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/ ~ :  This paper outlines a logical approach to abstract data types, which 
is motivated by, and more adequate for (than algebraic approaches), the 
practice of programming. Abstract data types are specified as axiomatic 
theories and notions concerning the former are captured by syntactical concepts 
concerning the latter. The basic concepts of namability, conservative 
extensions and interpretations of theories explain implementation, refinement 
and parameterisation. Being simple, natural and flexible, this approach is 
quite appropriate for program development. 
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This paper outlines and illustrates a logical approach to the 
specification and implementation of abstract data types (ADT's) and software, 
which is directly motivated by, and more adequate for the practice of software 
engineering. There is still, we feel, a large gap between existing formal 
methods work on theories of ADT's and the actual practice of programming. The 
most important aspects of this gap concern the lack of a clear relationship 
between formal specification and actual programs and the technical inadequacies 
of formal theories of specification and implementation. 

Let us look more closely at this gap with reference to examples from the 
current literature. Theories of specification and implementation usually do 
not give an adequate account of how programs are actually produced to realise 
the presented specification and implementation. For example, in [GHM] an 
implementation is defined equationally with claims that their equational 
definitions can be translated easily into programs in some programming 
language. This may be reasonably seen to be the case for functional 
(applicative) languages [He'80] and easy examples, but is certainly not the 
case for other kinds of languages and more complicated examples. In any case, 
what criteria can we use to decide whether this allegedly easy step is actually 
correct? This is not discussed. In the algebraic theories [GTW'78, Eh'81, 
EKP'79, WPPDB'80, WB'82, SW'82, Ga'83, BG'81], development is kept totally 
within the same formalism with no interface defined other than inadequate 
statements such as: At the end of the development process, the primitive data 
types of a programming language can be used. How they can be used and how 
programs are actually produced is never adequately discussed or is left as an 
open problem [BG'81]. 

In [L'79] we can see an informal approach to program specification and 
development in the ADT framework which interfaces well with a given programming 
language. In fact, descriptions of behaviour are given in a form which is very 
close to the language. However, the specifications and development are highly 
informal &nd so it is difficult to see how to verify correctness of any of the 
steps. 

Another aspect of the gap is the difference between what software 
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engineers feel is required at the specification stage and what formal theories 
require one to state. The algebraic theories require details to be specified 
which might more often be left as details of implementation (or as we will 
point out, may not need to be dealt with at alll). One example is an operation 
like choosing an arbitrary element of a set. We would like to say just this 
(i.e. have an underdetermined operation) but, for example, the algebraic 
theories based on initiality force us to define at the specification level, 
which element of the set we will choose. Errors present a similar situation. 
Often (when fault tolerance is not an important consideration, for example), we 
wish to specify the behaviour under normal conditions of the system we are 
developing and do not require anything about error situations. This is what is 
expressed by conventional input/output specifications. Algebraic theories 
generally require us to give complete specifications and require us to deal 
with these abnormal situations at the specification level, either by using 
error specifications whose theory is quite complex ([Go'77,Go'83,P'84]) or 
partial algebras and definedness predicates which again tend to be complex and 
difficult ([BW'82, WPPDB'83]) or else by being somewhat informal [G'77]. 

Finally, let us turn to the process of implementation/development. This 
process is generally seen in terms of the following diagram: 

$I ....... >~2 ' 
t 

$2 ...... >~ ' 
! 

S~ co.. 

SN-I .... >~N' 
! 

SN 

We wish to implement specification SO and we decide that we wish to use $I as a 
basis for a first step in this process. We then enrich (extend) $I by adding 
new symbols and properties so that we can realise the operations of SO in terms 
of those of $I. This realisation is effected by a translation from SO to $I' 
(the extension of $I); for example, theory morphisms in algebraic theories. 
The software engineer would mimic this process by writing a cluster of 
procedures C01 to implement the operations of SO assuming those of $I as 
primitive. It is not clear how he would prove the correctness of his 
procedures with respect to the original specification, even if he were 
interested, as he has no obvious interface between this implementation step (SO 
in $I via $1') and the programming language and its associated logic. 

