mathematical framework for the investigation of testing", IEEE trans. Soft. Eng.
SE-9, 6 (1983).

[GG 75] J.B. Goodenongh and S.L. Gerhart, "Toward a theory of test data selection", [NEE Trans, Soft. Eng.
sE-i, 2 (1975).

[GH 78] J. Guttag and J. Horni~g, "The algebraic specification of abstract data types", Acta [nfarmatica 10, t
(1978).

[GM 84] J. Ooguen and J. Meseguer, "Equality, types, modules and generics for logic programming", Prec. 2rid
Int . /~gie Programming Co~A., Uppsala, Sweden (July 1984) 115-125.

[Haml 75] R,G. Hamlet, "Testing programs with Ev/te sets of data", Rept. No. TR-388, U. of Maryland, College
Park (August 1975).

[Howd 76] W.E. Howden, "Reliability of path analysis strategies", [NEE Trans. Soft. Eng. SE-2, 8 (1976) 208-214.
[Howd 819] W.E. Hc~vden, "Functional program testing", IEEE Trans. Soft. Eng, SE-6, 2 (1980) 16~-169,
[Howd 82] W.E. Howden, "Weak mutation testing and completeness of test sets", IEEE Trans. Soft. Eng. SE-8, 4

(1982) 871-379.
[HS 85] J. Hsiang and M. Srivas, "A Prolog environment for developing and reasoning aboui data types", Prec.

Coll. Soft. Eng., Berlin (1985), this volume.
[Komo 80] H.J. Komorowski, "Qlog - The software for prolng and logic programming", Prec. of the Logic

Programming Workshop, Debrecen, Hungary (1980) 305-320,
[Nais 82] L. Naish, "An introduction to MU-PROLOG", Techifical Rept , Dept. of Computer Science, U. of

Melbourne (1982).
[Paul 83] £ Pa~/, "Approche pour une certification fonctiormelle de syst~mes & partir de specifications

externes ' , Internal rept., CqT, Latin/on, France (1983).
[SW 88] D. Sanella and M. Wirsi~4g, "A kernel language for algebraic specification and implementation", Prec.

Int. Conf. Foundations Computing Theory, Bergholm, Sweden (Aug. 1988).
[WC 80] L.J. White, E.J. Cohen, "A domain strategy for computer program testing", [NEE Traus. Soft. Eng. SE-

6, a (1980) 247-Z57.
[WHH 80] M.R. Woodward, D. Hedley and M.A. Hennel, "Experience with path analysis and testing of

programs", [NEE Trans. Soft. Eng. SE-8, 8 (1980) 278-285.
[WPP 83] M. Wirsing, P. Pepper, H. Partsch, W. Dusch and M. Broy, "On hierarchies of abstract data types",

Aota Information 219, 1 (Oct. 1983).
[ZW 81] S,H. Zeil, L.J. White, "Sufficient test sets for path analysis testing strategy", Prec. 5th Int. Conf. Soft.

Eng., San Diego, Calif. (March 1981) I84-191.

273

APPENDIX

EXAMPLE: SORTED LISTS

The sor t of i n t e r e s t is t he so r t so r ted-hs t .
The lower sor t s a re the i n t ege r and boo lean sorts .

Spec i f i ca t ion of t h e type l i s t of i n t e g e r , w i th t h e o p e r a t i o n sort:

spee i f sor t ed - l i s t =
enr ich boot, int by
sort list;
operations

el : -> l is t /* empty - l i s t constructor */
ap : l is t * in t -> l is t /* append constructor */
s o r t e d : l i s t -> boo]
i n se r t : l is t * in t -> l is t /* def ined for a s o r t e d l ist * /

variables
L : list;
X, Y : int;

~ r e c o n ~ s
/ * The o p e r a t i o n i n s e r t is u sed to i n s e r t an i n t ege r in a s o r t e d l ist and to ge t as a
r e s u l t a s o r t e d list. * /

p re (inse r t , L,X) = (sorted(L) = t rue)
az iorns

AI: s o r t e d (e l) = t r u e
A2: s o r t e d (a p (el,X)) = t r u e
A3: te(X,Y)=true => sorted(ap(ap(L,X),Y))=sorted(ap(L,X))
A4: le(X,Y)=false => sorted(ap(ap(L,X),Y))=false
A5: inser t(el ,X) =ap(et,X)
A6: le(X,Y)=true => insert(ap(L,X),Y)=ap(ap(L,X),Y)
A7: le(X,Y)=false => insert(ap(L,X),Y)=ap(insert(L,Y),X)

Spec i f i ca t ion of t h e i n t e g e r type:

spec i f i n t e g e r =
enr ich boot by
sort Jut;
operaAions

0 : -> int /* cons truc tor */
s u c c : int -> in t / * constructor */
le : in t * in t -> bool

v a r / ~ / e s
X,Y : int;

ax~orns
A8: le(0,X) = t r u e
A9: le(succ(X),0) = false
AI0: le(succ(X),succ(Y)) = Ie(X,Y)

274

Translation o~ the specification of the in teger type into PROLOG:

C8: le(O,X,true).
C9: le(succ(X),O,fa!se).
C iO: le(suce(X),suec(Y),B):- le(X,Y,B).

