
ASSPEGIQUE : An iutc£ra~ed env ironment for algebraic specifica~:ions

Michel BiDOIT & Chr is t ine CHOPPY

Labora to i re de R e c h e r c h e en In fo rma t ique
Universit6 de Par is-Sud

B~t iment 490
91405 0 r say - Codex, FRANCE

ABSTRACT

In this paper, we describe ASSPEGIQUE, an integrated environment for the development of
large algebraic ~speeifications. We first describe the underlying specification language,
PLUSS-E, based on the specification-buildir4 primitives of ASL and E,R-algebras, a formal
framework for exception handlk~. We then describe the design and organization of the
specification environment. This environment allows the user to introduce specifications in a
• hierarehized library, to edit them through a special purpose editor (with a graphical inter-
face), to compile them and to debug them. A symbolic evaluator and theorem, provir~ tools
completes ASSPEGIQUE into an environment suitable for rapid prototyping.

I - INTRODUCTION

It is genera l ly agreed on the fact t ha t a ~ e b r a i c specifications provide a powerful too! for
writing h ierarchica l , modular and implementa t ion- independen t specifications. Moreover,
a lgebraic spechScations are especially- sui table for rap id prototypLng and are an appropr i a t e
f ramework for verification and val idat ion tool development ,

However, some problems have been identif ied when specifying real is t ic software usin~ alge-
braic da t a types [BBGGG 84]. These problems are the design and m a n a g e m e n t of tsrge
speoifica~/on.% e r ro r ha~d$ i~ and error recovery policy specification, and the lack of com-
p u t e r env@enm~nt and toots support ing the specif icat ion stage.

The size of a specif icat ion clear ly varies in accordance with the complexi ty of the sys tem
being specified. Therefore, specifications of large software systems cannot be managed as a
whole. I% is necessary to split them into smaller, hierarchized elementary units. Besides, a
better modularity promotes the reusability of existing specification parts. Consequently,
%he design and rnanagement of large specifications require tools to structure and modular-
ize the specifications, while the problem of the reusability and integration of existin~
specification parts must also be addressed. Obviously, structuration, modularization and
reusability ~sues must be taken into account from the first stage of design of the
s]pec~flcalio~ ~%g~c~ge. Therefore, specification-building primitives as well as visibility han-

dlin~ prirPitivcs ~should be included into the specif icat ion language,

247

A classical difficulty in the deve lopment of targe sys tems is t ha t the e r ror handling
specif icat ion and the e r ro r recovery policy is done too late, very often af ter the
specif icat ion of the normal behaviour of the sys tem is completed. This resul ts in expensive
modifications of ear ly design decisions. Moreover, the except ion handlin~ p a r t of the sys-
t e m is often the les~ carefully specified. A reason of this sorry s ta te of affair may be tha t
very few methodological and linguistic tools are available to specify and develop software
with except ion handling. The programming languages which are cu r ren t ly in use in indus-
t r ia l contexts do not provide specific fea tures for raising and handling exceptions. For-
tunately, new programming languages, such as Ada [DOD 83, BGG 84], will provide such
tools, t t is therefore necessa ry to comple te the a lgebraic specif icat ion f ramework in o rder
to be able to specify e r ro r cases and e r ror recovery.

Specific tools mus t also be provided tha t suppor t the use of algebraic specifications. F i r s t of
all, i t is now widely agreed on the fact tha t specif icat ion languages and methods without
suppor t i r~ tools are not prac t icable . Secondly, i t is especial ly impor tan t tha t specific tools
with user-f r iendly in ter faces are designed in order to bridge the gap between underlying
ma thema t i ca l formal isms and the user. Such tools should at leas t comprise intel l igent
(syntax d i rec ted) ed i tors and da ta base facilities. It is also s t ressed t ha t graphic in ter faces
are pa r t i cu la r ly well-suited for these purposes.

In the remaining of this paper we first give a descr ip t ion of PLUSS-E, a specification
language with except ion handling and e r ro r recovery features , we then descr ibe the design
and organizat ion of the ASSPEGIQUE specification envirofiment.

II - T H E S P E C I F I C A T I O N LANGUAGE PLUSS-E

The aim of the family of specif icat ion languages P L U g is to provide a tool to express s t ruc-
tu red algebraic da ta type specifications. The specification languages of the PLUSS family
are based upon a set of specification-building operat ions derived f rom the primit ive opera-
tors sugges ted by Martin Wirsing in AS[, [¥~R 82, S&W 83, WtR 83]. The original design of
PLUSS was made by Marie-gZaude Gaudel [GAU 83].

