
PROGRAM DEVELOPMENT AND DOCUMENTATION

BY INFORMAL TRANSFORMATIONS AND DERIVATIONS

Giovanna Petrone Luigi Petrone

Dipartimento di Informatica

Universit~ di Torino, Italy

i. INTRODUCTION

The content of this paper is the outcome of some teaching

experience and a research effort in programming methodology. However,

part of the terminology has been changed and some insight has

been gained as an effect of the wider perspective set out by Scherlis

and Scott in their quite recent IFIP 83 paper. Their overall analysis

is assumed in this paper with some limitations of objectives;

in fact we are principally interested in informal, but possibly

rigorous, derivations of programs and in designing adequate sup-

porting tools. Formal derivation of programs as well as formal

correctness proofs are relevant to this paper, conceptually, in

that they provide an insight, a deep insight indeed, into the

correctness problem. In other words, by asserting the possibility

of deriving a formal correctness proof we get the assurance that

the informal, but nevertheless rigorous, proofs of program deriva-

tions are not without foundations and that they can become, anytime,

formal and detailed if needed.

This lack of formalism can sometime induce a lack of preci-

sion and may not always be capable of preventing the introduction

of programming errors. It is however difficult to guarantee a

level of absolute precision within a methodology where the human

contribution is substantial. But we dare confess that our primary

objective is not absolute and foolproof program correctness, but

(*) Preparation of this paper supported in part by NSF grant MCS-81-

03718 and by project ESPRIT 125, funded by EEC.

232

rather a methodology for program development, documentation a~nd

understanding, and we want to privilege an intuitive deep under-

standing of a program from the designer point of view rather than

to wait for a distant, and yet to come, automatic support for the

derivation process. We are aware that some confusion exists today

in the fleld of programming methodology between formal treatment

and rigorous treatment of programs. We devote an entire section

to try to clarify this issue.

2. PROGRAMMING AS AN EVOLUTIONARY PROCESS

Programming, even real word programming, is an evolutionary

process IBauer 76, Balzer 811. The final results of the programming

process, the program texts, deprived of the insight that went into

their conception, are too complex to be understandable and should

not be used for the maintenance process. One might even say that

the program texts are as relevant to the programming process as

one accidental result of the addition process, say 26, is relevant

to the understanding of the concept of the integer sum. In fact,

programs do not stay immobile, they evolve and modify in synchronism

with the social context in which they are exploited. Therefore,

we are interested in the derivation process of a program more than

in the program itself IBauer 76~ Scherlis and Scott 83 and also

Petrone 831.

The first known examples of program derivation techniques

were the step-wise refinements of Dijkstra 1721 and Wirth 171!

and the program transformations of Burstall and Darlington 771,

Manna and Waldinger 1791. However, the general framework of the

latter authors, perhaps biased by their cultural background of

research in mechanical theorem proving, has been that of setting

up a theory ~nd a set of tools to provide an automated environment

for deriving correct programs. This latter enterprise should not

exclude the need to explore and experiment derivations of programs

carried out by humans but no significant effort has been made in

this direction. Certainly, a lack of convenient tools makes the

2~

job more difficult. But, probably, this is also a signal that the

evolutionary nature of the programming process is generally seen, in

the computing community, more as an evil than as a feature that

can be of great help in explaining and documenting the design of

a system.

3. FORMAL SPECIFICATIONS VERSUS RIGOROUS SPECIFICATIONS

It is claimed that software implementation should start from

a formal specification language. The request for formality is based

upon the statement that only a formal expression would allow a

correctness proof to be carried over. This statement seems to imply

a framework that happens to be too restrictive specially in view

of the even stronger statement that only a formal treatment would

allow a sound mathematical treatment of the programmir~g process.

It has been explicitly pointed out that this may not be true (see

IP. Naur 821 and IDe Millo 791). The usual presentation of mathema-

tical proofs appearing in technical journals even if often referred

to as rigorous proofs (or sometimes, perhaps improperly, as formal

proofs) is never carried using a formal predefined language provided

of nonambiguous formal syntax. No mathematician would accept such

a constraint in his everyday work.

