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ABSTRACT 

In this paper, we describe ASSPEGIQUE, an integrated environment for the development of 
large algebraic ~speeifications. We first describe the underlying specification language, 
PLUSS-E, based on the specification-buildir4 primitives of ASL and E,R-algebras, a formal 
framework for exception handlk~. We then describe the design and organization of the 
specification environment. This environment allows the user to introduce specifications in a 
• hierarehized library, to edit them through a special purpose editor (with a graphical inter- 
face), to compile them and to debug them. A symbolic evaluator and theorem, provir~ tools 
completes ASSPEGIQUE into an environment suitable for rapid prototyping. 

I - INTRODUCTION 

It  is genera l ly  agreed  on the fact  t ha t  a ~ e b r a i c  specifications provide a powerful too! for 
writing h ierarchica l ,  modular  and implementa t ion- independen t  specifications.  Moreover, 
a lgebraic  spechScations are  especially- sui table  for rap id  prototypLng and are  an appropr i a t e  
f ramework for verification and val idat ion tool development ,  

However, some problems  have been  identif ied when specifying real is t ic  software usin~ alge- 
braic  da t a  types  [BBGGG 84]. These problems are  the design and m a n a g e m e n t  of tsrge 
speoifica~/on.% e r ro r  ha~d$ i~  and error recovery  policy specification, and the lack of com- 
p u t e r  env@enm~nt  and toots support ing the specif icat ion stage. 

The size of a specif icat ion clear ly  varies in accordance  with the  complexi ty  of the sys tem 
being specified. Therefore, specifications of large software systems cannot be managed as a 
whole. I% is necessary to split them into smaller, hierarchized elementary units. Besides, a 
better modularity promotes the reusability of existing specification parts. Consequently, 
%he design and rnanagement of large specifications require tools to structure and modular- 
ize the specifications, while the problem of the reusability and integration of existin~ 
specification parts must also be addressed. Obviously, structuration, modularization and 
reusability ~sues must be taken into account from the first stage of design of the 
s]pec~flcalio~ ~%g~c~ge. Therefore, specification-building primitives as well as visibility han- 

dlin~ prirPitivcs ~should be  included into the  specif icat ion language, 
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A classical  difficulty in the  deve lopment  of targe sys tems  is t ha t  the  e r ror  handling 
specif icat ion and the e r ro r  recovery  policy is done too late,  very  often af ter  the  
specif icat ion of the  normal  behaviour of the  sys tem is completed.  This resul ts  in expensive 
modifications of ear ly  design decisions. Moreover, the  except ion handlin~ p a r t  of the  sys- 
t e m  is often the  les~ carefully specified. A reason of this sorry  s ta te  of affair may  be tha t  
very few methodological  and linguistic tools are available to specify and develop software 
with except ion handling. The programming languages which are  cu r ren t ly  in use in indus- 
t r ia l  contexts  do not  provide specific fea tures  for raising and handling exceptions.  For- 
tunately,  new programming languages, such as Ada [DOD 83, BGG 84], will provide such 
tools, t t  is therefore  necessa ry  to comple te  the  a lgebraic  specif icat ion f ramework in o rder  
to be able to specify e r ro r  cases and e r ror  recovery.  

Specific tools mus t  also be provided tha t  suppor t  the  use of algebraic specifications.  F i r s t  of 
all, i t  is now widely agreed  on the fact  tha t  specif icat ion languages and methods  without 
suppor t i r~  tools are not  prac t icable .  Secondly, i t  is especial ly impor tan t  tha t  specific tools 
with user-f r iendly in ter faces  are  designed in order  to bridge the  gap between underlying 
ma thema t i ca l  formal isms and the user.  Such tools should at  leas t  comprise  intel l igent  
(syntax d i rec ted)  ed i tors  and da ta  base facilities. It is also s t ressed  t ha t  graphic in ter faces  
are  pa r t i cu la r ly  well-suited for these  purposes.  

In the remaining of this paper  we first  give a descr ip t ion  of PLUSS-E, a specification 
language with except ion handling and e r ro r  recovery features ,  we then  descr ibe  the  design 
and organizat ion of the ASSPEGIQUE specification envirofiment. 

II  - T H E  S P E C I F I C A T I O N  LANGUAGE PLUSS-E 

The aim of the  family of specif icat ion languages P L U g  is to provide a tool to express  s t ruc-  
tu red  algebraic  da ta  type  specifications. The specification languages of the PLUSS family 
are based upon a set  of specification-building operat ions derived f rom the primit ive opera-  
tors  sugges ted  by Martin Wirsing in AS[, [¥~R 82, S&W 83, WtR 83]. The original design of 
PLUSS was made by Marie-gZaude Gaudel [GAU 83]. 

Roughly speaking, the  semant ics  of the PLUSS specif icat ion languages is pa r ame te r i zed  by 
the class of a lgebras  t aken  into account.  More precisely,  the  semant ics  of each specification 
language of the PLUSS family follows some basic,  fixed rules in what concerns the 
specification-building pr imit ives  but  depends  on the class of a lgebras  tha t  are  allowed for 
this  specific language. For  instance, PLUSS-P will denote the  specification language where 
partiaZ aZgebras are chosen as models  [BW 82], while PLUSS-0 denotes  the specification 
language where the s tandard ,  usual  a lgebras  are chosen as models.  