Roughly speaking, the semant ics of the PLUSS specif icat ion languages is pa r ame te r i zed by
the class of a lgebras t aken into account. More precisely, the semant ics of each specification
language of the PLUSS family follows some basic, fixed rules in what concerns the
specification-building pr imit ives but depends on the class of a lgebras tha t are allowed for
this specific language. For instance, PLUSS-P will denote the specification language where
partiaZ aZgebras are chosen as models [BW 82], while PLUSS-0 denotes the specification
language where the s tandard , usual a lgebras are chosen as models.

Here, we descr ibe PLtPSS-E, a specification language where except ion handling and e r ror
recovery can be specified with a p rec i se and formal semantics . PLUSS-E is based upon two
formal approaches , the specification-building pr imit ives of ASL and the concept of E,R-
a lgebras which allows all forms of e r ror handling (er ror introduct ion, e r ror propagat ion and
e r ror recovery) [BID 84].

If. 1 - E.R-algebras

Since 1976 [ADJ 76], the classical approach to a lgebra ic da ta types has been shown to be

248

incompatible with the use of operations that return error' messages for some values of their
arguments. In this section we describe a new formalism where all forms of error handling

can be specified. Our formalism is very closed to the error-aggebras introduced by Goguen

[GOG 77] or to the work described in [GDLE 83], that is, the carrier sets of the algebras are

split into okay values and error values. However, we have shown how an implicit error propa-
gation rule may be encoded into the models without losing the possibility of error recovery.

Thus all the axioms necessary to specify error propagation may be avoided, and the

specifications remain well-structured and easily understandable,

The algebraic specification of error cases~ er ror propagation and er ror recovery is a difficult
problem [ADJ 76, GOG 77, GOG 78, PLA 82, B&W 82, EHR 83]. Our claim is that neither excep-
tion cases nor error recovery eases should be specified by means of equations, but rather

by means of d2c/ara~gons, The axioms of a specification will be divided into four parts:

- Declarations of except ion cases and of recovery cases. Declarations are just t e rms or posi-

tive conditional t e rms (i.e. t e rms conditioned by equations).

- Ok-axioms.
- Error-axioms.
Ok-axioms or error-axloms are just equations or positive conditional equations.

Thus some t e rms will be declared to be okay, others wilt be declared to be erroneous. Ok-
axioms and error-axioms will be used to identify ok-values and error-values respectively, no
more. This will lead to more structured specifications, since the specification of the error

policy (error introduction and error recovery) vdll be made apart from the axioms. More-

over, our framework will implement the following natural propagation rule:
e~ors Fropagaa~e ~ s s ~he{r r e c o v e r i e s ave spec i f i ed .

In order to allow a careful recovery policy and the use of non-str ic t functions, we shall use
three dis t inct kinds of variables: ordinary variables may range over the whole carr ier set,
ok-variables may only range over the ok-part of the corresponding car r ie r set, error-
variables may only range over the er ror par t of the corresponding car r ie r set. As a syntacti-
cal convenience, ok-variables will always be suffixed by "+'% while error-variables will always

be suffixed by (e.g. x+, y-, ...).

The necessary underlying theoret ica l mater ia l is descr ibed in [BID 84], as well as the study

of sufficient conditions for initial models. Here we focus on the feasability of such
specifications and their impact . As a first example of a PLUSS-E specification we describe a

s tack of integers which will allow one underflow, no more:

SPEC : STACK
WITH : INTEGER
SORTS : Stack

OPERATIONS :

empty :
underflow :
crash :
push :
pop :
top :

-> Stack
-> Stack
-> Stack

Integer Stack -> Stack
Stack -> Stack
Stack ~> Integer

249

VARIABLES :

x : I n t e a e r
p : S t a c k

EXCEPTION CASES :

e 1 : u n d e r f l o w
e2 : c r a s h
e3 : pop e m p t y
e4 : t op e m p t y

RECOVERY CASES :

r l : p u s h x+ unde r f l ow

OK-AXIOMS :

o k l : pop (p u s h x p) = p
o k 2 : top (p u s h x p) = x
ok3 : p u s h x unde r f low = p u s h x e m p t y

ERROR-AXIOMS :

e r r l : pop e m p t y = unde r f low
e r r 2 : pop unde r f low = c r a s h
e r r S : p u s h x - p = c r a s h

END STACK.

In t h i s s t a c k , we sha l l have a n in f in i te n u m b e r of e r r o r e l e m e n t s , w i th two speci f ic va lues :

underflow, w h i c h will b e o b t a i n e d (as t h e r e su l t) w h e n popp ing t he e m p t y s t ack ; and crash,
w h i c h will b e o b t a i n e d w h e n popp ing und2rflow. S t a c k t e r m s o b t a i n e d f r o m t h e crash s t a c k
a r e def in i t ive ly e r r o n e o u s . Underflow is a n e r r o n e o u s s t ack , b u t one c a n r e c o v e r f r o m th i s

s t a t e by p u s h i n g a n okay i n t e g e r on to it. In all c a s e s p u s h i n g a n e r r o n e o u s i n t e g e r o n t o a
s t a c k l eads to t h e crash s t ack .