Problems do arise because of the already mentioned confusion

between formality and rigor In classical mathematics formality

and rigor are synonyms. Rigor only means that each concept is opera-

tionally defined according to sound rules accepted in a given disci-

pline and notations are always defined in a way that excludes ambi-

guity of any sort. In Logic and even more so in Computer Science

formality usually indicates that a language is defined with a

precise syntax , given in BNF, and a precise semantics is given

that makes mechanical treatment possible for instance by allowing

a mechanical proof or an automatic checking But to request that

all reasoning about programs and in particular all derivations

of programs be made in a formal language is probably an useless

if not harmful approach.

234

Formality is a price we are willing to pay only if a substantial

benefit from some advantageous mechanical processing is obtained,

in return. In fact, the possibility of rigorous but not formal

treatment allows for greater freedom in selecting the proper frame-

work which happens to be the most convenient for each application

field or each problem at hand. Moreover, it is doubtful that one

might be able to define a unique specification language suitable

for the many different application fields of the real world. The

argument that since a programming l~nguage like Pascal is "Universal"

we should be able to define a universal specification language

seems not to apply completely. In fact, the universality of a pro-

gramming language is achieved in each application by means of many

layered levels of abstractions, each one level requiring what cannot

be considered but as a heavy effort of implementation and coding.

4. SPECIFICATION: THE FIRST IMPLEMENTATION PHASE

Obviously~ software problems do not have a unique specification.

Moreover, as we will show on the example of the sorting problems,

certain specifications make easy to derive certain implementations

and prevent, or make it difficult to derive others.

In a certain sense, the specification language is a sort of

programming language and the specification phase is the first,

and not the least important, implementation phase. This viewpoint is

shared by some authors. Bauer and Woessner 1821 speak of some speci-

fications as pre-algorithmic formulations of problems and Scherlis

and Scott 18SI say that the difference between specification and

implementation is not qualitative but quantitative. To support

the previous view we point out the following facts:

i) Specifications can often be interpreted as trivial algorithms,

the so called British Museum algorithms. For instance the specifi-

cation:

Vx 3n ! x~O ~ n_x<.(n+l) ~

can be interpreted as:

235

given any x>O find n I n2~<x< (n+l) ~

or more explicity if we know that such an n exists and n ~ x it

can be found by the trivial (descending) search program:

i := x;
2 Z

while not i~x< (i+l) do

i := i - l;

ii) static specifications in the Hoare style can often be transformed

into recursive definitions. See program synthesis by Darlington

and Manna and their folding-unfolding techniques.

iii) specifications are often expressed in terms of concrete re-

presentations of the data structures of the problem and this requires

a first implementation effort, a first level of commitment.

iv) specifications are often given in terms of notions that are

defined constructively, i.e. recursively.

For instance, the summation sign definition: a = a+a+...+a looks cer-

tainly more esotheric than the simple constructive definition:
m<q ~ n-1

a :0 :~+ ao
N

a But the latter recursive definition immediately leads to the

corresponding recursive program and is fundamental to any iteraflive

program such as

i := O; s := O;

while i n do

s := s + alil

i := i+l

This appears more clearly for the usual gcd algorithm of two integers

x, y. The specification is:

Vx y3z I z/x and z/y andVw I w/x and w/y~ z_>w

A trivial interpretation would imply an exhaustive search. The

usual algorithm can be derived only if the following two recursive

equations are known:

gcd(x,y) = gcd(x-y,y) if x~y

gcd(x,y) = x if x=y

2~

More enlightening is the example of the sort programs. To derive

a sort program one should first know what sorted sequence means.