Here, we descr ibe  PLtPSS-E, a specification language where except ion handling and e r ror  
recovery  can be specified with a p rec i se  and formal  semantics .  PLUSS-E is based  upon two 
formal  approaches ,  the  specification-building pr imit ives  of ASL and the concept  of E,R- 
a lgebras  which allows all forms of e r ror  handling (er ror  introduct ion,  e r ror  propagat ion  and 
e r ror  recovery)  [BID 84]. 

If. 1 - E.R-algebras 

Since 1976 [ADJ 76], the classical  approach  to a lgebra ic  da ta  types  has been  shown to be 
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incompatible with the use of operations that return error' messages for some values of their 
arguments. In this section we describe a new formalism where all forms of error handling 

can be specified. Our formalism is very closed to the error-aggebras introduced by Goguen 

[GOG 77] or to the work described in [GDLE 83], that is, the carrier sets of the algebras are 

split into okay values and error values. However, we have shown how an implicit error propa- 
gation rule may be encoded into the models without losing the possibility of error recovery. 

Thus all the axioms necessary to specify error propagation may be avoided, and the 

specifications remain well-structured and easily understandable, 

The algebraic specification of error cases~ er ror  propagation and er ror  recovery is a difficult 
problem [ADJ 76, GOG 77, GOG 78, PLA 82, B&W 82, EHR 83]. Our claim is that neither excep- 
tion cases nor error recovery eases should be specified by means of equations, but rather 

by means of d2c/ara~gons, The axioms of a specification will be divided into four parts: 

- Declarations of except ion cases and of recovery  cases. Declarations are just  t e rms  or posi- 

tive conditional t e rms  (i.e. t e rms  conditioned by equations). 

- Ok-axioms. 
- Error-axioms. 
Ok-axioms or error-axloms are just equations or positive conditional equations. 

Thus some t e rms  will be declared to be okay, others  wilt be declared to be erroneous. Ok- 
axioms and error-axioms will be used to identify ok-values and error-values respectively,  no 
more. This will lead to more structured specifications, since the specification of the error 

policy (error introduction and error recovery) vdll be made apart from the axioms. More- 

over, our framework will implement the following natural propagation rule: 
e~ors Fropagaa~e ~ s s  ~he{r r e c o v e r i e s  ave spec i f i ed .  

In order  to allow a careful  recovery  policy and the use of non-str ic t  functions, we shall use 
three  dis t inct  kinds of variables: ordinary variables may range over the whole carr ier  set, 
ok-variables may only range over the ok-part  of the corresponding car r ie r  set, error-  
variables may only range over the er ror  par t  of the corresponding car r ie r  set. As a syntacti-  
cal convenience,  ok-variables will always be suffixed by "+'% while error-variables will always 

be suffixed by ..... (e.g. x+, y-, ...). 

The necessary  underlying theoret ica l  mater ia l  is descr ibed in [BID 84], as well as the study 

of sufficient conditions for initial models. Here we focus on the feasability of such 
specifications and their  impact .  As a first example of a PLUSS-E specification we describe a 

s tack of integers  which will allow one underflow, no more: 

SPEC : STACK 
WITH : INTEGER 
SORTS : Stack 

OPERATIONS : 

empty : 
underflow : 
crash : 
push : 
pop : 
top : 

-> Stack 
-> Stack 
-> Stack 

Integer Stack -> Stack 
Stack -> Stack 
Stack ~> Integer 
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VARIABLES : 

x : I n t e a e r  
p : S t a c k  

EXCEPTION CASES : 

e 1 : u n d e r f l o w  
e2  : c r a s h  
e3 : pop  e m p t y  
e4  : t op  e m p t y  

RECOVERY CASES : 

r l  : p u s h  x+ unde r f l ow  

OK-AXIOMS : 

o k l :  pop  ( p u s h x p )  = p  
o k 2 :  top  ( p u s h x p ) = x  
ok3 : p u s h  x unde r f low = p u s h  x e m p t y  

ERROR-AXIOMS : 

e r r l  : pop  e m p t y  = unde r f low 
e r r 2  : pop  unde r f low = c r a s h  
e r r S :  p u s h x - p = c r a s h  

END STACK. 

In t h i s  s t a c k ,  we sha l l  have  a n  in f in i te  n u m b e r  of e r r o r  e l e m e n t s ,  w i th  two speci f ic  va lues :  

underflow, w h i c h  will b e  o b t a i n e d  (as t h e  r e su l t )  w h e n  popp ing  t he  e m p t y  s t ack ;  and  crash, 
w h i c h  will b e  o b t a i n e d  w h e n  popp ing  und2rflow. S t a c k  t e r m s  o b t a i n e d  f r o m  t h e  crash s t a c k  
a r e  def in i t ive ly  e r r o n e o u s .  Underflow is a n  e r r o n e o u s  s t ack ,  b u t  one c a n  r e c o v e r  f r o m  th i s  

s t a t e  by  p u s h i n g  a n  okay  i n t e g e r  on to  it.  In  all c a s e s  p u s h i n g  a n  e r r o n e o u s  i n t e g e r  o n t o  a 
s t a c k  l eads  to  t h e  crash s t ack .  