Note also t h a t n o t h i n g m o r e is r e q u i r e d t h a n "top empty is a n e x c e p t i o n case" ; however , if

one wan t s to i d e n t i f y top empty wi th a n e r r o n e o u s i n t ege r , s ay bottom, a n e r r o r - e q u a t i o n
"top empty = bottom" m a y b e added . F u r t h e r m o r e , if one w a n t s to i d e n t i f y all e r r o n e o u s

i n t e g e r s w i t h bottom, t h i s c a n b e a c h i e v e d b y add ing t h e following e r r o r - e q u a t i o n : "x = bot-
tom" .

In t h e s a m e way, t h e e q u a t i o n ok3 is n o t a b s o l u t e l y n e c e s s a r y ; however , in o u r ca se we do
n o t w a n t to j u s t spec i fy t h a t p u s h i n g a n okay i n t e g e r o n t o t h e underflow s t a c k is a r e c o v e r y
case , b u t a l so t h a t t h e s t a c k o b t a i n e d is equa l t o p u s h i n g t h e s a m e e l e m e n t o n t o t h e empty
s t ack . One e x p l i c a t i o n is also n e e d e d for t he e r r o r - e q u a t i o n errS: n o t e t h a t we h a v e n o t
(expl ic i te ly) spec i f i ed t h a t push x- p is a n e r r o r value; t h i s is s imp ly a c o n s e q u e n c e of t h e
n a t u r a l e r r o r p r o p a g a t i o n rule , s ince x- d e n o t e s a n e r r o r value.

I I . 2 - B a s i c s p e c i f i c a t i o n s

In PLUSS-E, a ba s i c spec i f i ca t ion is a signature t o g e t h e r w i th axioms. Axioms a re p r e c e d e d
by t h e d e c l a r a t i o n of t h e variables t h e y use.

A S~d~Zature b e g i n s w i th t h e key -word SORTS followed b y a l i s t of so r t s . By d e f a u l t a n e m p t y
l i s t is e q u i v a l e n t t o t h e d e c l a r a t i o n of a u n i q u e sor t , w h i c h is equa l to t h e s p e c i f i c a t i o n
n a m e . If no new s o r t is r equ i r ed , t he key-word SORT m a y be o m i t t e d or be r e p l a c e d by t h e

250

key-word NO-NEW-SORT.

The second pa r t of the s/gr~ature is a !ist of operation names together with their arity. This
list begins with the key-word OPERATIONS. For instance:

_[_] :Array Index-> Elem
As it appears ~n the above example, mLxfix operators with a syntax ~ la OBJ [GOG 83] are

allowed, and the underscore is used to indicate where the operation arguments should be

placed. Thus the above operation may be used to access an array element with the usual

notation t[i]. Underscores may be omitted if the operation will be used in the standard

prefix order. Overloadi:~4~ of operation names and coercions are also allowed, for instance:

_ : Integer -> Real

The declarat ion of the variables used m the axiom par t is preceded by the key-word VARI-
ABLES. All the variables are ~nphcitely universally quantified. As well as for operat ion
names, variable names can be overloaded; this is especially useful for dealing with struc-
tu red specifications. According to the syntact ical convenience described in Section II. t, the
declarat ion of a variable x implicitely contains the declarat ion of x+ and x-.

Decl~r~ions and axioms are named, and positive conditional equations (or declarations)
are allowed. They are preceded by the key-words EXCEPTION CASES, RECOVERY CASES,
0K-AXIOMS and ERROR-AXIOMS. An example of one of the conditional axioms tha t define l~ss

or squat on the integers is given below:
LE5 : 0 L E x = t rue => D L E s x = t rue

Since the = sign is used to connect both terms of an equation, it can not be used as a name

for the equality operation. We suggest to use _is _ to this end, as well as _/s~ot _ for the

inequality operation.

As a last r emark on basic specifications, one should note that an implicit reachable is
embedded in such a specification. That means that only finitely generated models are taken

into consideration.

I I .3 - Specification cons t ruc t ion Lools

The s implest feature to build specifications from simpler ones is the sum, which is denoted
by +. By defin/tion, the s ignature of SPEC + SPEC' is the union of the signatures of SPEC and
SPEC'. There is no implicit renaming as in CLEAR [B&C 79]. So it is possible to share
subspecifications without duplicating them: for instance, if there is a sort Bool in SPEC and
in SPEC', there is only a ~ort Bool in SPEC + SPEC'. The same rule applies for operat ion
names. The meaning of such a specification is a class of algebras w.r.t, this signature, The
algebras of this class m u s t be models of SPEC (resp. SPEC') when they are res t r ic ted to the
signature of SPEC (resp. SPEC'). Note that the concept of restriction must be suitably

refined w.r.t. E,R-algebras.