The usual definition is given in terms of a concrete representation

of a sequence as an array:

(i) Vi j I i<j~a[i]_<aEj]

This definitions intended as a program specification, interpreted

as a prescription leads to

for i := 1 to n

for j : = 1 to n

if afi] > a[j] then exchange(all] ,a[j])

or, after a slight modification, to

for i := 1 to n

for j : = i+l to n

if a[i] > a[j] then exchange(a[i],a[j])

Vi j I i<j~a[i]<alj]

An alternative definition might be given recursively. A sequence

of cardinality one is ordered by definition. In formula:

cardinality(A)=l ~ordered(A).

If cardinality (A)>I, let us suppose that a subsequence B of A

of cardinality n-l, is ordered. In order to infer that the sequence A

is ordered one has to distinguish three cases depending on the

relative position of the left over element which can be less than

any element of the subsequence B or greater than or intermediate.

In the first two cases we have that a recursive definition of ordered

(A) might look like

(2) ordered(A) <:~ ordered(B) and B~C

and cardinality(C)=l and A=B cat C

(3) ordered(A) ~:~ ordered(B) and C~B
and eardinality(C)=l and A=C cat B

where B < C means that every element of B is less or equal than

every element of C and cat is the operation that applied to two

237

ordered sequences B and C such that B ~ C gives a sequence A that

happens to be ordered. In the third case we define a merge operation

as an operation that, applied to two ordered sequences, gives a

third sequence which happens to be ordered. In formulas:

(4) ordered(A) ~ ordered(B) and cardinality(C)=l

and A=merge(B,C)

A similar analysis shows that the splitting of A into B and C can

be more general or that the condition cardinality(C)=l can be released

replacing it with ordered(C). We have

(5) ordered(A) ~:~ ordered(B) and ordered(C)

and B~C and A=B eat C

(6) ordered(A) ~=~ ordered(B) and ordered(C)

and A:merge(B,C)

The formulas (2), (30 and (4) are in essence the guidelines

for the sorting methods known as bubble-sort by minimum or by maximum

or by insertion. Formulas (5) and (6) are the base for quicksort

and mergesort. Even formula (i) can be used as a guideline for

some methods, in particular the method comparing each element with

all the others, counting the elements which are less than it and

using such counters as indexes for their relative positions.

Obviously, one can easily show that the six formulas are

equivalent. For instance formula 1 is equivalent to

V P-q I p<q<n-I a[p]~a[q~ and Vr I r~n-I a[r]~a[n]

i.e. to formula (2). One could certainly start from one formula, say

(i) taken as the unique problem specification, and try to derive

all the sorting programs from it (see Darlington I761) but that

process seems to suffer from an excess of formality, useful only

if used by some automatic derivation system.

Alternatively, one could start from one specification, derive

a specific program and then perform a set of program transformations

to derive from it all the other sorting methods. In fact programs

can be derived in a variety of ways according to different styles

of derivations. We think that one should try to keep the program

238

derivations at the highest level of abstraction for the greatest

number of steps. This tactic implies using a variety of equivalent

formulations of the problem to be solved or in other words implies

to start the optimization job right from the beginning at the specifi-

cation level, as we have done for the sorting methods.

5. DERIVATIONS OF PROGRAMS

We shall illustrate and comment on two single derivations

of programs. These will be examples of what we intend by rigorous

but informal derivations. The first is the trivial example of the

integer square root program, the second is the minimal spanning

tree of a graph. Since the latter is a little longer it will be

given in the Appendix. The derivations will be given as successive

photographs of the program plus comment describing the modifications

or transformations.

Of course the first form of the square root program is the following

program, directly obtained from the specification:

i := O;
.2)Z

while not 1 ~x < (i+l do

i : = i+l

{C_<x <(i+l) ~}

The first optimization consists in noting that the while test
2

is redundant because if i~<x before the loop then, after the assign-
a

ment i:=i+l, one still has i.<x. In other words i < x is a program

invariant°

i := O;

while not x < (i+l) 2 do

i := i + 1

{ i~_< x < (i+i/}

2
Since (i+l) = i~2i+l we need not to compute each time (i+l) ~ anew,

but we may profit of the previous value stored into a variable, called

i-plus-one-square, adding each time 2i+I to it. Again, instead

of computing 2i+I anew each time, we introduce a second variable

two-i-plus-one. We have:

239

i := O;

two-i-plus-one := i;

i-plusone-square := i;

I i x and two-i-plus-one = 2i + 1

and i-plus-one-square = (i + I) = I

while not x < i-plus-one-square do

l
i := i + i;
two-i-plus-one := two-i-plus-one + 2;

i-plus-one-square := i-plus-one-square + two-i-plus-one

I ' j
i ~ x < (i + l) 2

which is our final square-root program. It is more natural to communi-

cate the "meaning" of the square-root program by saying that it

is a linear axhaustive search optimized by simplification of the

loop-test and by introducing two state variables (to use the relation

(i+l) ~ = i+2i+l), than by any other way, which, using correctness

proofs or hand simulation, tries to express a meaning in terms

of the final program. In other words, the derivation process is

a practical way to transmit the meaning of this program to a person:

programmer or developer. We might even reverse the usual attitude

towards program correctness. No longer do we care whether the written

presentation of the previous algorithm contains bugs or typing

error if the given derivation method makes us feel secure and con-

fident to be able to reproduce the derivation process with the

requested degree of precision. Absolute precisi0n is needed in

fact only for th0se programs which we do not know how to derive. Abso-

lute precision is of fundamental importance only if we ignore all

about an algorithm; we only know that "it works and therefore we

must not touch it". For the same reasons absolute and detailed

program correctness is fundamental for machine execution. A treatment

analogous to the square root derivation can be easily given for

other elementary programs.

Incidentaly if anyone tried to remember final programs and

correctness proofs of the simple examples reported in the classical

text-book of Manna 1761 one would probably fail 90% of the time

while it is just too trivial to derive them through a series of

240

derivation steps.

Now a few more comments. First, if the programmer of the previous
2

algorithm does not see immediately that i ~ x is a cycle invariant,

he will come ou~ with a little less optimized program having one

more program variable (i-square) and a slightly longer cycle test,

but still a reliable program properly annotated with a correctness

proof. In other words, a tree of derivations is a stable process

whose intermediate results are still of pratical value; it is not

an all-or-nothin~ process.

Second, the previous derivation steps not only easily allow

you to derive the square root-program, but immediately lead you

to generalyze it into a similar program, say, for the cubic root,

)3 3
since (i + 1 = i + 3i ~ + 3i + i, and more generally, induce you

to exploit recurrence relations in order to optimize programs defined

by specifications like:Vx y P(x,y).

Third, a final comment on a taxonomy of programs. Derivations

of programs naturally induce a relationship of programs that are

derived through the same derivation pattern and it will be natural

and interesting to study programs from this point of view. But

then, similarity of derivations may be quite unexpected. For instance,

the sum of two symbolic polinomials, represented say by linked

lists, and the program for merging two ordered sets do share the

same derivation.

Can we delimit or describe the concept of derivation of a

program? Certainly, such a concept will include program derivations

by step-wise refinements, by transformations, by modifications

and by applications of program schemata IGerhart 761. Step-wise

refinements are well known and will not be discussed here. Transfor-

mations usually denote a program modification that leaves invariant

the computed result. Transformations techniques have been widely

studied: they include elimination of recursion in certain cases

and generic source optimizazions. A class of transformations, better

called program synthesis, deserves to be mentioned: it studies

the transformation of static specifications into recursive definitions

241

(by folding and unfolding). Program modification slightly changes

a program keeping invariant only some objectives in order to solve

a slightly different problem. Of course once a derivation pattern

has been secured one should try to generalize it into a derivation

of a schematic program or of an abstract program and, for the moment,

leave to the ingenuity of the designer which schema or schematic

pattern to apply in each concrete case. However, more than on ab-

stractly studying classes of program derivations our emphasis in

this research program is on concretely applying derivations of

programs to specific cases as an everyday working tool of a teacher

when he/she tries to "present" a program to his student or of a

designer when he/she tries to document an implementation.