Supposing that this first implementation step is done, the software 
engineer might then wish to proceed by implementing $I in $2 (via the 
extension/enrichment $2'). Having then written the corresponding cluster of 
procedures C12, he would then have a collection of procedures (C01 and C12) 
which he would say together implemented SO in $2. Moreover, he would expect 
that the modularised reasoning he had done (in justifying the steps from SO to 
$I via S', the writing of the cluster C01, the step from $1 to $2 via $2' and 
the development of the cluster C12) to justify the correctness of the composed 
implementation of SO in $2 and use the set of procedures in C01 and C12 as the 
programming language realisation of this composition. Unfortunately, most 
theories would not allow him to make this assumption! For example, in [Eh'82], 
in order to compose SO in $I via $I' with $I in $2 via $2', one is obliged to 
"reprogram" SO in $2 via a further extension. So one would have two extensions 
of $2:$2' to implement $I and $2" to implement SO. Thus no cluster C01 could 
have been written before the compostion as its proof of eorrectness can only be 
supplied at the end of the process of implementation when we have finally 
reprogrammed SO in SN. So it would seem that we have to keep redoing work we 
have already done - proving the correctness of the implementation of SO. 
Moreover, in [Eh'82] translations (implementations) do not preserve all 
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properties of the specification SO - only so-called ground properties (formulae 
in which no variables appear). Thus, any reasoning about a program P using SO 
would hot be valid once an implementation step is taken as invariably this 
involves non-ground properties and these may not be preserved. (Actually 
algebraic methods are also deficient in another sense with respect to verifying 
program properties since reasoning about programs generally requires something 
equational logic does not provide -the use of quantifiers. This is 
particularly true, for example, in the case of loop invariants in imperative 
language programs)~ 

Again, in [SW'82], implementations do not in general compose. Again, 
property preservation is the problem (see counter example on page 485 of 
[SW'82]). A technical way of putting this is that the categories of 
specifications as objects and translations as arrows/morphisms have too many 
such arrows. 

To bridge the gap, it is our intention to outline a theory which makes a 
better approximation to the objects (specifications) and arrows (translations) 
which should be present in order to support the practices of software 
engineering, in particular stepwise development and certificatiom 

Among the methodological advantages of this method are: 

(i) Specifications need say only as much as is thought desirable. 
There is an allowance for underdetermined operations and partially 
defined operations (if popping the empty stack is never used in a 
program, then there is no need to specify what happens in this 
situation), thereby simplifying the treatment of errors. 

(i) The language of first order logic is a powerful and succinct formalism 
compared to the more restrictive formalisms used elsewhere. 

(iii) The theory is closer to the usual logics of programs (usually 
extensions of first order logic). 

(iv) The restrictive notion of sufficient completeness ([Gu'77, Ga'83, 
WPPDB'83, WB'82]) is replaced by a more permissive concept, thus 
contributing to the ease of use and expressiveness of the formalism. 

Among the technical advantages of this method are: 

(i) There is a powerful proof theory which, for example, allows the use of 
general formulae including quantifiers, justifies the use of 
structural induction and the development of canonical forms and 
provides a natural basis for proofs of termination for programs using 
ADT ' s. 

(ii) There is a natural interface between implementation steps and 
input/output specifications for programs to realise these steps. 

(iii) Implementations always compose and the composition is constructed 
directly and automatically from the components. Moreover, the 
correctness of the composition is guaranteed by the correctness of the 
components. Compostion of implementations is associative and 
implementations "commute" with instantiation of parameters in a 
parameterised type. 

(iv) Implementations preserve a_~ provable properties. Thus, proofs of 
correctness of programs remain valid after implementation. 

(v) Equality is dealt with as any other predicate (i.e. it is not 
interpreted as identity). Thus there is no need as in the algebraic 
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theories, to introduce a "semantic" equality different from the "=" 
used in equations. This reflects the reality that abstract objects 
are often represented by more than one concrete object. These 
concrete objects are equivalent but not identical. 

The technical justification of these claims is provided elsewhere ([MV'81, 
MSV'83, MSV'83a, SM'84]). Here we hope to present our ease for the 
methodological benefits of the theory. 

2. Namabilitv and Incomnlete Specifications 

For a very simple example consider the ADT with one sort (Nat), one 
constant symbol (zero) and one unary operation symbol (_S_~) specified by the 
following two sentences (with leading universal quantifiers implicit, as 
usual) : 

(I) - zero = suco(n) 

(2) suet(m) = _S/~(n) -> m = n 

Notice the occurrence of the binary predicate symbol =. We shall consider 
= to be present in every specification together with the usual axioms stating 
that the realisation of = is a congruence [E'72]. Also assumed present in 
every specification is the following namabilitv axiom 

(N) (~ n:Nat) In : zero v n =succ (zero) v ... 