A by-product of the sum is the en r i chmen t , denoted by WITH, which allows to add new sorts
and /o r new operations and /o r new axioms to a specification. An example of this cons t ruc t
was g iven . in the ' one-error- tolerant stack. Since specification names may also be over-
loaded, one can specify the file where the specification to be enriched has to be found. This

can be done using the FROM option, e.g.:

25't

WITH : BOOL FROM : SLd-BOOL

or

WITH : BOOL FROM : My-BOOL

Since there is no implicit renaming, explicit r e n a m i n g is needed in the language. The syn-
tax is straightforward:

RENAMING sor t l INTO sort2; op 1 INTO op2; ... END
Sorts or operation names may be forgotten by writing "name INTO %

A specification may be parameter ized by another specification. The signature and the
axioms of the formal paramete r express the properties which are required for the argu-
ment . An a rgument is a couple made of a specification and a signature morphism. The signa-
ture morphism is called the f l t~ng morphism. It sends sorts and operation names of the
formal paramete r i n to the relevant sorts and operations of the argument. The meaning of
the application of an a rgument <ARG, m> to a parameter ized specification SPEC(X) depends
on the correctness of ARG with respect to X. The models of ARG, res t r ic ted to the signature
of X w.r.t, m, mus t be models of X. The signature of the resulting specification is the union
of the SPEC signature, where sorts and operation names coming from X are renamed by m,
and of the ARG signature (i.e. the X signature disappears). The models are those of the
specification w.r.t, the result ing signature.

An example of a parameter ized specification, ARRAY (ELEM, INDEX), is given below. The
ELEM and INDEX specifications are formal parameters . The ELEM specification does not
requLr e anything:

PAR : ELEM
SORTS : Elem

END ELEM.

The INDEX specification is slightly richer, since the a rgument mus t provide a maximum and
a minimum index, and a total ordering on the indexes. I t is not given here for lack of space.

PROC : ARRAY (ELEM, INDEX)
SORTS : Array

OPERATIONS :

init:
lwb:
upb:
_[_] : : _:
_[_]:

VARIABLES :

t : Array
i, j : Index
v, v' : Elem

EXCEPTION CASES :

illegal-access :
illegal-modif :
illegal-init :

Index Index -> Array
Array -> Index
Array -> Index
Array Index Elem -> Array
Array Index -> Elem

(i < lwb t) or (i > upb t) = t rue
(i < lwb t) or (i > upb t) = t rue
i > j = t rue

=> t[i]
=> t[i]:=v
=> init i j

252

OK-AXIOMS :

b o u n d l : lwb (ini t i j) = i
bound2 : upb (init i j) = j
bound3 : lwb (t[i]:=v) = lwb t
b o u n d 4 : upb (t[i]:=v) = upb t
a c c e s s l : i is j = t r u e => (t[i]:=v) [j] = v
access2 : i i s n o t j = t rue => (t[i]:=v) [j] = t[j]
mod i f l : i is j = t rue => (t[i]:=v) [j]:=v' = t[i] :=v'
modif2 : i i s n o t j = t rue => (t[i]:=v) [j]:=v' = (t[j] :=v') [i]:=v

END ARRAY.

Note t h a t t he r e is an impl ic i t e n r i c h m e n t of the formal p a r a m e t e r s . Thus no WITH is
r equ i red in the above specif icat ion. F u r t h e r m o r e , t he r e is n o i m p l i c i t r e a c h a b l e e m b e d d e d
in the speci f ica t ion of t h e formal p a r a m e t e r s , s ince (finitely gene ra t ed) mode ls of ac tua l
p a r a m e t e r s m a y n o t be f ini te ly g e n e r a t e d mode ls of the formal p a r a m e t e r s .

An example of a specif icat ion bu i l t by i n s t a n t i a t i o n of ARRAY is given below:

SPEC : STRING
ARRAY (ELEM => CHAR, INDEX => INT25)

RENAMING Array INTO String
in i t INTO e m p t y s t r i n g

END STRING.

This overview of PLUSS-E is of course very incomple te . For ins tance , o ther f ea tu re s of this
speci f ica t ion language deal with visibi l i ty ru les and allow the u se r to hide some pr iva te
speci f ica t ions a n d / o r sor t s a n d / o r operat ions .