6. A TOOL FOR DERIVATIONS OF PROGRAMS

Programs are derived from specifications in steps and the

initial phases of the derivation require the ability to express

abstract algorithms. One example of abstract algorithm is the minimal

spanning tree algorithm of the appendix; abstract algorithms are

being currently used in the literature (see books by Aho, Hopcroft and

Ullman or S. Baase). Not surprisingly abstract algorithms are express-

ed in an informal language, but nevertheless they can be considered

to be unambiguos and rigorous (to adopt "our" terminology). Such

a program design language is a sort of documentation language whose pur-

pose is to convey ideas and not to instruct machines.

An important objective to be obtained is the derivation of

the initial program design into the final implementation. The deriva-

tion must allow an easy link of each piece of program code to the

design ideas that originated it in the first place. A research

program on tools for program derivation has given origin to the

system DUAL, described in IPetrone 82,831.

Briefly, DUAL is an intelligent editor/incremental compiler

designed to cope with the evolutionary nature of the design process as

embodied by the techniques of program transformations and step-

wise refinements. DUAL takes special advantage of the screen-keyboard

242

interface to provide a natural access to the tree-structured design

data base where design informations and program texts are strictly

correlated.

The various steps of the design process are "photographed ~

by DUAL and the "movie" showing the derivation phases can be dinami-

cally "replayed" on the screen at the visitor's (designer or mainte-

nance-developer) will. A clear distinction between design, implementa-

tion and documentation no longer exists in DUAL. The description

of a design is a description of the implementation at a higher

level of abstraction and is expressed in an informal design language

which, by successive modifications, will derive into the program

text.

REFERENCES

Baase S. 119781 Computer Algorithms: introduction to Design and Ana-

lysis. Addison~Wesley.

Balzer R. I19811 Transformational Implementation: an example. IEEE

Trans. on Soft. Eng., Vol SE-7, 3-14.

Bauer F.L° 119761 Programming as an evolutionary process. Proc.

2-nd Int. Conf. on Soft. Eng., San Francisco, 223-234.

Bauer F.L. and W~ssner H. 119821 Algorithmic Language and Program

Development. Springer Verlag.

Burstall R.M. and Darlington J.A. I1977[A transformation system

for developing recursive programs. J. ACM 24, 44-67.

Darlington J.A. 119761A synthesis of several sorting algorithms. Res.

Rep. N.23, Dpt. of A.I., Un. of Edinburgh.

De Millo R.A., Lipton R.J. and Perlis A.J. 11979! Social processes and
proofs of theorems and programs. Comm.s ACM, Vol 22-5,

271-280.

Dijkstra E.W. !19721 Notes on structured programming in Structured

Progre~ming, Academic Press.

Gerhart S.L. and Yelowitz L. I19761 Control Structure abstractions
of the Backtracking Programming Technique. IEEE Trans.

on Soft Eng.

Manna Z. I!9761 Mathematical Theory of Computation. MC Graw-Hill.

243

Manna Z. and Waldinger R. 119791 Synthesis: dreams = programs.

IEEE Trans. Soft. Eng., SE-5.

Naur P. I19821 Formalization in program development. Bit, 22, 437-

453.

Petrone L. et alii 119821 DUAL: an interactive tool for developing

documented programs by step-wise refinements. Proc.

6-th Int. Conf. Soft. Eng., Tokyo, 350-35?.

Petrone L. et alii I19831 Progrs~ development and documentation

by step-wise transformations: an interactive tool. Proc.

Int. Comp. Symp. NNrnberg.

Seherlis W.L. and Scott D.S. I19831 First steps towards inferential

programming. IFIP Congress, 199-212.

Waters R.C. 119791A Method for analyzing loop programs. IEEE Trans.

Soft. Eng., 5.

Wirth N. II9?iI Program development by step-wise refinements. Comm.

ACM, 14, 221-227.

