ASSPEGIQUE : An integrated environment for slgebraic specifications

Michel BIDOIT & Christine CHOPPY

Laboratoire de Recherche en Informatique
Université de Paris-Sud
Batiment 480
91405 Orsay - Cedex, FRANCE

ABSTRACT

In this paper, we describe ASSPEGIQUE, an integrated environment for the development of
large algebraic specifications. We first describe the underlying specification language,
PLUSS-E, based on the specification-building primitives of ASL and E,R-algebras, a formal
framework for exception handling. We then describe the design and organization of the
specification environment. This environment allows the user to introduce specifications in a
hierarchized library, to edit them through a special purpose editor (with a graphical inter-
face), o compile them and to debug them. A symbolic evaluator and theorem proving toocls
completes ASSPEGIQUE into an environment suitable for rapid prototyping.

I - INTRCDUCTION

It is generally agreed on the fact that algebraic specifications provide a powerful tool for
writing hierarchical, modular and implementation-independent specifications. Moreover,
algebraic specifications are especially suitable for rapid prototyping and are an appropriate
framework for verification and validation tool development.

Hewever, some problems have been identified when specifying realistic software using alge-
braic data types [BBGGG 84]. These problems are the design and mansgement of large
specifications, error handling and error recovery policy specification, and the lack of com-
puter environment and fools supporting the specification stage.

The size of a specification clearly varies in accordance with the complexity of the system
being specified. Therefore, specifications of large software systems cannot be managed as a
whole. It is necessary to split them into smaller, hierarchized elementary units. Besides, a
better modularity promotes the reusability of existing specification parts. Comsequently,
the design and management of large specifications require tools to structure and modular-
ize the specifications, while the problem of the reusability and integration of existing
specification parts must also be addressed. Obviously, structuration, modularization and
reusability issues must be taken into account from the first stage of design of the
specification longuage. Therefore, specification-building primitives as well as visibility han-
dling primitives should be included into the specification language,

247

A classical difficulty in the development of large systems is that the error handling
specification and the error recovery policy is done too late, very often after the
specification of the normal behaviour of the system is completed. This results in expensive
modifications of early design decisions. Moreover, the exception handling part of the sys-
tem is often the lest carefully specified. A reason of this sorry state of affair may be that
very few methodological and linguistic tools are available to specify and develop software
with exception handling. The programming languages which are currently in use in indus-
trial contexts do not provide specific features for raising and handling exceptions. For-
tunately, new programming languages, such as Ada [DOD 83, BGG 84], will provide such
tools. It is therefore necessary to complete the algebraic specification framework in order
to be able to specily error cases and error recovery.

Specific tools must also be provided that support the use of algebraic specifications. First of
all, it is now widely agreed on the fact that specification languages and methods without
supporting tools are not practicable. Secondly, it is especially important that specific tools
with user-friendly interfaces are designed in order to bridge the gap between underlying
mathematical formalisms and the user. Such tools should at least comprise intelligent
{syntax directed) editors and data base facilities. It is also stressed that graphic interfaces
are particularly well-suited for these purposes.

In the remaining of this paper we first give a description of PLUSS-E, a specification
language with exception handling and error recovery features, we then describe the design
and organization of the ASSPEGIQUE specification envirenment.

I - THE SPECIFICATION LANGUAGE PLUSSE

The aim of the family of specification languages PLUSS is to provide a tool to express struc-
tured algebraic data type specifications. The specification languages of the PLUSS family
are based upon a set of specification-building operations derived from the primitive opera-
tors suggested by Martin Wirsing in ASL [WIR 82, S&W 83, WIR 83]. The original design of
PLUSS was made by Marie-Claude Gaudel [GAU 83].

Roughly speaking, the semantics of the PLUSS specification languages is parameterized by
the class of algebras taken into account. More precisely, the semantics of each specification
language of the PLUSS family follows some basic, fixed rules in what concerns the
specification-building primitives but depends on the class of algebras that are allowed for
this specific language. For instance, PLUSS-P will denote the specification language where
partiol olgebras are chosen as models [BW 82], while PLUSS-0 denotes the specification
language where the standard, usual algebras are chosen as models.