Note  also t h a t  n o t h i n g  m o r e  is r e q u i r e d  t h a n  "top empty is a n  e x c e p t i o n  case" ;  however ,  if 

one  wan t s  to  i d e n t i f y  top empty wi th  a n  e r r o n e o u s  i n t ege r ,  s ay  bottom, a n  e r r o r - e q u a t i o n  
"top empty = bottom" m a y  b e  added .  F u r t h e r m o r e ,  if one  w a n t s  to  i d e n t i f y  all  e r r o n e o u s  

i n t e g e r s  w i t h  bottom, t h i s  c a n  b e  a c h i e v e d  b y  add ing  t h e  following e r r o r - e q u a t i o n :  "x  = bot-  
tom" .  

In t h e  s a m e  way, t h e  e q u a t i o n  ok3 is n o t  a b s o l u t e l y  n e c e s s a r y ;  however ,  in  o u r  ca se  we do 
n o t  w a n t  to  j u s t  spec i fy  t h a t  p u s h i n g  a n  okay  i n t e g e r  o n t o  t h e  underflow s t a c k  is a r e c o v e r y  
case ,  b u t  a l so  t h a t  t h e  s t a c k  o b t a i n e d  is equa l  t o  p u s h i n g  t h e  s a m e  e l e m e n t  o n t o  t h e  empty 
s t ack .  One e x p l i c a t i o n  is also n e e d e d  for  t he  e r r o r - e q u a t i o n  errS:  n o t e  t h a t  we h a v e  n o t  
(expl ic i te ly)  spec i f i ed  t h a t  push x- p is a n  e r r o r  value;  t h i s  is s imp ly  a c o n s e q u e n c e  of t h e  
n a t u r a l  e r r o r  p r o p a g a t i o n  rule ,  s ince  x- d e n o t e s  a n  e r r o r  value.  

I I . 2  - B a s i c  s p e c i f i c a t i o n s  

In PLUSS-E, a ba s i c  spec i f i ca t ion  is a signature t o g e t h e r  w i th  axioms. Axioms a re  p r e c e d e d  
by  t h e  d e c l a r a t i o n  of t h e  variables t h e y  use.  

A S~d~Zature b e g i n s  w i th  t h e  key -word  SORTS followed b y  a l i s t  of so r t s .  By d e f a u l t  a n  e m p t y  
l i s t  is e q u i v a l e n t  t o  t h e  d e c l a r a t i o n  of a u n i q u e  sor t ,  w h i c h  is equa l  to  t h e  s p e c i f i c a t i o n  
n a m e .  If no  new s o r t  is r equ i r ed ,  t he  key-word  SORT m a y  be  o m i t t e d  or  be  r e p l a c e d  by  t h e  
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key-word NO-NEW-SORT. 

The second pa r t  of the s/gr~ature is a !ist of operation names together  with their  arity. This 
list begins with the key-word OPERATIONS. For instance: 

_[ _] :Array Index-> Elem 
As it appears ~n the above example, mLxfix operators with a syntax ~ la OBJ [GOG 83] are 

allowed, and the underscore is used to indicate where the operation arguments should be 

placed. Thus the above operation may be used to access an array element with the usual 

notation t[i]. Underscores may be omitted if the operation will be used in the standard 

prefix order. Overloadi:~4~ of operation names and coercions are also allowed, for instance: 

_ : Integer -> Real 

The declarat ion of the variables used m the axiom par t  is preceded by the key-word VARI- 
ABLES. All the variables are ~nphcitely universally quantified. As well as for operat ion 
names,  variable names  can be overloaded; this is especially useful for dealing with struc- 
tu red  specifications. According to the syntact ical  convenience described in Section II. t, the 
declarat ion of a variable x implicitely contains the declarat ion of x+ and x-. 

Decl~r~ions  and axioms are named, and positive conditional equations (or declarations) 
are allowed. They are preceded by the key-words EXCEPTION CASES, RECOVERY CASES, 
0K-AXIOMS and ERROR-AXIOMS. An example of one of the conditional axioms tha t  define l~ss 

or squat  on the integers is given below: 
LE5 : 0 L E x  = t rue => D L E s x  = t rue 

Since the = sign is used to connect both terms of an equation, it can not be used as a name 

for the equality operation. We suggest to use _is _ to this end, as well as _/s~ot _ for the 

inequality operation. 

As a last  r emark  on basic specifications, one should note that  an implicit  reachable  is 
embedded in such a specification. That means that  only finitely generated models are taken  

into consideration. 