APPENDIX

An example of derivation of programs: minimal spanning tree

of a graph. (We reformulate in terms of derivations an example

taken from the book of S. Baase).

Given an undirected graph G=(V,E,W) where V, E, W are the sets

of nodes, edges and associated weights, let us represent a spanning

tree T of G as a subset of E.

The first important step of the derivation is to reformulate a

theorem in a recursive form so that the algorithm is but a trivial

implementation of the reoursion.

Let us first introduce the following notations. Given a graph

G=(V,E,W), we want to consider the "complete" subgraphs Gi=(~, ~, Wi)

of G which are unguely obtained in correspondence with subsets

V i of V by assuming that G is made of all the edges E i of E whose

vertices belong both to ~. If G i =(V i ,E i ,W i) is a subgraph of G

then adjacent(V~ is the set of all vertices of G which are not

in V i but are adjacent to same vertex of V i and incident(R) is the

set of all edges of E which are not in E but which are incident
i

244

to vertices of G. Let P and Q denote the predicates "V 2 = adjaoent(V I)~'
i

and ~'E = incident(El)" respectively.
2

Definition. The subgraph consistin~ of any vertex x of G=(V,E~W)

is minimal. If a subgraph Gj =(V i) is minimal and xy is the edge

of minimal weight belonging to inoident(V i) then Gi+1= (V i u { y})

is minimal~ Note that if G is connected G is trivially a minimal

subgraph of itself. Now we can state the recursion theorem:

Theorem. . The subgraph G i consisting of any vertex of G=(V,E,W)

is minimal and its minimal spanning tree is the empty set. If

G i-~-~Vi) is a minimal subgraph of G, and T is its MST, then if we

denote with xy the edge of minimal weight belonging to ineident(V i)

we have that Gi+1 =(V ~ u{x]) is minimal and Ti+ I =T i u {xy} is the MST

of Gl+ I

A first high level description of the algorithm is a straighforward

transliteration of the recursion theorem and is the application

of the well-known schema of building a program "around" a cycle

invariant

V I <- any vertex of G

E I <- empty set

v3<-v- x

{assert: the subgraph denoted by the set V is minimal

{assert: E is a MST for the subgraph denoted by V}

'~make the predicate P true"

"make the predicate Q true"

{assert P,assert Q

while E 2 not empty do

find an edge e in E 2 of minimum weight;

set x to be the vertex in V 2 incident with e

V~<- V~ u {x};
V2<- v 2 - {x};

El<- g I u {e];
g2~- g 2 - {e};

{assert: the subgraph Gi, denoted by V~, is minimal

{assert: E1is a MST for the subgraph denoted by V I

~restore predicates P"~ "restore predicates Q"

245

{assert P, assert Q }

end

Note that when E 2 becomes empty, E I has grown to include all vertices

belonging to one connected component of G.

The operations restoring predicates P and Q are simple, they are

omitted. A first optimization is to make the set E 2 containing one

edge (the one with minimal weight) for each vertex in 4" This effects

the definition of Q and the operation restoring that predicate

which now becomes

for each y in V2 adjacent to x do

if weight(xy) ~ weight(the edge e in E 2 incident with y)

then E 2 <- E 2 - {e } u {xy}

The operation restoring predicate P becomes

for each y in V 3 adjacent to x do

V 2 - V 2 u {y};

v~ - v ~ - { y } ;
E 2 - E 2 u {xy}

A second optimization is a space/time optimization. The operations

restoring P and Q occur twice in the program. They can be moved

from outside into the loop, their order can be inverted and the

final Drogram becomes similar to the abstract algorithm reported

in Baase which is an unstructured program.

Incidentally, unstructured programs could be allowed in a

derivation tree. After all, the final program texts of derivations

are no longer used to convey the meaning of a design. If we revisit

all the phases of this derivation we see that are simple and natural.

The only points where some ingenuity is required are the initial

recursion theorem and the restrictions of the sets where the search

of minimum cost edge must be performed.