. . .  v n -- / f i l q ~ ( . . . s u o c (  e/~r_q . . . )  v . . . ]  

T h i s  i s  an i n f i n i t a r y  s e n t e n c e  ( i n  L ~ , ~ ) ,  s t a t i n g  t h a t  eve ry  e l e m e n t  of  t h e  
domain of Nat must be the value of a ground (variable-free) term. 

It is well-known, and easy to see, that every model of (1), (2) and (N) in 
which = is realised as identity is isomorphic to the standard model N of the 
natural numbers. In fact, any model A of the above axioms is such that the 
quotient A/=A (where =A is the realisation of = in A) is isomorphic to N. (We 
shall not require that = be realised always as identity for reasons to be 
clarified in the sequel). One very important consequence of the namability 
axiom will be an induction axiom 

(~n:Nat)[n = zero v(3m:Na~)[n = sue(m)]] 

Now consider the result of enriching the above ADT with a binary predicate 
intended to mean "less than". Call it NAT; its language is 

zero , ) ~  s~cc 

We can specify ,N~ by adding to the above specification, for instance, the 
following sentences (which amount to a recursive definition of it) 

(3) /&(succ(m),succ(n)) <-> it(m,n) 

(4) it(zero, suq~(n) ) 
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(6) -/~(_~_~9_q(m) ,~) 

We remark that this theory is a c~onsgrvative e~tension [Sh'67] of the 
preceding one~ for the addition of the new axioms (3)-(6) does not enable the 
derivation of any new theorem in the old language, i.e~ without ]J~. 

A more interesting example is the ADT j~T of NAT, intended to mean finite 
sets of naturals. Its language is 

Consider the following axioms (where the sorts of the variables are m,n:N~$; 
s, t :Set) 

(7) [(~n:~[~) .~d~(n,s) <-> b_g~(n,t)] -> s = t 

(8) - b_b_e~(n,]2hi) 

(9) bel(m,~(s~n)) <-> m = n v bel(m,s) 

(10) b_mi(m,zgm(s,n)) <->-m = n & b_~(m,s) 

(11) - s = ~t -> A~l(~a(s),s) 

Axiom (7) can be regarded (as its converse is a consequence of the 
underlying axioms for =) as defining = (short for = Set)in terms of 
_~ (onging). That is part of the reason why we do not require = to be 
realised as identity. Namely, in a complex data type equality among objects of 
a (structured) sort will in general depend upon its component objects, having 
to be programmed (of. equality among arrays), rather than being simple logical 

identity. 

Axioms (8), (9), (10) define, in the same spirit, ohi, ins and rein in 
terms of ~. But, in contrast, we give no similar complete definition for 
chs. For, we want Cb~ to be an underdetermined operation to choose an element 
from a non-empty set. And axiom (11) states just that! Notice in particular, 
that it says nothing about _q~(ohi) because at this point we have decided not 
to be interested in this particular error situatiom 

In order to clarify this let us consider a specific ground term 

t = ina(~ma(m~i,.suec(~) ) ,zero) 

(which denotes the set {0,1}). From the preceding axioms we are able to deduce 
(as expected) sentences like 

~ t-- ~Ai 
t = ins(~(~_~,zero) ,~LO_q(zero)) 
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properties of the specification SO - only so-called ~ound properties (formulae 
in which no variables appear). Thus, any reasoning about a program P using SO 
would bet be valid once an implementation step is taken as invariably this 
involves non-ground properties and these may not be preserved. (Actually 
algebraic methods are also deficient in another sense with respect to verifying 
program properties since reasoning about programs generally requires something 
equational logic does not provide - the use of quantifiers. This is 
particularly true, for example, in the case of loop invariants in imperative 
language programs). 

Again, in [SW'82], implementations do not in general compose. Again, 
property preservation is the problem (see counter example on page 485 of 
[SW'82]). A technical way of putting this is that the categories of 
specifications as objects and translations as arrows/morphisms have too many 
such arrows. 