I I .3 -  Specification cons t ruc t ion  Lools 

The s implest  feature to build specifications from simpler ones is the sum, which is denoted 
by +. By defin/tion, the s ignature of SPEC + SPEC' is the union of the signatures of SPEC and 
SPEC'. There is no implicit  renaming as in CLEAR [B&C 79]. So it is possible to share 
subspecifications without duplicating them: for instance, if there  is a sort  Bool in SPEC and 
in SPEC', there is only a ~ort Bool in SPEC + SPEC'. The same rule applies for operat ion 
names.  The meaning of such a specification is a class of algebras w.r.t, this signature, The 
algebras of this class m u s t  be models of SPEC (resp. SPEC') when they are res t r ic ted to the 
signature of SPEC (resp. SPEC'). Note that the concept of restriction must be suitably 

refined w.r.t. E,R-algebras. 

A by-product  of the sum is the en r i chmen t ,  denoted by WITH, which allows to add new sorts 
and /o r  new operations and /o r  new axioms to a specification. An example of this cons t ruc t  
was g iven . in  the '  one-error- tolerant  stack. Since specification names may also be over- 
loaded, one can specify the file where the specification to be enriched has to be found. This 

can be done using the FROM option, e.g.: 
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WITH : BOOL FROM : SLd-BOOL 

or 

WITH : BOOL FROM : My-BOOL 

Since there is no implicit  renaming, explicit  r e n a m i n g  is needed in the language. The syn- 
tax is straightforward: 

RENAMING sor t l  INTO sort2; op 1 INTO op2; ... END 
Sorts or operation names  may be forgotten by writing "name INTO % 

A specification may be parameter ized  by another specification. The signature and the 
axioms of the formal paramete r  express the properties which are required for the argu- 
ment .  An a rgument  is a couple made of a specification and a signature morphism. The signa- 
ture  morphism is called the f l t~ng morphism. It sends sorts and operation names of the 
formal paramete r  i n to  the relevant  sorts and operations of the argument.  The meaning of 
the application of an a rgument  <ARG, m> to a parameter ized specification SPEC(X) depends 
on the correctness  of ARG with respect  to X. The models of ARG, res t r ic ted to the signature 
of X w.r.t, m, mus t  be models of X. The signature of the resulting specification is the union 
of the SPEC signature, where sorts and operation names coming from X are renamed  by m, 
and of the ARG signature (i.e. the X signature disappears). The models are those of the 
specification w.r.t, the result ing signature. 

An example of a parameter ized  specification, ARRAY (ELEM, INDEX), is given below. The 
ELEM and INDEX specifications are formal parameters .  The ELEM specification does not 
requLr e anything: 

PAR : ELEM 
SORTS : Elem 

END ELEM. 

The INDEX specification is slightly richer, since the a rgument  mus t  provide a maximum and 
a minimum index, and a total  ordering on the indexes. I t  is not given here for lack of space. 

PROC : ARRAY (ELEM, INDEX) 
SORTS : Array 

OPERATIONS : 

init: 
lwb: 
upb: 
_[ _ ] : :  _: 
_[ _]: 

VARIABLES : 

t : Array 
i, j : Index 
v, v' : Elem 

EXCEPTION CASES : 

illegal-access : 
illegal-modif : 
illegal-init : 

Index Index -> Array 
Array -> Index 
Array -> Index 
Array Index Elem -> Array 
Array Index -> Elem 

(i < lwb t) or (i > upb t) = t rue 
(i < lwb t) or (i > upb t) = t rue 
i > j = t rue  

=> t[i] 
=> t[i]:=v 
=> init  i j 
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OK-AXIOMS : 

b o u n d l  : lwb ( ini t  i j) = i 
bound2  : upb (init  i j) = j 
bound3 : lwb (t[i]:=v) = lwb t 
b o u n d 4  : upb  (t[i]:=v) = upb  t 
a c c e s s l  : i is j = t r u e  => (t[i]:=v) [j] = v 
access2  : i i s n o t j  = t rue  => (t[i]:=v) [j] = t[j] 
mod i f l  : i is j = t rue  => (t[i]:=v) [j]:=v'  = t[ i] :=v'  
modif2  : i i s n o t j  = t rue  => (t[i]:=v) [j]:=v'  = (t[ j] :=v')  [i]:=v 

END ARRAY. 

Note t h a t  t he r e  is an  impl ic i t  e n r i c h m e n t  of the  formal  p a r a m e t e r s .  Thus no WITH is 
r equ i red  in  the above specif icat ion.  F u r t h e r m o r e ,  t he r e  is n o  i m p l i c i t  r e a c h a b l e  e m b e d d e d  
in the  speci f ica t ion of t h e  formal  p a r a m e t e r s ,  s ince (finitely gene ra t ed )  mode ls  of ac tua l  
p a r a m e t e r s  m a y  n o t  be  f ini te ly g e n e r a t e d  mode ls  of the  formal  p a r a m e t e r s .  

An example  of a specif icat ion bu i l t  by  i n s t a n t i a t i o n  of ARRAY is given below: 

SPEC : STRING 
ARRAY (ELEM => CHAR, INDEX => INT25) 

RENAMING Array INTO String 
in i t  INTO e m p t y s t r i n g  

END STRING. 