]II- THE ASSPEGIQUE ~ONk~/NT

In the previous sec t ion, we have desc r ibed how excep t ion hand l ing and s t r u c t u r a t i o n
fea tu res can be e m b e d d e d in to an a lgebra ic specif icat ion language. Our c la im is t h a t a
speci f ica t ion language should n o t only be s u p p o r t ed by some specif icat ion me thod , b u t also
by specific tools i n t e g r a t e d in to a specif icat ion env i ronmen t . P a r t s of such e n v i r o n m e n t s
have a l ready b e e n des igned or descr ibed , such as OBJ, AFFIRM, the CIP P ro j ec t and the
LARCH Project . The m a i n cha rac t e r i s t i c s of these e n v i r o n m e n t s can be roughly out l ined as

follows:
- OBJ [GOG 81, GOG 83] has been developed in order to experiment theoretical hypothesis

and specification combining tools.
- AFFIRM [AZF 81] is o r i en t ed towards proof purposes . No gener ic tool is provided to com-
bine specif icat ions. Ful l-s ized examples were developed with this sys tem.
- The CIP P ro j ec t [CIP 8 i] a t t e m p t s to cons ide r in a un i fo rm way speci f ica t ions and pro-

grams.
- The LARCH Pro jec t [G&H 83] is developing tools and t echn iques i n t e n d e d to aid in the pro-
duc t ive use of formal specif icat ions of sys t ems con ta in ing c o m p u t e r p rograms .

Our goal when designing the ASSPEGIQUE specification environment was to try to integrate

all these characteristics. The main aspect of our specification environment is the high

degree to which it allows specifications to be modularixed. The user of ASSPEGIQUE deals

253

with elementary specifications which correspond, so to speak, to ~ypes of in~eres& A major
role of the specifidation lar~guage is to assemble these e lementary specifications into more
complex ones.

Modularity imposes constraints that led us to introduce sophisticated mechanisms in the
specification environment . For instance, it is useful to be able to specify a type of in teres t
without having previously specified all the predefined types required by this type of
interest . We did in fact find ourselves obliged to abandon a wholly top-down approach in the
development of e lementary specifications : such an approach leaves to last those checks
that the system must carry out if it is of any real value to the user. Leaving those checks to
the end however means tha t errors may be discovered far too late. We were also obliged to
abandon a wholly bottom-up approach, because such an approach does not correspond to a
na tura l way of specifying complex data s t ructures : the most primitive specifications are
generally given last, and not first.

HI. 1 - Hierarchical re la t ions within the specification library

The high degree of raodularization of the library and the impossibility to follow an approach
which is ei ther strictly bot tom-up or strictly top-dog-n, mean that we have to provide the
l ibrary with ordering relations : on the one hand, such relations allow to reconsti tute, when-
ever necessary, all the required types (i.e. those assumed to be predefined) for a given type
of interest; on the other hand, they allow to manage the consequences of a modification
made on any of the e lementary specifications in the library.

Two ordering relations are defined on the specification hbrary ; before defining them for-
really, we shall explain their use-with a simple example.

~ of-integers

directly requires
....... ~ instance of

Graph of ordering relat ions associated with Stack-of-integers

Operations which may appear amongst the axioms of Stack-of-integers are operations on
Stack(X) (instantiated), but also operations on Bool and Integer; consequently checks to be
carr ied out on the axioms of Stack-of-integers (e.g. that all t e rms are well-formed) cannot
be carried out before specifications Integer and Bool have been introduced into the l ibrary
(since nothing prevents us from defining Integer or Stack(X) before defining Bool) : Stack-
of-integers requires tInteger, Bool~.
Moreover any modification to X or Stack(X) mus t lead to reconsiderat ion of Stack-of-
integers : after a modification Integer may no longer be a suitable parameter .

More precisely, the ordering relations provided within the l ibrary are defined as follows :
1. The ordering relat ion requires is defined as being the transi t ive and reflexive closure of
the relation directly requires, defined as follows :

254

a specification $2 iirec~gy "reqo~ires a specification $1 if and only if $2 is built as an
enr ichment of S1 ($1 is on the list of specifications enriched by $2) or if S2 is an
instance of a parameter ized specification which d~'ectly requires S1 (e.g. in the exam-
ple above, Stack-of-integers is an instance of Stack(X), Which directty requires Bool; it
is self-evident that the ins tant ia ted paramete r is excluded from the definition, above :
Stack(X) directly requires X, bu t Stack-of-integers does not).

2. The ordering relat ion depends on is defined as being the transitive and reflexive closure
Of directly1 requires or is ~n insta'~ce of.

N.B. : As ment ioned above, the relat ion requires WIll in part icular allow computat ion of the
set oI all the operations tha t may appear in an axiom of the specification considered, wNle
the relat ion depends on ~/I1 allow to propagate modification consequences in the library.