Here, we describe PLUSSE, a specification language where exception handling and error
recovery can be specified with a precise and formal semantics. PLUSS-E is based upon iwo
formal approaches, the specification-building primitives of ASL and the comcept of E,R-
algebras which allows all forms of error handling (error introduction, error propagation and
error recovery) [BID 84].

1.1 - E,R-algebras

Since 1878 [ADJ 76}, the classical approach to algebraic data types has been shown to be

248

incompatible with the use of operations that return error messages for some values of their
arguments. In this section we describe a new formalism where all forms of error handling
can be specified. Qur formalism is very closed to the error-algebras introduced by Goguen
[GOG 77] or to the work described in [GDLE 83], that is, the carrier sels of the algebras are
split into okay values and error values. However, we have shown how an implicit error propa-
gation rile may be enceded intoc the models without losing the possibility of error recovery.
Thus all the axioms necessary o specify error propagation may be avoided, and the
specifications remain well-structured and easily understandable.

The algebraic specification of error cases, error propagation and error recovery is a difficult
problem [ADJ 78, GOG 77, GOG 78, PLA 82, B&W 82, EHR 83]. Our claim is that neither excep-
tion cases nor error recovery cases should be specified by means of equations, but rather
by means of declorafions. The axioms of a specification will be divided into four parts:

- Declarations of exception cases and of recovery cases. Declarations are just terms or posi-
tive conditional terms (i.e. terms conditioned by equations).

- Ok-axioms.

- Error-axioms.

Ok-axioms or error-axioms are just equations or positive conditional equations.

Thus some terms will be declared to be okay, others will be declared te be erroneous. Ok-
axioms and error-axioms will be used to identify ok-values and error-values respectively, no
more. This will lead to more structured specifications, since the specification of the error
policy (error introduclion and error recovery) will be made apart from the axioms. More-
over, our framework will implement the following natural propagation rule:
errors propagate unless their recoveries ore specified.

In order to allow a careful recovery policy and the use of non-strict functions, we shall use
three distinct kinds of variables: ordinary variables may range over the whole carrier set,
ok-variables may only range over the ok-parl of the corresponding carrier set, error-
variables may only range over the error part of the corresponding carrier set. As a syntacti~
cal convenience, ok-variables will always be suffixed by "+", while error-variables will always
be suffixed by "~ {e.g. X+, -, ...}.

The necessary underlying theoretical material is described in [BID 84], as well as the study
of sufficient conditions for initial models. Here we focus on the feasability of such
specifications and their impact. As a first example of & PLUSS-E specification we describe a
stack of integers which will allow one underflow, no more:

SPEC : STACK
WITH : INTEGER
SORTS : Stack

OPERATIONS -
emply : -> Stack
underflow : -> Stack
crash : -> Stack
push: Integer Stack -> Stack
pOp ¢ Stack -> Stack

top: Stack ->» Integer

249

VARIABLES :

x: Integer
p: Stack

EXCEPTION CASES :

el: underflow

e2: crash

ed: pop emply
ed: ‘topempty

RECOVERY CASES :
r1: push x+ underflow

OK-AXIOMS :

okl: pop(pushxp)=p
ok?: tiop (pushxp)==x
0k3: push x underflow = push x empty

ERROR-AXIOMS :

errl: pop empty = underflow
err2: pop underflow = crash
err3d: pushx- p =crash

END STACK.

In this stack, we shall have an infinite number of error elements, with two specific values:
underflow, which will be obtained (as the result) when popping the empty stack; and crash,
which will be obtained when popping underflow. Stack terms obtained from the crash stack
are definitively erroneous. Underflow is an erroneous stack, bul one can recover from this
state by pushing an okay integer onlo it. In all cases pushing an erroneocus integer onto a
stack leads to the crash stack.