This overview of PLUSS-E is of course  very incomple te .  For  ins tance ,  o ther  f ea tu re s  of this  
speci f ica t ion language  deal  with visibi l i ty ru les  and  allow the  u se r  to hide some pr iva te  
speci f ica t ions  a n d / o r  sor t s  a n d / o r  operat ions .  

]II- THE ASSPEGIQUE ~ONk~/NT 

In the  previous  sec t ion,  we have desc r ibed  how excep t ion  hand l ing  and  s t r u c t u r a t i o n  
fea tu res  can  be e m b e d d e d  in to  an  a lgebra ic  specif icat ion language.  Our c la im is t h a t  a 
speci f ica t ion language  should  n o t  only be s u p p o r t ed  by some specif icat ion me thod ,  b u t  also 
by specific tools i n t e g r a t e d  in to  a specif icat ion env i ronmen t .  P a r t s  of such  e n v i r o n m e n t s  
have a l ready  b e e n  des igned  or  descr ibed ,  such  as OBJ, AFFIRM, the  CIP P ro j ec t  and  the  
LARCH Project .  The m a i n  cha rac t e r i s t i c s  of these  e n v i r o n m e n t s  can  be roughly  out l ined  as 

follows: 
- OBJ [GOG 81, GOG 83] has been developed in order to experiment theoretical hypothesis 

and specification combining tools. 
- AFFIRM [AZF 81] is o r i en t ed  towards proof purposes .  No gener ic  tool is provided to com-  
bine  specif icat ions.  Ful l-s ized examples  were developed with this sys tem.  
- The CIP P ro j ec t  [CIP 8 i ]  a t t e m p t s  to cons ide r  in  a un i fo rm  way speci f ica t ions  and  pro-  

grams.  
- The LARCH Pro jec t  [G&H 83] is developing tools and  t echn iques  i n t e n d e d  to aid in  the  pro-  
duc t ive  use of formal  specif icat ions  of sys t ems  con ta in ing  c o m p u t e r  p rograms .  

Our goal when designing the ASSPEGIQUE specification environment was to try to integrate 

all these characteristics. The main aspect of our specification environment is the high 

degree to which it allows specifications to be modularixed. The user of ASSPEGIQUE deals 
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with elementary specifications which correspond, so to speak, to ~ypes of in~eres& A major 
role of the specifidation lar~guage is to assemble these e lementary  specifications into more 
complex ones. 

Modularity imposes constraints  that  led us to introduce sophisticated mechanisms in the 
specification environment .  For instance,  it is useful to be able to specify a type of in teres t  
without having previously specified all the predefined types required by this type of 
interest .  We did in fact find ourselves obliged to abandon a wholly top-down approach in the 
development of e lementary  specifications : such an approach leaves to last those checks 
that  the system must  carry  out if it is of any real value to the user. Leaving those checks to 
the end however means  tha t  errors may be discovered far too late. We were also obliged to 
abandon a wholly bottom-up approach, because such an approach does not correspond to a 
na tura l  way of specifying complex data s t ructures  : the most  primitive specifications are 
generally given last, and not  first. 

HI. 1 - Hierarchical  re la t ions  within the  specification library 

The high degree of raodularization of the library and the impossibility to follow an approach 
which is ei ther strictly bot tom-up or strictly top-dog-n, mean  that  we have to provide the 
l ibrary with ordering relations : on the one hand, such relations allow to reconsti tute,  when- 
ever necessary, all the required types (i.e. those assumed to be predefined) for a given type 
of interest;  on the other hand, they allow to manage the consequences of a modification 
made on any of the e lementary  specifications in the library. 

Two ordering relations are defined on the specification hbrary  ; before defining them for- 
really, we shall explain their  use-with a simple example. 

~ of-integers 

directly requires 
....... ~ instance of 

Graph of ordering relat ions associated with Stack-of-integers 

Operations which may appear amongst  the axioms of Stack-of-integers are operations on 
Stack(X) (instantiated),  but  also operations on Bool and Integer; consequently checks to be 
carr ied out on the axioms of Stack-of-integers (e.g. that  all t e rms  are well-formed) cannot  
be carried out before specifications Integer and Bool have been introduced into the l ibrary 
(since nothing prevents  us from defining Integer or Stack(X) before defining Bool) : Stack- 
of-integers requires tInteger, Bool~. 
Moreover any modification to X or Stack(X) mus t  lead to reconsiderat ion of Stack-of- 
integers : after a modification Integer may no longer be a suitable parameter .  

More precisely, the ordering relations provided within the l ibrary are defined as follows : 
1. The ordering relat ion requires  is defined as being the transi t ive and reflexive closure of 
the relation directly requires, defined as follows : 
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a specification $2 iirec~gy "reqo~ires a specification $1 if and only if $2 is built  as an 
enr ichment  of S1 ($1 is on the list of specifications enriched by $2) or if S2 is an 
instance of a parameter ized specification which d~'ectly requires S1 (e.g. in the exam- 
ple above, Stack-of-integers is an instance of Stack(X), Which directty requires Bool; it 
is self-evident that  the ins tant ia ted  paramete r  is excluded from the definition, above : 
Stack(X) directly requires X, bu t  Stack-of-integers does not). 