I l I . 2 - Overall organizat ion of ASSPEGIQUE

The tools available in ~.he ASSPEGIQUE envi ronment include : a special purpose editor,
modificat ion tools, a c~npi le r , a debugger, a symbolic evaluator and theo rem proving
tools. They are available to the user through a u s e r in te r face and access the specification
l ibrary through the h ie ra rch ica l l ibrary m a n a g e m e n t tool (see figure on next page).

Part icular a t ten t ion has been paid to the in te rac t ion with the user : all the tools are inter-
faced in a uniform way and make full use of full-screen multiwindow display and graphic
facilities to provide a user-friendly in terac t ion ; among others, this includes the use of on-
screen and pop-up menus, and on-line help and documentat ion facilities, detailed according
to the degree of expertise of the user.

The role of the h ie ra rch ica l l ibrary m a n a g e m e n t tool is to mainta in the l ibrary coherence
w.r.t, the ordering relations between the specifications ; in parLicular, the managemen t tool
updates the l ibrary information file.

The specification editor (cf. III.3) is syntax-directed which does not mean that the user has
to deal with the in terna l represen ta t ion of the specification : the concrete views available to
the user are a text representation of the specification and a graphic representation of its
signature. Modifications and creat ions are performed by the user at the level of these con-
crete views, the corresponding in ternal representa t ion being accordingly updated.

The specification compiler plays two roles :
I. It computes the 9ramTnar associated wJlh the specification; this grammar allows to
analyse the axioms defined in the specification, to verify tha t they are syntactically correct
and to resolve overloading conflicts. To achieve these purposes, the specification compiler
uses the g rammar generator and the parser described in [VOI 84 t.
The g rammar associated with a specification S is defined as the union of g rammars of all
specifications required by S and of operations defined within S. Consequently~ the compila-
t ion of a specification cannot take place before all specifications on which it depends have
been introduced. The compilation of a specification may moreover require that
specifications which are required bu t have not yet been compiled (or have been changed
since their last compilation) are compiled first.
2. The compiler produces an internal form of the specification which will be directly usable
by software accessing the l ibrary : symbolic evaluator, theorem prover, program construc-
tion assistance tool [BGG 83].

255

! Standard Termlnal i

USER Interface and
I I

i Debugger\.~I~,l ~ l e r

~ Symbolic
Evaluator

Graphic Display (PERQ)

TopLevel
I ~

Modification
Tools

~ Theorem
Proving
Tools ierarch_ica

Library
~anagement

I Cigale Parser

i | Interface with
program builder

256

The in ternal form associated with a specification is made up of LISP property lists : this
type of in ternal form is especially flexible, and has shown itself very eonvement for handling
problems raised when interfacing ASSPEGIQUE with external tools.

The specification debugger is automatically loaded by the compiler when errors are
detected ; it allows interact ive debugging of the specification. In particular, and this is a
contras t with the editor, the debugger is not loaded unless all required specifications do in
fact exist (and have been compiled). The debugger consequentiy allows to debug axioms
interactively, which is impossible at the general editing level.

The symbolic evaluator computes the canonical form of any t e rm w.r.t, the axioms. The
symbolic evaluator takes into account conditionN axioms and parameter iza t ion [KAP 83].
The t h e o r e m proving tools use the techniques described in [BID 82],

Finally, the specification envi ronment is provided with tools whose aim is to make opera-
tions easier and to maximize the possibilities for re-using specifications. Consequently suit-
able tools allow to copy a specification, to enrich it by adding new operations or axioms, or
to rename an operation or an axiom, etc.

llI.3 - The ASSPEGIQUE syntax-directed ful l -screen editor

As outlined before, the originality of the editor is that, while offering all the flexibility in use
of a full-screen editor, it establishes links between the external concrete views (text, graph-
ics) and the in ternal representat ion, making it a syntax editor [EDS 88]. Any movement
within the text or the graphic representation of the description is also a movement within

the corresponding tree, and any modification is taken into account at both levels by means

of a validation mechanism. The part of the editor devoted to the specification text was

developed as an extension of WINNIE lAMA 83], a full-screen multi-window editor. The graph-

ical part of the editor was derived from a graphical interactive editor for Petri-nets, PETRI-

POTE [BEA 83].

The editor displays a template which depends on the construct ion primitive (enrichment,
formal parameter , parameter ized type, etc...), and on the style of specification (basic, with
error handling, etc...). For instance, the figure on next page shows how the screen looks
like at some stage of the edit ion of a specification e~rizhin9 other ones, writ ten in a bas/c

style.

The template displayed may be broken down into :

i. A heading par t which includes the name of the type (SPEC clause), the names of the
required types (WITH clauses) and the names of the flies containing their descriptions
(FROM clauses), ms well as the names of sorts involved in the type description (SORTS
clause); the user may create as many WITH FROM clauses as there are required types.