To bridge the gap, it is our intention to outline a theory which makes a 
better approximation to the objects (specifications) and arrows (translations) 
which should be present in order to support the practices of software 
engineering, in particular stepwise development and certification. 

Among the methodological advantages of this method are: 

(i) Specifications need say only as much as is thought desirable. There 
is an allowance for underdetermined operations and partially defined 
operations (if popping the empty stack is never used in a program, 
then there is no need to specify what happens in this situation), 
thereby simplifying the treatment of errors. 

(i) 

(iii) 

The language of first order logic is a powerful and succinct formalism 
compared to the more restrictive formalisms used elsewhere. 

The theory is closer to the usual logics of programs (usually 
extensions of first order logic). 

(iv) The restrictive notion of sufficient completeness ([Gu'77, Ga'83, 
WPPDB'83, WB'82]) i~ replaced by a more permissive concept, thus 
contributing to the ease of use and expressiveness of the formalism. 

Among the technical advantages of this method are: 

(i) There is a powerful proof theory which, for example, allows the use of 
general formulae including quantifiers, justifies the use of 
structural induction and the development of canonical forms and 
provides a natural basis for proofs of termination for programs using 
ADT's. 

(ii) 

( iii ) 

There is a natural interface between implementation steps and 
input/output specifications for programs to realise these steps. 

Implementations always compose and the composition is constructed 
directly and automatically from the components. Moreover, the 
correctness of the composition is guaranteed by the correctness of the 
components. Compostlon of implementations is associative and 
implementations "commute, with instantiation of parameters in a 
parameterised type. 

(iv) 

(v) 

Implementations preserve all provable properties, Thus, 
correctness of programs remain valid after implementation. 

proofs of 

Equality is dealt with as any other predicate (i.e. it is not 
interpreted as identity). Thus there is no need as in the algebraic 
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We can also deduce, of course, b__e~(_q_~(t),t) and even 

c__ha( ) = ~ v ~t) = ~(ezmr~) 

But we cannot deduce either equation of the above disjunetionl In other words, 
the above axioms do not enable us to compute a specific natural number as the 
value of _qllg(t). And they should notl If they did we would have overspecified 
R~, which is still regarded as arbitrary choice. It would be premature at 
this level of specification to describe exactly how such an element is to be 
picked. This should be left to a future refinement, or perhaps to the 
implementation phase, when the consequences of such a decision can be better 
evaluated. 

But how do we guarantee that ~hs(t) is indeed a natural number? Notice 
that, by syntax, _q_~(t) is of sort Nat. And our namability axiom (N) 
guarantees that any object of a domain of sort N__gJL (in particular the object 
denoted by _q~(t)) is a standard natural number, thus preventing chs(t) from 
becoming a non-standard natural number. Compare this with the more 
conceptually complicated notions of data and hierarchy constraints in 
[BG'79,BG"81, WPPDB'83] and the semantic constraints of [MV'81]. 

As we have a new sort, we also have the corresponding namability axiom 

(V s:~_~) v (s = t) 
tinT 

where T is an enumeration of all ground terms of sort S_~ and V represents 
infinite disjunction. As a consequence we again have a schema of induetior~ 
More important is the fact that every object of sort S~ has a "normal form" 
involving only ~ and ins. which are then the constructor operations [GH'78]. 
This is again a consequence of the above namability axiom. 

In general, a ~f±ea~ion for an ADT consists of a many-sorted first- 
order theory presented by a language L and a set of axioms G. For each sort s 
in S we assume a binary predicate symbol =s in L. The machinery of the 
!o~ie of n~ability has for each sort s in S 

the usual equality axioms 

a namabiiity axiom (~ x:s) V (x = s t ) 
tinT 

where T is an enumeration of the ground terms of sort s (in addition to the 
usual logic axioms). The logic of namability also has an infinitary rule of 
inference (a be-rule) which allows us to manipulate the namability axiom to 
derive induction schema, normal forms, etc. See [B'77] for details of 4~- 
rtLleS. 