2. The ordering relat ion depends on is defined as being the transitive and reflexive closure 
Of directly1 requires or is ~n insta'~ce of. 

N.B. : As ment ioned above, the relat ion requires WIll in part icular  allow computat ion of the 
set  oI all the operations tha t  may appear in an axiom of the specification considered, wNle 
the relat ion depends on ~/I1 allow to propagate modification consequences in the library. 

I l I . 2  - Overall organizat ion of ASSPEGIQUE 

The tools available in ~.he ASSPEGIQUE envi ronment  include : a special purpose editor, 
modificat ion tools, a c~npi le r ,  a debugger, a symbolic evaluator  and theo rem proving 
tools. They are available to the user  through a u s e r  in te r face  and access the specification 
l ibrary through the h ie ra rch ica l  l ibrary  m a n a g e m e n t  tool (see figure on next  page). 

Part icular  a t ten t ion  has been  paid to the in te rac t ion  with the  user  : all the tools are inter- 
faced in a uniform way and make full use of full-screen multiwindow display and graphic 
facilities to provide a user-friendly in terac t ion  ; among others, this includes the use of on- 
screen and pop-up menus,  and on-line help and documentat ion facilities, detailed according 
to the degree of expertise of the user. 

The role of the h ie ra rch ica l  l ibrary  m a n a g e m e n t  tool is to mainta in  the l ibrary coherence 
w.r.t, the ordering relations between the specifications ; in parLicular, the managemen t  tool 
updates the l ibrary information file. 

The specification editor (cf. III.3) is syntax-directed which does not mean  that  the user has 
to deal with the in terna l  represen ta t ion  of the specification : the concrete views available to 
the user  are a text representation of the specification and a graphic representation of its 
signature. Modifications and creat ions are performed by the user  at  the level of these con- 
crete views, the corresponding in ternal  representa t ion  being accordingly updated. 

The specification compiler plays two roles : 
I. It computes the 9ramTnar associated wJlh the specification; this grammar allows to 
analyse the axioms defined in the specification, to verify tha t  they are syntactically correct  
and to resolve overloading conflicts. To achieve these purposes, the specification compiler 
uses the g rammar  generator  and the parser  described in [VOI 84 t. 
The g rammar  associated with a specification S is defined as the union of g rammars  of all 
specifications required by S and of operations defined within S. Consequently~ the compila- 
t ion of a specification cannot  take place before all specifications on which it  depends have 
been introduced. The compilation of a specification may moreover require that  
specifications which are required bu t  have not  yet  been compiled (or have been changed 
since their  last  compilation) are compiled first. 
2. The compiler produces an internal  form of the specification which will be directly usable 
by software accessing the l ibrary : symbolic evaluator, theorem prover, program construc-  
tion assistance tool [BGG 83]. 
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The in ternal  form associated with a specification is made up of LISP property lists : this 
type of in ternal  form is especially flexible, and has shown itself very eonvement  for handling 
problems raised when interfacing ASSPEGIQUE with external  tools. 

The specification debugger is automatically loaded by the compiler when errors are 
detected ; it allows interact ive debugging of the specification. In particular,  and this is a 
contras t  with the editor, the debugger is not  loaded unless all required specifications do in 
fact exist (and have been  compiled). The debugger consequentiy allows to debug axioms 
interactively, which is impossible at  the general  editing level. 

The symbolic evaluator  computes the canonical  form of any t e rm  w.r.t, the axioms. The 
symbolic evaluator takes into account  conditionN axioms and parameter iza t ion [KAP 83]. 
The t h e o r e m  proving tools use the techniques described in [BID 82], 

Finally, the specification envi ronment  is provided with tools whose aim is to make opera- 
tions easier and to maximize the possibilities for re-using specifications. Consequently suit- 
able tools allow to copy a specification, to enrich it by adding new operations or axioms, or 
to rename an operation or an axiom, etc. 

llI.3 - The ASSPEGIQUE syntax-directed ful l -screen editor  

As outlined before, the originality of the editor is that, while offering all the flexibility in use 
of a full-screen editor, it establishes links between the external  concrete views (text, graph- 
ics) and the in ternal  representat ion,  making it a syntax editor [EDS 88]. Any movement  
within the text or the graphic representation of the description is also a movement within 

the corresponding tree, and any modification is taken into account at both levels by means 

of a validation mechanism. The part of the editor devoted to the specification text was 

developed as an extension of WINNIE lAMA 83], a full-screen multi-window editor. The graph- 

ical part of the editor was derived from a graphical interactive editor for Petri-nets, PETRI- 

POTE [BEA 83]. 

The editor displays a template  which depends on the construct ion primitive (enrichment,  
formal parameter ,  parameter ized  type, etc...), and on the style of specification (basic, with 
error  handling, etc...). For instance, the figure on next  page shows how the screen looks 
like at  some stage of the edit ion of a specification e~rizhin9 other ones, writ ten in a bas/c 

style. 