2. An OPERATIONS part , i.n which the name and syntax of each operator is specified (note
that the parser and incrementa l g rammar generator [VOI 84] allow the user to indicate
where the operation a rgmnen t s should be placed).

3. A VARIABLES par t : name and type of variables.

257

i . I I • |

+ .

ISPEC : STACK
l NITH : BOOL FROM : Std-BOOL

NITH : INT FROM : Ny- INT

I

OPERATIONS : Use INS- * t o e d i t o p e r a t i o n s t h r o u g h t h e PERQ i n t e r { a c e
empty : -> Stack
push _ onto : Int Stack -> Stack
pop _ : S t a c k -> S tack
top _ : Stack -> Int
i s empty ? : Stack -> Bool
heiBht _ : Stack -> Int

VARIABLES :
x : Int

* s : Stack
ZlAXIOMS :
I* top-1 : top push x onto s = x OlT OP~

(ASSEDIQUE<mod>) Vahe : t HELP !!!
OUT !

Add sort
add sort o~ int

Add operation
Delete sort/op
Rename sort/op

is empty ?
"'"'"'"'"'"----

h e i B h t _

Back to Spec,

258

4. The AXIOMS pa r t (which would be divided into four sub-parts , if the specif icat ion were
wri t ten in the e r ro r handling styte.)

Any declaration (name of type, name and syntax of operation, etc...) is caned an entity. A
s ta r indica tes t ha t the following ent i ty has not been val ida ted yet. Validation consists in
checking the syntax of an ent i ty declarat ion, and in complet ing the corresponding sub- t ree
of the in terna l represen ta t ion .

In what concerns the s ignature (sorts and operations), the user may e i ther type in d i rec t ly
the tex t in the t ex t view or use the PERQ graphica l interface. In this ease, (s)he jus t needs
to se lec t the appropr ia t e command in the pop-up menu and draw, say, the operat ion, by
pointing at the domains and codomain sorts (the operation arrows are then drawn automati-

cally by the system).

IV- CONCLUSION

In this paper , we have shown how to sys temat ica l ly cope with s t ruc tu ra t ion and except ion
handling at the specif icat ion level by providing an appropr ia t e specif icat ion language; we
also desc r ibed a specif icat ion envi ronment tha t suppor t s such a language and therefore its
p rac t i ca l use. The tools in t eg ra ted in ASSPEGIQUE range f rom a high-level syn tax-d i rec ted
edi tor to a symbolic evaluator and t h e o r e m proving tools; therefore , PLUSS-E and ASSPE-
GtQUE are especial ly well-suited for rap id pro to typing purposes [CH0 85]. Indus t r ia l sized
exper imenta t ions on ASSPEGIQUE are cur ren t ly under development , and will provide a f irm
basis to fu r the r versions.

A kerne l sys t em of ASSPEGIQUE consist ing in the top-level and user- in ter face , the
specif icat ion edi tor t oge the r with its graphic interface, a specif icat ion compiler , a symbolic
evaluator , the special purpose g r a m m a r gene ra to r and the parser , t he o re m proving tools
has been implemen ted on VAX-UNIX and PERQ-POS. This sys tem has been demons t r a t ed a t
the 7th International Conference on Software Engineering, Orlando, USA and at the 2nd
AFCET Conference on Software Er~ineering, Nice, France.

V - A C K N O ~ E M E N T S

This work is par t ia l ly suppor ted by A.D.I. Contract No 639 and the C.N.R.S. (Greeo de Pro-
grammation).

Special thanks are due to Mar~e-C~az,~de Gaudef for many helpful suggestions and discussions
in designing the PLUSS-E language. We also thank Frederic ~bis~n, Stephane Kaplan, M~ri-
anne 0%oquer, Michel Heaudoui•-Lafon who respect ive ly made the parser , the symbolic
evaluator, the theorem proving tools and the graphic interface.

Vl - REFERENCES

[ADJ 78] Goguen J., Thatcher J., Wagner E,, "An Initia/A[gebra approach to the specification, correct-
ness, and implementation of abstract data types" in Current Trends in Programming
Methodology, VoL4, Yeh Ed, Prentice Hall, 1978 (also IBM Report RC 6487, October 1976),

259

[AFF 81] Gerhart S.L., "AFFIRM Reference Manual", UCS-Report (Marina de1 Rey), 1981.

lAMA 83] A_mar P., "Winnie : un ~diteur de textes multifen~tres extensible", Actes des Journ~es BIGRE
(Le Cap d'Agde), 1983.

[BBGGG 84] Bidoit M,, Biebow B., Gaudel M.-C., Gresse C., Guiho G., "Exception handling : formal
specification and systematic program specification", Proc. 7th I.C,S,E., Orlando, USA, 1984.