3. Program Develg_~ment ~sL_Verificatig_~ 

The proposed approach aims at being partucularly appropriate for program 
construction by means of ADT's. As a simple example to illustrate this we 
shall consider sortin~ We can formulate it as the construction of a program P 
that receives as input a set t of natural numbers and outputs a sequence q of 
natural numbers such that is-sort(q,t), where ~s-sort is defined by 

(12) ~(q,t) <-> ordered(q) & s~(q,t) 
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Here the language consists of the following sorts and predicates 

bel 

(the intended realisation of o~c is occurrence of a number in a sequence and 
that of orec(m,n,q) is that m occurs in q before n) so that ordered and same 
are defined by 

(13) qvdered(q) <-> (~m,n:Nat) [l__~(m,n) 

&o_qg_q(m,q) & oq~(n,q) -> pre¢ (m,n,q)] 

(14) same(q,t) <-> (Vn:Nat) [OqQ(n,q) <-> bel(n,t)] 

We now have a natural interface to our programming language as the input output 
specification of our sort porgram P is: {~} P {is_sort(q, So)} where S o is 
the input set. 

For operations we have all those of SET of NAT plus a constant symbol 
lmbd of sort Seq such that 

(15) - Qec(n, lmbd) 

and an operation symbol ordins: (Sea.Nat) -> See partly specified by 

(16) ordered(q) -> ordered(ordins(q,n)) 

(17) occ(m, ordins(q,n)) <-> m = n & occ(m,q) 

Given this ADT SORT of NAT it is quite natural to conceive our program P 
first as an abstract program that repeatedly removes elements from the input 
set and inserts them (respecting their relative order) into an initially empty 
sequence. In order to formalise this intuition it is useful to extend the 
specification of our ADT by the following definition 

(18) is-transf(q,t, So) <-> (~n:Nat)[bel(n, So) 
<-> bel(n,t) v occ(n,q)] 

We are thus led to the following abstract program 

t:=So; q:=imbd; 
{ordered(q) & is-transf(q,t, So) } 

while -t = p h~ do 
n:=chs(t) {bel(n,t)}; 
q:=ordi~(q,n); 
t:=rem(t,n) {~ bel(n,t)} 

end 

We have already annotated the program with the loop invariant 

ordered(q) & is-transf(q, t, s o) 

and some assertions following immediately from axioms (10) and (11). 
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In view of (12), she verification conditions [Ma'74] (for partial 
correctness) include for instance, 

(19) ~ _ ~ (  q, t, s o) --> [~(n, t) --> is, tra~g~(~(q, n), 
~(t,n), So)] 

This (and the other verification conditions) follow easily from the 
preceding axiom s~ 

A usual method to prove termination is that of the well founded set 
[Mat74]. Here we can employ the set of ground terms with the well founded 
relation of "being a subterm". Indeed we can show, using the normal form of 
section 2, 

]~(n,t) -> Z.~(t~n) < t 

which suffices to guarantee termination. 

An advantage of the proposed approach is exactly this: we generally can 
employ the syntactical well-founded relation of being a subterm in order to 
prove termination, rather than having to create a special well founded set for 
almost every program~ 

Notice that we have proved the total correctness of our program based only 
on the ADT specification, thus without needing complete definitions for chs or 

In fact, in line with the methodology of program construction by means of 
ADT's, we employed an ADT close to the problem That is whY we use ordins and 
~rec, not usually thought of as available to manipulate sequences. We shall 
take care of this in the next section by implementing the ADT SORT of NAT in 
terms of more "concrete" ADT's. 

4. Imolementat~~ Refinements) As Interoretationg 

The ADT used in the program for sorting is SORT of NAT. We are now going 
to implement it in terms of the list of naturals. We will use the ADT 

with the following language 

zero 

Its specification consists of that for ~ plus the following axioms 

(20) cons(m,x) = ~_q~(n,y) -> x = y & m = n 

(21) A~(_qona(m,x)) = m 

(22) ~!(~mz~(m,x)) : x 

(23) il(~il) = nil 

(Recall that we also have r~mability and = /~ as a congruence). Notice in 
particular that we cannot deduce a value for~). All we know from (N) is 
that hd~i~ is some natural. 
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We can implement SQRT of NAT into LIST of NAT, sort by sort. Consider 
first the sort Set. 

The first thing to do is decide which lists will represent sets. Our 
intuition tells us we need only those lists with nonrepeated occurrences of 
elements. So, we extend LIST of NAT with the 

(24) set, reD(x) <-> (~ n:Na$) [is-in(n,x) -> once(n,x)] 

where 

(25) is-in(n,x) <-> - x = nil & [hd(x) = n v ~(n, tl (x))] 

(26) once(n,x) <-> ~ x = nil & [_~(x) = n & - is-in(n, tl(x))] 
v [~ hd(x) = n & ~ne~(n, tl(x))]) 

set-reD is called a relativisation predicate and it is used to delineate those 
lists which actually represent a set from those that do not. (It sorts the 
wheat from the chaff~). 