Note also that nothing more is required than "top emply is an exception case”; however, if
one wants to identily fop emply with an erroneous integer, say botfom, an error-equation
"top empty = botlom” may be added. Furthermore, if one wants to identify all erronecus
integers with botfom, this can be achieved by adding the following error-equation: "z = bof-
tom”.

In the same way, the equation ok3 is not absolutely necessary; however, in our case we do
not want o just specily that pushing an ckay integer onto the underflow stack is a recovery
case, but also that the stack obtained is equal to pushing the same element onto the empty
stack. One explication is also needed for the error-equation err3: note that we have not
{explicitely) specified that push - p is an error value; this is simply a consequence of the
natural error propagation rule, since z- denotes an error value.

11.2 - Basic specifications

In PLUSS-E, a basic specification is a signature together with axioms. Axioms are preceded
by the declaration of the variables they use.

A signature begins with the key-word SORTS followed by a list of sorts. By default an empty
list is equivalent to the declaration of a unique sort, which is equal to the specification
name. If no new sort is required, the key-word SORT may be omitted or be replaced by the

key-word NO-NEW-SORT.

The second part of the signafure is a list of operation names together with their arity. This
list begins with the key-word OPERATIONS. For instance:
—f —]: Array Index -> Elem

As it appears in the above example, mixfix operators with a syntax &4 la OBJ [GOG 83] are
allowed, and the underscore is used to indicale where the operation arguments should be
placed. Thus the above operation may be used to access an array element with the usual
notation t[i]. Underscores may be omitted if the operation will be used in the standard
prefix order. Uverloading of operation names and coercions are also allowed, for instance:

—: Integer -> Real

The declaration of the varigbles used in the axiom part is preceded by the key-word VARI-
ABLES. All the variables are implicitely universally quantified. As well as {or operation
names, variable names can be overloaded; this is especially useful for dealing with struec-
tured specifications. According to the syntactical convenience described in Section 1.1, the
declaration of a variable % implicitely contains the declaration of x+ and x-.

Declarations and erioms are named, and positive conditional equations {or declarations)
are allowed. They are preceded by the key-words EXCEPTION CASES, RECOVERY CASES,
DK-AXIOMS and ERROR-AXIOMS. An example of one of the conditional axioms that define less
or equal on the integers is given below:
LES : OLEx = irue => 0LEsx = irue

Since the = sign is used to connect both terms of an equation, it can not be used as a name
for the equality operation. We suggest to use _is _ to this end, as well as _isnof __ for the
inequality operation.

As a last remark on basic specifications, one should note that an implicit reachable is
embedded in such a specification. That means that only finitely generated models are taken
into consideration.

1.3 - Specification consiruction lools

The simplest feature to build specifications from simpler ones is the sum, which is denoted
by +. By definition, the signature of SPEC + SPEC’ is the union of the signatures of SPEC and
SPEC’. There is no implicit renaming as in CLEAR [B&G 79]. So it is possible to share
subspecifications without duplicating them: for instance, if there is a sort Bool in SPEC and
in SPEC’, there is only a gort Bool in SPEC + SPEC'. The same rule applies for operation
names. The meaning of such a specification is a class of algebras w.r.t. this signature. The
algebras of this class must be models of SPEC (resp. SPEC’) when they are resiricted to the
signature of SPEC (resp. SPEC’). Note that the concept of restriction must be suitably
refined w.r.t. E R-algebras.

A by-product of the sum is the enrichment, denoted by WITH, which allows to add new sorts
and /or new operations and/or new axioms to a specification. An example of this construct
was given.in the one-error-iolerant stack. Since specification names may also be over-
loaded, one can specily the file where the specification to be enriched has to be found. This
can be done using the FROM option, e.g.: '

251

WITH : BOOL FROM : 5td-BOOL
or
WITH : BOOL FROM : My-BOOL

Since there is no implicit renaming, explicit renaming is needed in the language. The syn-
tax is straightforward:

RENAMING sortl INTO sort2; opl INTO op?; ... END
Sorts or operation names may be forgotten by writing "name INTO "