Translation of the specification of the sorted-list type into PROLOG:

CI: sorted(el,true).
C2: sorted(ap(el,X), true).
C3: sorted(ap(ap(L,X),Y),B):- le(X,Y, true), sorbed(ap(L,X),B).
C4: sorted(ap(ap(L,X),Y),false):- !e(X,Y, false).
C5: insert(el,X, ap(el, X)):- sorted(el,true).
C6: insert(ap(a,x),Y, ap(ap(L,X),Y)):- sorted(ap(a,x),true),le(X,Y, true).
C7: insert(ap(L,X),Y, ap(Z,X)):- sorted(ap(L,X),true),le(X,Y, false),insert(L,Y,Z).

Ins~nt ia t ion sets generated for sorted:

We suppose that integer and boolean sorts are tested.
* For Ai, the instantiation sets generated are empty, for any n because there is no

variable in this axiom: ~ = ~t, Vn
Thus an acceptable test sets collection is: T n = t(sorted(el)=true)l, Vn

* For A2, there is no constraint on X. We make a uniformity hypothesis on integer and
obtain the instantiation sets:

I a = f<meta- int>t , Vn
T = t(sorted(ap(el,X))=true), X e In t, Vn

* For A3, the instantiation sets are made of tuples <L,X,Y>. There is a constraint on
X,Y: le(X,Y;true), solved in PROLOG with the goal ?4e(X, Y, true).
PROLOG answers:

X 1 = O, YI = --;
X s = suee(0)~ Ys =succ(_);

. . .

xn+1 = sue~(°) , Y~+I = suee=(-):
As there is no constraint on the variable L of list sort, we make a uniformity
hypothesis and substitute a recta-constant for the variable of this sort. Thus we

deduce for a level n the instantiation set:
I= = { <meta-listl,O, me+aCmtl>,

<melm-lista, succ(0), succ(meta-intz>,

< meta-lis~, su c ca-' (0), suc am'~ (meta-int~) >]

T n = t(sorted(ap(ap(L,X),Y))=sorted(ap(L,X))), <L,X,Y> e I~

* For A4, the instantiation sets are obtained in a similar way and we get for a level n:

I n = I<meta-listrSUCc(meta-intl) ,0>,
<metaqis t~succ(succ(meta- inta)) , succ(O)>.

< recta-listen, succU(meta-int.), succ"-l(O)> ~
T n = I(sorted(ap(ap(L,X),Y))=false), <L,X,Y> e !,, I

275

I n s t a n t i a t i o n s e t s g e n e r a t e d for insert:

* F o r A5, as t h e only v a r i a b l e in t h e ax iom is X, we ob ta in :
I~ = [< m e t a - m t > ~ , Vn

T n = t (inse r t (e l ,X)=ap(e l ,X)) , X E I n ~, Vn

* Fo r A6, a n i n s t a n t i a t i o n s e t is m a d e of t up l e s : <L,X,Y> w i t h t h e c o n s t r a i n t
te(X,Y, t rue) o n X a n d Y, a n d wi th t h e c o n s t r a i n t so r t ed (ap (L ,X) , t r ue) o n L a n d X.
These c o n s t r a i n t s a r e so lved wi th t h e goal: ?- sorted(ap(L,X),true),le(X,Y, true).
PROLOG answers :

L = el, X = 0, Y = _ ;
L = el, X = succ(0) ; Y = s u e c (_) ;

These a n s w e r s a re in f in i t e a n d L is always equa l to el: we a r e in a n in f in i te b r a n c h . With
a s t a n d a r d PROLOG i n t e r p r e t e r , we o b t a i n t h e followin~ i n s t a n t i a t i o n s e t fo r leve l n:

I a = ~<cl,O, m e t a - i n t l > ,

<el,succ(O), succ(meta-int~)>,
. = o

<el, succ~l(o), succn-t(meta-'mt.)> l
T n = [(inser t (ap(L,X) ,Y) = ap(ap(L,X),Y)), <L,X,Y> < I n

* Fo r A7, t h e i n s t a n t i a t i o n s e t s a re o b t a i n e d in a s imi l a r way wi th t h e goal:
?- sorted(ap(L,X),tr~¢),le()(, Y, false).

We o b t a i n t h e Iollov~Lr~ i n s t a n t i a t i o n s e t for level n:
I l = I <el , s u c c (m e t a - i n t l) . O > ,

<el, succfsuec(meta-int2)).suec(O) >.

< el, suee~(meta'int~),suee~-~(o)>
T~ = ~(insert(ap(L,X),~ = ap(insert(n,¥),X)), <L,X,Y> c ~