The template displayed may be broken down into : 

i. A heading par t  which includes the name of the type (SPEC clause), the names  of the 
required types (WITH clauses) and the names of the flies containing their  descriptions 
(FROM clauses), ms well as the names  of sorts involved in the type description (SORTS 
clause); the user  may create  as many WITH FROM clauses as there are required types. 

2. An OPERATIONS part ,  i.n which the name and syntax of each operator is specified (note 
that  the parser  and incrementa l  g rammar  generator  [VOI 84] allow the user  to indicate 
where the operation a rgmnen t s  should be placed). 

3. A VARIABLES par t  : name and type of variables. 
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i . I I  • | 

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ISPEC : STACK 
l NITH : BOOL FROM : Std-BOOL 

NITH : INT FROM : Ny- INT 

I . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OPERATIONS : Use INS- *  t o  e d i t  o p e r a t i o n s  t h r o u g h  t h e  PERQ i n t e r { a c e  
empty : -> Stack 
push _ onto : Int Stack -> Stack 
pop _ : S t a c k  ->  S tack  
top _ : Stack -> Int 
i s  empty ? : Stack -> Bool 
heiBht _ : Stack -> Int 

VARIABLES : 
x : Int 

* s : Stack 
ZlAXIOMS : 
I* top-1 : top push x onto s = x OlT OP~ 

(ASSEDIQUE<mod>) Vahe : t HELP !!! 
OUT ! 

Add sort 
add sort o~ int 

Add operation 
Delete sort/op 
Rename sort/op 

is empty ? 
"'"'"'"'"'"---- 

h e i B h t  _ 

Back to  Spec, 
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4. The AXIOMS pa r t  (which would be divided into four sub-parts ,  if the  specif icat ion were 
wri t ten in the e r ro r  handling styte.) 

Any declaration (name of type, name and syntax of operation, etc...) is caned an entity. A 
s ta r  indica tes  t ha t  the following ent i ty  has not  been  val ida ted  yet. Validation consists  in 
checking the syntax  of an ent i ty  declarat ion,  and in complet ing the corresponding sub- t ree  
of the in terna l  represen ta t ion .  

In what concerns  the s ignature  (sorts  and operations),  the user  may  e i ther  type  in d i rec t ly  
the  tex t  in the  t ex t  view or use the  PERQ graphica l  interface.  In this ease, (s)he jus t  needs  
to se lec t  the appropr ia t e  command in the  pop-up menu  and draw, say, the operat ion,  by  
pointing at the domains and codomain sorts (the operation arrows are then drawn automati- 

cally by the system). 

IV- CONCLUSION 

In this paper ,  we have shown how to sys temat ica l ly  cope with s t ruc tu ra t ion  and except ion 
handling at  the specif icat ion level by providing an appropr ia t e  specif icat ion language; we 
also desc r ibed  a specif icat ion envi ronment  tha t  suppor t s  such a language and therefore  its 
p rac t i ca l  use. The tools in t eg ra ted  in ASSPEGIQUE range f rom a high-level syn tax-d i rec ted  
edi tor  to a symbolic evaluator  and t h e o r e m  proving tools; therefore ,  PLUSS-E and ASSPE- 
GtQUE are  especial ly well-suited for rap id  pro to typing  purposes  [CH0 85]. Indus t r ia l  sized 
exper imenta t ions  on ASSPEGIQUE are  cur ren t ly  under  development ,  and will provide a f irm 
basis to fu r the r  versions. 

A kerne l  sys t em of ASSPEGIQUE consist ing in the  top-level and user- in ter face ,  the 
specif icat ion edi tor  t oge the r  with its graphic  interface,  a specif icat ion compiler ,  a symbolic 
evaluator ,  the  special  purpose  g r a m m a r  gene ra to r  and the parser ,  t he o re m proving tools 
has been  implemen ted  on VAX-UNIX and PERQ-POS. This sys tem has been demons t r a t ed  a t  
the 7th International Conference on Software Engineering, Orlando, USA and at the 2nd 
AFCET Conference on Software Er~ineering, Nice, France. 

V -  A C K N O ~ E M E N T S  

This work is par t ia l ly  suppor ted  by A.D.I. Contract  No 639 and the C.N.R.S. (Greeo de Pro- 
grammation). 

Special thanks are due to Mar~e-C~az,~de Gaudef for many helpful suggestions and discussions 
in designing the  PLUSS-E language. We also thank Frederic ~bis~n, Stephane Kaplan, M~ri- 
anne 0%oquer, Michel Heaudoui•-Lafon who respect ive ly  made  the parser ,  the  symbolic 
evaluator, the theorem proving tools and the graphic interface. 

Vl - REFERENCES 

[ADJ 78] Goguen J., Thatcher J., Wagner E,, "An Initia/A[gebra approach to the specification, correct- 
ness, and implementation of abstract data types" in Current Trends in Programming 
Methodology, VoL4, Yeh Ed, Prentice Hall, 1978 (also IBM Report RC 6487, October 1976), 



259 

[AFF 81] Gerhart S.L., "AFFIRM Reference Manual", UCS-Report (Marina de1 Rey), 1981. 

lAMA 83] A_mar P., "Winnie : un ~diteur de textes multifen~tres extensible", Actes des Journ~es BIGRE 
(Le Cap d'Agde), 1983. 