[BEA 88] Beaudouin-Lafon M., "Petripote: a graphic system for Petri-Nets design and simulation"
Proc. of 4th European Workshop on Applications and Theory of Petri Nets, Toulouse, France,
1983.

[BID 82] Bidoit M., "Proofs by induction in "fairly" specified equational theories" Proc. 6th German
Workshop on Artificial Intelligence, Bad Honnef, Germany, Springer-Verlag tFB 58, 1982.

[BID 84] Bidoit M., "Algebraic specification of exception handling and error recovery by means of
declarations and equations", Proc. l l th ICALP, Antwerp, 1984.

[BCK 84] Bidoit M., Choppy C., Kaplan S., A~SPEGIQUE : un env,.ronrtement de specification
alg~brique", Proc. 2nd AFCET Software Engineering Conference, Nice, 1984, pp357-371

[BGG 83] Bldoit ~!;, Gresse C., Guiho G., "CATY : Un syst~me d'aide au d~veloppement de pro-
grammes , Acres des Journ~es BIGRE 83 (Le Cap d'Agde), 1983.

[BGG 84] Bidoit M., Gaudet M,-C., Gumbo G. "Towards a systematic and safe programming of exception
handling in ADA" Proc. of Ads-Europe/Aria TEC Conf., Brussels, June 1984.

[B&W 82] Broy M., Wirsing M., "Partial Abstract Data Types" Acta Informatica, Vo1.t8-1, Nov 1982.

[B&G 79] Burstalt R,, Gnguen J., "The semantics of CLF~kR, a specification language", in Abstract
Software Specifications, D. Bjorner Ed., LNCS 86, Springer-Verlag, 1979.

[CIP 8t] CtP language group "Report on a wide spectrum language for program specification and
development", Rapport TUM-I8104 (Municfi), 1981.

[CHO 85] Choppy C., "Tools and techniques for building rapid prototypes", AFCET Workshop on "Pro-
totypage, Maquettage et Genie Logiciel", Lyon, January 1985.

[DOD 83] "The programming Ianguage ADA - Reference Manual" Umted States Department of Defense,
January 1983.

[EDS 83] "Les 6diteurs dirig~s par la syntaxe', Journdes d'Aussois - INRIA Ed. (Rocquencourt --
France), 1983,

[GAU 83] Gaudel M,-C., "Proposition pour un Langage d'Utilisation de SpEcifications StructurGes :
PLUSS", C.G.E. Research Report, 1988.

[GDLE 83] Gogolla M,, Drosten I(, Lipeck U,, Ehrich H,, "Algebraic and operational semantics of
specifications allowing exceptions and errors" Proc. 6th GI-Conference on Theoretical Com-
puter Science, LNCS 145, 1983, Springer-Verlag.

[GOG 77] Goguen LA,, "Abstract errors for abstract data types" in Formal Description of Program-
ruing Concepts, E.L NEUHOLD Ed., North Holland, New York 1977.

[GOG 78] Goguen J.A,, "Exception and E~or Sorts, Coercion and Overloading Operators" S.R.I.
Research Report, 1978.

[GOG 81] Golguen LA,, Parsaye-Ghomi K., "Algebraic denotationat semantics using parameterized
modules", Tech. Report CSL-119, SRI International, UCLA, 1981.

[GOG 83] Goguen J,A,, "Parameterized Programraing", Proc. Workshop oft Reusabibility in Program-
ruing, Stratford CT, USA, 1983,

[G&H 83] Guttag J.V., Horning J,J., "An introduction to the LARCH shared language", Proc. IFIP 83,
REA. Mason ed., North Holland Publishing Company, 1983.

[KAP 83] Kaplan S., "Un langage de spGcification de types abstraits atg~brtques", Th~se de 3~me

260

cycle, LRI (Orsay- France), 1983.

[PLA 88] Haisted D,, "An initial algebra semantics for error presentations" Unpublished Draft, t982.

[S&W 8B] SaneUa D., Wirsing M., "A Kernel Language for Algebraic Specification and Implementation",
to appear ~n Int, Conf. on Foundations of Computing Theory, Bergholm, Sweden, 1983,

[VOI 84] Vnisin F., "CIGALE : un outil de construction incr6mental de grammatre et d'a~alyse
d'expression", Th~se de 3~me cycle, Orsay (France), 1984,

[WlR 88] Wtrsing g., "Structured algebraic specifications", Proc. AFCET Syrup. on Mathematics for
Computer Science, Paris. France, 1982.

[WlR 83] Wirsing M., *'Structured algebraic specifications : A kernel language", PhD. Thesis, Munchen,
Gerfnany, 1983.