A specification may be parameterized by another specification. The signature and the
axioms of the formal parameter express the properties which are required for the argu-
ment. An argument is a couple made of a specification and a signature morphism. The signa-
ture morphism is called the fit¥ing morphism. It sends sorts and operation names of the
formal parameter into the relevant sorts and operations of the argument. The meaning of
the application of an argument <ARG, m> to a parameterized specification SPEC({X) depends
on the correctness of ARG with respect to X. The models of ARG, restricted to the signature
of X w.r.t. m, must be models of X. The signature of the resulting specification is the union
of the SPEC signature, where soris and operation names coming from X are renamed by m,
and of the ARG signature (i.e. the X signature disappears). The models are those of the
specification w.r.t. the resulting signature.

An example of a parameterized specification, ARRAY (ELEM, INDEX), is given below. The
ELEM and INDEX specifications are formal parameters. The ELEM specification does not
require anything:

PAR : ELEM
SORTS : Elem
END ELEM.

The INDEX specification is slightly richer, since the argument must provide a maximum and
a minimumn index, and a total ordering on the indexes. It is not given here for lack of space.

PROC : ARRAY (ELEM, INDEX)

SORTS : Array
OPERATIONS :
init: Index Index -> Array
lwb: Array ~> Index
upb: Array -> Index
] —Ji= o Array Index Elem -> Array
I Array Index -> Blem
VARIABLES :
t: Array
Li: Index
v, v : Elem
EXCEPTION CASES :

illegal-access: (i<lwbt)or (i>upbt)=true =>t[i]
illegal-modif : (i<lwbt)or(i>upbt)=true =>tli}=v
illegal-init : i> j=true =>initij

252

OK-AXIOMS :
bound1i : twb {nit i) =i
bound? : upb (init i j) =j
bound3 : wb (t]i}:=v) =lwbi
bound4 : upb (t[i]:=v) =upbt
accessl: 1isj=true => (t[i}:=v) [j] =v
access2: iisnotj=true => (t[i};=v) [j] = [j]
modift : iisj=true => ({il:=v} {il;=v =tlil=v
moedife: iisnotj=true => (fil:=v) {ili=v" = (t[jl=v) [i]:=v
END ARRAY.

Note that there is an implicit enrichment of the formal parameters. Thus no WITH is
required in the above specification. Furthermore, there is no implicit reachable embedded
in the specification of the formal parameters, since (finitely generated) models of actual
parameters may not be finitely generated models of the formal parameters.

An example of a specification built by instantiation of ARRAY is given below:

SPEC : STRING
ARRAY {ELEM => CHAR, INDEX => INT25)
RENAMING Array INTO String
init INTO emptystring
END STRING.

This overview of PLUSS-E is of course very incomplete. For instance, other features of this
specification language deal with visibility rules and allow the user to hide some private
gpecifications and/or sorts and /or operations.

111 - THE ASSPEGIQUE ENVIRONMENT

In the previous section, we have described how exception handling and structuration
features can be embedded intec an algebraic gpecification language. Our claim is that a
specification language should not only be supported by some specification method, but also
by specific tools integrated intc a specification enviromment. Parts of such environments
have already been designed or described, such as OBJ, AFFIRM, the CIP Project and the
LARCH Project. The main characteristics of these envircnments can be roughly outlined as
follows:

~ OBJ [GOG 81, GOG 83] has been developed in order to experiment theoretical hypothesis
and specification combining tools.

- AFFIRM [AFF 81] is oriented towards proof purposes. No generic lool is provided to com-
bine specifications. Full-sized examples were developed with this system.

- The CIP Project [CIP 81] attempts to consider in a uniform way specifications and pro-
grams.

- The LARCH Project [G&H 83] is developing tools and techniques intended to aid in the pro-
ductive use of formal specifications of systems containing compuler programs.

Our goal when designing the ASSPEGIQUE specification environment was to iry to integrate
all these characteristics. The main aspect of our specification environment is the high
degree to which it allows specificalions io be modularized. The user of ASSPEGIQUE deals

253

with elementary specifications which correspond, so to speak, to {ypes of interest. A major
rcle of the specification language is to assemble these elementary specifications into more
complex ones.