[BBGGG 84] Bidoit M,, Biebow B., Gaudel M.-C., Gresse C., Guiho G., "Exception handling : formal 
specification and systematic program specification", Proc. 7th I.C,S,E., Orlando, USA, 1984. 

[BEA 88] Beaudouin-Lafon M., "Petripote: a graphic system for Petri-Nets design and simulation" 
Proc. of 4th European Workshop on Applications and Theory of Petri Nets, Toulouse, France, 
1983. 

[BID 82] Bidoit M., "Proofs by induction in "fairly" specified equational theories" Proc. 6th German 
Workshop on Artificial Intelligence, Bad Honnef, Germany, Springer-Verlag tFB 58, 1982. 

[BID 84] Bidoit M., "Algebraic specification of exception handling and error recovery by means of 
declarations and equations", Proc. l l th  ICALP, Antwerp, 1984. 

[BCK 84] Bidoit M., Choppy C., Kaplan S., A~SPEGIQUE : un env,.ronrtement de specification 
alg~brique", Proc. 2nd AFCET Software Engineering Conference, Nice, 1984, pp357-371 

[BGG 83] Bldoit ~!;, Gresse C., Guiho G., "CATY : Un syst~me d'aide au d~veloppement de pro- 
grammes , Acres des Journ~es BIGRE 83 (Le Cap d'Agde), 1983. 

[BGG 84] Bidoit M., Gaudet M,-C., Gumbo G. "Towards a systematic and safe programming of exception 
handling in ADA" Proc. of Ads-Europe/Aria TEC Conf., Brussels, June 1984. 

[B&W 82] Broy M., Wirsing M., "Partial Abstract Data Types" Acta Informatica, Vo1.t8-1, Nov 1982. 

[B&G 79] Burstalt R,, Gnguen J., "The semantics of CLF~kR, a specification language", in Abstract 
Software Specifications, D. Bjorner Ed., LNCS 86, Springer-Verlag, 1979. 

[CIP 8t] CtP language group "Report on a wide spectrum language for program specification and 
development", Rapport TUM-I8104 (Municfi), 1981. 

[CHO 85] Choppy C., "Tools and techniques for building rapid prototypes", AFCET Workshop on "Pro- 
totypage, Maquettage et Genie Logiciel", Lyon, January 1985. 

[DOD 83] "The programming Ianguage ADA - Reference Manual" Umted States Department of Defense, 
January 1983. 

[EDS 83] "Les 6diteurs dirig~s par la syntaxe', Journdes d'Aussois - INRIA Ed. (Rocquencourt -- 
France), 1983, 

[GAU 83] Gaudel M,-C., "Proposition pour un Langage d'Utilisation de SpEcifications StructurGes : 
PLUSS", C.G.E. Research Report, 1988. 

[GDLE 83] Gogolla M,, Drosten I(, Lipeck U,, Ehrich H,, "Algebraic and operational semantics of 
specifications allowing exceptions and errors" Proc. 6th GI-Conference on Theoretical Com- 
puter Science, LNCS 145, 1983, Springer-Verlag. 

[GOG 77] Goguen LA,, "Abstract errors for abstract data types" in Formal Description of Program- 
ruing Concepts, E.L NEUHOLD Ed., North Holland, New York 1977. 

[GOG 78] Goguen J.A,, "Exception and E~or Sorts, Coercion and Overloading Operators" S.R.I. 
Research Report, 1978. 

[GOG 81] Golguen LA,, Parsaye-Ghomi K., "Algebraic denotationat semantics using parameterized 
modules", Tech. Report CSL-119, SRI International, UCLA, 1981. 

[GOG 83] Goguen J,A,, "Parameterized Programraing", Proc. Workshop oft Reusabibility in Program- 
ruing, Stratford CT, USA, 1983, 

[G&H 83] Guttag J.V., Horning J,J., "An introduction to the LARCH shared language", Proc. IFIP 83, 
REA. Mason ed., North Holland Publishing Company, 1983. 

[KAP 83] Kaplan S., "Un langage de spGcification de types abstraits atg~brtques", Th~se de 3~me 



260 

cycle, LRI (Orsay- France), 1983. 

[PLA 88] Haisted D,, "An initial algebra semantics for error presentations" Unpublished Draft, t982. 

[S&W 8B] SaneUa D., Wirsing M., "A Kernel Language for Algebraic Specification and Implementation", 
to appear ~n Int, Conf. on Foundations of Computing Theory, Bergholm, Sweden, 1983, 

[VOI 84] Vnisin F., "CIGALE : un outil de construction incr6mental de grammatre et d'a~alyse 
d'expression", Th~se de 3~me cycle, Orsay (France), 1984, 

[WlR 88] Wtrsing g., "Structured algebraic specifications", Proc. AFCET Syrup. on Mathematics for 
Computer Science, Paris. France, 1982. 

[WlR 83] Wirsing M., *'Structured algebraic specifications : A kernel language", PhD. Thesis, Munchen, 
Gerfnany, 1983. 