We now have to extend LIST of NAT by concepts corresponding to those of 
SET of NAT: for each symbol Dhi, bel. etc., we introduce in LIST of NAT the 
corresponding primed one Phi', bel', etc. For instance 

(27) phi ' = nil 

(28) ins'(x,m) = y <-> ris-in(m,x) & y = x] v[- is-in(~,x) & y = cons(re, x)] 

(29) r~m'(x,m) = y <-> [- is-in(re, x) & y = x] 
v [is-in(re, x) & y = tl(x)] 

(30) gh~'(x) = m -> is~in(m,x) 

(31) bel'(m,x) <-> is-in(m,x) 

(32) x = 'S~ Y <->:(~ n Nat) [is-in(n,x) <-> is-in(n,y)] 

Notice that : , not being considered a logical symbol realised as 
identity, undergoes the same treatment as the other symbols (we employ here = 
'Set for clarity). Also notice that some of the above axioms define a primed 
symDol in terms of list symbols (e.g. Phi' as nil) but others only give partial 
definitions. In particular, notice that we have not yet defined completely how 
chs is to operate, nor have we imposed that each set be represented by a unique 
list. 

Having translated one specification into another, we can write a cluster 
of procedures to realise this translation/refinement/implementation. The 
procedures correspond in a one to one fashion to the operations and predicates 
of the abstract specification being implemente~ Thus, in the example above, 
we have procedures defining Dhi', in~', rem', ehs', bel' and = 'Set (as well as 
the operations of NAT). We can define the input/output specm-~eations for 
these procedures by using (24), ..., (32). For example, the function 
(procedure) INS (corresponding to ins and ins') takes arguments m o of sort ~g~ 
and x o of sort List and has the specification 

{set-reD(x o) & nat-r~p(mo)} 

INS(Xo, m o ) 

{(is-in(mo,X o) & INS = x o) 
v (- is~in(mo, X o) & INS = cons(mo, Xo)} 
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So the input specification indicates that the function is guaranteed or 
expected to work only for concrete representatives of abstract objects while 
the output specification is the definiens of the definition of in~' in terms of 
list operations. Developing and proving such a program correct can of course 
use the logic of the programming language and assume the properties of lists. 

Now for the sort ~ it is natural to use a list as representing a 
sequence. So the corresponding representation predicate is trivial, and 
similarly for equality between sequences. 

For the constant, operation and predicate symbols of sort ~.~g, we 
introduce, for instance 

(33) dg~'(xjm) : y-> 9rdered' (y) 
& (Vn:N_~) (~(n,y) <-> n = m v is-in(n,x)) 

(34) /hT.9~'(m,n,x) <-> - x = nil & [ h(_~(x) = m & is-in(n,.~(x))) 
v 22_9_q' ( m, n,_t~(x) )] 

Notice that we do not have to worry about symbols like s_A_mLg, etc., that 
were introduced by definition. As we will see later, such definitions can be 
~earried forward" in implementations in an automatic fashion. 

Finally, we can naturally represent the sort ~ of SORT of NAT 
identically by the sort ~ of _LIST of NAT. So this part is trivial. 

By adding axioms (24) through (34) to LIST of NAT we have built a 
conservative extension of the latter. Call this extension 
LIST of NAT by SORT o~. Now, each sentence of the language of SORT. gf NAT 
can be translated into a corresponding one, its primed and relativised version. 
For instance consider axiom (10), which after being written with explicit 
leading universal quantifiers is translated to 

(35) (Vx:/~_~) (~i,j:~) {set-reD(x) & nat-reD(i) & nat-reD(j) 
->[~' (i,2_e.m'(x,j)) <-> i :'N_~3' v _bel'(i,x)]} 

The use of relativisation predicates with the translation of quantified 
formulae reflects the idea that properties of sets, when translated, are meant 
to hold only for lists w~hich really represent sets. 