Modularity imposes constraints that led us to introduce sophisticated mechanisms in the
specification environment. For instance, it is useful to be able to specily a type of interest
without having previously specified all the predefined types required by this t{ype of
interest. We did in fact find ourselves obliged to abandon a wholly top-down approach in the
development of elementary specifications : such an approach leaves to last those checks
that the system must carry out if it is of any real value to the user. Leaving those checks te
the end however means that errors may be discovered far too late. We were also obliged to
abandon a wholly bottom-up approach, because such an approach does not correspond to a
natural way of gpecifying complex data structures : the most primitive specifications are
generally given last, and not first.

1.1 ~ Hierarchical relations within the specification library

The high degree of modularization of the library and the impossibility to follow an approach
which is either strictly botlom-up or strictly top-down, mean that we have to provide the
library with ordering relations : on the one hand, such relations allow to reconstitute, when-
ever necessary, all the required types (i.e. those assumed to be predefined) for a given type
of interest; on the other hand, they allow to manage the consequences of a modification
made on any of the elementary specifications in the library.

Two ordering relations are defined on the specification library ; before defining them for-
mally, we shall explain their use with a simple example.

Stack-of-integers

Integer Stack(X)
Bool X

-3 directly requires
===> instance of

Graph of ordering relations associated with Stack-ol-integers

Operations which may appear amongst the axioms of Stack-of-integers are operations on
Stack(X) (instantiated), but also operations on Bool and Integer; consequently checks to be
carried out on the axioms of Stack-of-integers {e.g. that all terms are well-formed) canmot
be carried out before specifications Integer and Bool have been introduced into the library
(since nothing prevents us from defining Integer or Stack(X) before defining Bool) : Stack-
of-integers requires {Integer, Booli.

Moreover any modification to X or Stack(X) musi lead to reconsideration of Stack-of-
integers : after a modification Integer may no longer be a suitable parameter.

More precisely, the ordering relations provided within the library are defined as follows :
1. The ordering relation reguires is defined as being the transilive and reflexive closure of
the relation direcfly requires, defined as follows :

254

a specification S2 direcily reguires a specification 31 if and only i 32 is built as an
enrichment of S1 (S1 is on the list of specifications enriched by 52) or if S2 is an
instance of a parameterized specification which directly requires S1 (e.g. in the exam-
ple sbove, Stack-of-integers is an instance of Stack(X}, which directly requires Bool; it
is self-evident that the instantiated parameter is excluded from the definition above :
Stack(X) directly requires X, but Stack-of-integers does not).

2. The ordering relation depends on is defined as being the transitive and reflexive closure

of direcily requires or is on instance of.

N.B. : As mentioned above, the relation reguires will in particular allow computation of the
set of all the operations that may appear in an axiom of the specification considered, while
the relation depends on will allow to propagate medification consequences in the library.

111.2 - Overall organization of ASSPEGIQUE

The tools available in the ASSPEGIQUE environment include : a special purpose editor,
meodification tools, a compiler, a debugger, a symbolic evaluator and theorem proving
tools. They are available Lo the user through a user interface and access the specification
library through the hierarchical library management tool {see figure on next page).

Particular attention has been paid to the interaction with the user : all the tools are inter-
faced in a uniform way and meke full use of full-screen multiwindow display and graphic
tacilities Lo provide a user-iriendly inleraction ; among others, this includes the use of on-
screen and pop-up menus, and on-line help and documentation facilities, detailed according
to the degree of expertise of the user.

The role of the hierarchical library management tool is to maintain the library coherence
w.r.t. the ordering relations beiween the specifications ; in particular, the management tool
updates the library information file.

The specification editor (cf. 111.3) is syntax-directed which does not mean that the user has
1o deal with the internal representation of the specification : the concrete views available to
the user are a text representation of the specification and a graphic representofion of its
signature. Modifications and creations are performed by the user at the level of these con-
crete views, the corresponding internal representation being accordingly updated.

The specification compiler plays two roles :

1. It computes the gramsnor associated with the specification; this gramumar allows to
analyse the axioms defined in the specification, to verify that they are syntactically correct
and to resolve overloading conflicts. To achieve these purposes, the specification compiler
uses the grammar generator and the parser described in [VOI 843,

The grammar associated with a specification S is defined as the union of grammars of all
specifications required by S and of operations defined within S. Consequently, the compila-
tion of & specification cannot take place before all specifications on which it depends have
been introduced. The compilation of a specification may moreover require that
specifications which are required but have not yet been compiled {or have been changed
since their last compilation) are compiled first.

2. The compiler produces an internal form of the specification which will be directly usable
by software accessing the library : symbolic evaluator, theorem prover, program construc-
{ion assistance tool [BGG 83].

255

Standard Terminal Graphic Display (PERG)

™~ /

USER Interface and ToplLevel

Debugger Compiler Editor

Symbeli;\\\\\\
| Evaluator

Theorem

— Proving
Tools .

Modification
Tools

P

Hierarchical
Library
Management

Cigale Parser

Interface with
program builder

256

The internal form associated with a specification is made up of LISP property lists : this
type of internal form is especially flexible, and has shown itself very convenient for handling
problems raised when interfacing ASSPEGIQUE with external tools.

The specificalion debugger is automatically loaded by the compiler when errors are
detected ; it allows interactive debugging of the specification. In particular, and this is a
contrast with the editor, the debugger is not loaded unless all required specifications do in
fact exist (and have been compiled). The debugger consequently allows to debug axioms
interactively, which is impossible at the general editing level.

The symbolic evaluator computes the canonical form of any term w.r.i. the axioms. The
symbolic evaluator takes into account conditional axioms and parameterization [KAP 83].
The theorem proving tools use the techniques described in [BID 82].

Finally, the specification environment is provided with tools whose aim is to make opera-
tions easier and to maximize the possibilities for re-using specifications. Consequently suit-
able tools allow to copy a specification, to enrich it by adding new operations or axioms, or
to rename an operation or an axiom, etc.

1.3 - The ASSPEGIQUE syntax-directed full-screen editor

As outlined before, the originality of the editor is that, while offering all the flexibility in use
of a full-screen editor, it establishes links between the external concrete views {text, graph-
ics) and the internal representation, making it a syntax editor [EDS 83]. Any movement
within the text or the graphic representation of the description is also a movement within
the corresponding tree, and any modification is taken into account at both levels by means
of a validation mechanism. The part of the edilor devoied to the specification text was
developed as an extension of WINNIE [AMA 83], a full-screen multi-window editor. The graph-
ical part of the editor was derived from a graphical interactive editor for Petri-nets, PETRI-
POTE [BEA 83].

The editor displays a template which depends on the construction primitive (enrichment,
formal parameter, parameterized type, etc...), and on the style of specification {basic, with
error handling, etc..). For instance, the figure on next page shows how the screen looks
like at some stage of the edition of a specification enriching other ones, written in a basic
siyle.

The template displayed may be broken down into :

1. A heading part which includes the name of the iype (SPEC clause), the names of the
required types {WITH clauses} and the names of the files containing their descriplions
(FROM clauses), as well as the names of sorts involved in the type description (SORTS
clause); the user may create as many WITH FROM clauses as there are required types.

2. An OPERATIONS part, in which the name and syntax of each operator Is specified {note
that the parser and incremental grammar generator [VOI 84] allow the user to indicate

where the operation arguments should be placed).

3. A VARIABLES part : name and type of variables.

257

WELCOME IN THE "ASSPEGIQUE”

SPECIFICATION ENVIRONMENT !!!

ISPEC : STACK

WITH : BOOL FROM : Std-BOOL
WITH : INT FROM : My-INT
SORTS : Stack
OPERATIONS : Use INS—* to edit operations through the PERQ interface
empty : -> Stack
push _ onto _ : Int Stack -> Stack
pop _ : Stack -> Stack
top _ : Stack -> Int
is empty ? _ : Stack -> Bool
height _ : Stack -> Int
»*
VARIABLES :
x : Int
* s : Stack
AXIOMS :
* top-1 : top push x onto s = x
(ASSEDIQUE<mod>) Value : t HELP 111
out !
Add sort

Add sort of int.
Add operation
Delete sort/op
Rename sort/op

Back to Spec.

_onto _

258

4. The AXIONMS part (which would be divided into four sub-parts, if the specification were
written in the error handling style.)

Any declaration (name of type, name and syniax of operation, etc...) is called an entily. A
star indicates that the following entity has not been validated yel. Validation consists in
checking the syntax of an entity declaration, and in completing the corresponding sub-iree
of the internal representation.

In what concerns the signature {sorts and operalions), the user may either type in directly
the text in the text view or use the PERY graphical interface. In this case, (s)he just needs
to select the appropriate command in the pop-up menu and draw, say, the operation, by
pointing at the domains and codomain sorts {the operation arrows are then drawn automati-
cally by the system).

1V - CONCLUBSION

In this paper, we have shown how io systemalically cope with siructuralion and exception
hendling at the specification level by providing an appropriate specification language; we
also described a specification environment that supports such a language and therefore its
practical use. The tools integrated in ASSPEGIQUE range from a high-level syntax-directed
editor Lo a symbolic evaluator and theorem proving tools; therefore, PLUSS-E and ASSPE-
GIQUE are especially well-suited for rapid prototyping purposes [CHO 85]. Industrial sized
experimerntations on ASSPEGIQUE are currently under development, and will provide a firm
basis to further versions.

A kernel system of ASSPEGIQUE consisting in the top-level and user-interface, the
specification editor together with its graphic interface, a specification compiler, a symbolic
evaluator, the special purpose grammar generalor and the parser, theorem proving tocls
has been implemented on VAX-UNIX and PERQ-PCS. This system has been demonstrated at
the 7th International Conference on Software Engineering, Orlando, USA and at the 2nd
AFCET Conference on Software Engineering, Nice, France.

V-~ ACKNOWLEDGEMENTS

This work is partially supported by A.D.I Coniract No 839 and the CN.R.S. {Greco de Pro-
grammation).

Special thanks are due to Marie-Cloude Goudel for many helpful suggestions and discussions
in designing the PLUSS-E language. We also thank Frederic Voisin, Stephane Kaplan, Mori-
onne Choguer, Michel Beoudouwin-Lofon who respectively made the parser, the symbolic
evaluator, the theorem proving tools and the graphic interface.

Vi - REFERENCES

JADJ 78] Goguen J., Thatcher ., Wagner E., "An Initial Algebra approach to the specification, correct-
ness, and implementation of abstract data types” in Current Trends in Programming
Methodology. Yol.4, Yeh Ed. Prentice Hall, 1978 (yalso 1BM Report RC 6487, October 1976},

259

[AFF 81] Gerhart S.L., "AFFIRM Reference Manual”, UCS-Report {Marina del Rey), 1981,

[AMA 83] Amar P., "Winnie : un éditeur de textes multifenétres extensible”, Actes des Journées BIGRE
(Le Cap d'Agde), 1983.

{BBGGG 84] Bidoit M., Biebow B., Gaudel M-C., Gresse C., Guiho G., "Exception handling : formal
specification and systematic program specification”, Proc. 7th 1.C.S.E., Orlando, USA, 1984.

{BEA 83] Beaudouin-Lafon M., "Petriiote: a grthic system for Petri-Nets design and simulation”
Proc. of 4th European Workshop on Applications and Theory of Petri Nets, Toulouse, France,
1983.

[BID 82] Bidoit M., “Proofs by induction in “fairly” specified equaticnal theories" Proc. 6th German
Workshop on Artificial Intelligence, Bad Honnef, Germany, Springer-Verlag IFB 58, 1982.

[BID 84] Bidoit M., "Algebraic specification of exception handling and error recovery by means of
declarations and equations”, Proc. 11th ICALP, Antwerp, 1984.

{BCK 84] Bidoit M., Choppy C., Kaplan S. "ASSPEGIQUE : un environnement de spécification
algébrique”, Proc. 2nd AFCET Software Engineering Conference, Nice, 1984, pp357-371

{BGG 83] Bidoit M., Gresse C., Guibo G., "CATY : Un systéme d'aide au développement de pro-
grammes"”, Actes des Journées BIGRE 83 (Le Cap d’'Agde), 1983.

[BGG 84] Bidoit M., Gaudel M-C,, Guibo G. "Towards a systematic and safe programming of exception
handling in ADA” Proc, of Ada-Europe/Ada TEC Conf., Brussels, June 1984.

[B&W 82] Broy M., Wirsing M., "Partial Abstract Data Types” Acta Informatica, Vol.18-1, Nov 1982,

{B&G 79] Burstall R, Goguen J., "The semantics of CLEAR, a specification language”, in Abstract
Software Specifications, D. Bjorner Ed., LNCS 86, Springer-Verlag, 1879.

[CIP 81] CIP language group "Report on a wide spectrum language for program specification and
development”, Rapport TUM-18104 {Munich), 1881,

[CHO 85] Choppy C., "Tools and techniques for building rapid prototypes®, AFCET Workshop on "Pro-
totypage, Maquettage et Génie Logiciel”, Lyon, January 1985,

[DOD 83] "The programming language ADA - Reference Manual” United States Department of Defense,
January 1983,

{EDS 83] "Les é&diteurs dirigés par la syntaxe”, Journées d'Aussois - INRIA Ed. (Rocquencourt «
France), 1983,

[GAU 83] Gaudel M.-C,, "Proposition pour un Langage d'Utilisation de Spécifications Structurées :
PLUSS”, C.G.E. Research Report, 1983.

[GDLE 83] Gogolla M., Drosten K, Lipeck U., Ehrich H., “Algebraic and operational semantics of
specifications allowing exceptions and errors” Proc. 8th Gl-Conference on Theoretical Com-
puter Science, LNCS 145, 1983, Springer-Verlag.

[GOG 77] Goguen J.A., "Abstract errors for abstract data types” in Formal Description of Program-
ming Concepts, E.J. NEUHOLD Ed.. North Holland, New York 1977.

[GOG 78] Goguen J.A, "Exception and Error Sorts, Coercion and Overloading Operators” S.R.L
Research Report, 1978,

{GOG 81] Goguen J.A., Parsaye-Ghomi K, “Algebraic denotational semantics using parameterized
modules”, Tech. Report CS1-119, SRI International, UCLA, 1881.

[GOG 83] Goguen J.A., "Parameterized Programming”, Proc. Workshop on Reusabibility in Program-
ming, Stratford CT, USA, 1983,

[G&H 83] Guttag 1.V., Horning J.J., “An introduction to the LARCH shared language”, Proc. IFIP 83,
REA. Mason ed., North Holland Publishing Company, 1983.

[XAP 83] Kaplan S., "Un langage de spécification de types abstraits algébriques”, Thése de 3éme

260

cycle, LRI {Orsay ~ France), 1983,
[PLA 82] Plaisted D., "An initial algebra semantics for error presentations” Unpublished Draft, 1982.

[S&W 83] Sanella D., Wirsing M., "A Kernel Language for Algebraic Specification and Implementation”,
to appear inInt. Conf. on Foundations of Computing Theory, Bergholm, Sweden, 1983,

[VOl 84] Voisin F., “CIGALE : un outil de construction incrémental de grammaire et d'analyse
d’expression”, Thése de 3&me cycle, Orsay {France), 1984,

[WIR 82] Wirsing M., "Structured algebraic specifications”, Proc. AFCET Symp. on Mathematics for
Computer Science, Paris, France, 1882,

[WIR 83] Wirsing M., “Structured algebraic specifications : A kernel language”, PhD. Thesis, Munchen,
Germany, 1983.