Now, in order to guarantee the correctness of the implementation (and of 
our program for sorting) we have to verify that each realisation of LIST of NAT 
induces a realisation of .SQRT of NAT. This can be done as follows. Firstly 
for each axiom of SORT ~[_~ we verify that its translation is a theorem of 
LIST of NAT by SORT of NAT. For instance, (35) follows from LIST of NAT plus 
(25), (28) and (32) together with the definition of ='Nat" Secondly, we verify 
closure of the relativisation predicates under th--g-corresponding primed 
operations. For instance, 

(~x:~) (~i:l[~) [~_e~eD(x) & nat-reD(i) -> 9_e~(~'(x,i))] 

follows from_LIST of NAT plus (24), (25), (26) and (28), together with the 
definition of ='Nat" Thirdly, we have to verify the translation of the 
underlying equali y%-~--and namability axioms. For instance, we have to verify 
that 

(~x,y:~ig_~) (~i:l~) {set, re~(x) & set-rg~(y) & nat-reD(i) 
->Ix ='~9-~ y -> ia~'(x,i) :'/~/~g'(y,i)]} 

(which states the substitutivity of -'S with respect to /~g') and - S_9_% 
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(V x:List) [set-~'eD(x) -> V (x ='2 t')] 
tinT 

where t' denotes the translation of t in an enumeration T as before (which 
states the namability of set-reD by primed Set operations). 

After these verifications we have a correct implemenation of 
SORT of NAT bY L~T Qf NAT. 

In general, our notion of implementation is a slight generalisation of the 
familiar logical concept of interoretation between theories [E'72,Sh'67,VP~81. 
A (correct) implementation of an ADT A presented by (LA, G A) by an ADT C 
presented by (Lc, G C) consists of a conservative extension A bY C, obtained b~ 
adding to (LA, G A) partial specifications for the primed symbols of A and the 
relativisation predicates for the sorts of LA, together with an interpretation 
of the theory A into the theory of A by C. 

This notion appears to capture what a programmer does when implementing A 
by C: the partial specifications for the primed symbols correspond to the 
input-ouput specifications for the procedures he writes to realise the 
corresponding symbols of A in terms of the symbols of C. (Notice, in 
particular, that the test for equality in A is now realised by a procedure in 
C). Also, the relativisation predicates correspond to the representation 
invariants of [G'77]. The abstraction mapping or representation function is 
implicitly given by the interpretation, which is both a conceptual and 
technical advantage. 

One should notice that with this implementation we have a proven correct 
sorting program receiving sets of naturals represented by lists of naturals and 
outputting the corresponding sorted lists. But we have not yet completely 
committed ourselves to a particular sorting algorithm, because chs' and ordins' 
are still only partly specifie~ (We are committed only to the families of 
algorithms of sorting by selection or by insertion [Kn'75,D'77]). 

In order to illustrate refinements as interpretations let us consider 
refining chs' and ordins'. The former is partly specified by (30) only to pick 
an element of a list, whereas the latter is partly specified by (33) only to 
insert an element into a list preserving the relative order. Suppose we decide 
to refine _qhg' to pick the least element occuring in a list and accordingly 
ordins' to insert an element at the head of a list. 

This refinement step can be described as the (non-conservative) extension 
of LIST of RAT by SORT of NAT by means of the following axioms 

(36) ~s'(x) ='i -> ~x :'n~' & oec'(i,x) & (Vj:Nat) (oee'(j,x) 
-> i =' j v~'(i,j))] 

(37) ordins'(x,i) =, cons(i,x) 

(Notice that this still does not assign a value to chs(p_~, which we do not 
need for our program). 

Alternatively this refinement can be regarded as a simple implementation 
of LIST of NAT by SORT of NAT contensions into LIST of NAT by SORT of NAT 
(conservatively) extended by (36) with chs" in lieu of .chs' and (37) with 
ordins" in lieu of ordi~s', where the interpretation is the identity but for 

chs' -> chs" and ordins -> ordins" 

We can now illustrate how such implementations compose. Suppose we have 
the ADT A implementated in the ADT B by means of the conservative extension C 
of ~ and the interpretation of_A into C. Similarly for B interpreted in 
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which is a conservative extension of D. Diagrammatically, 

11 
A ...... > £ 

/B ....... > E 

T e2 
where II and 12 are interpretations and el and e2, conservative extensions 
Then there exists ~ such that 

I2 
c >Z 

B .............. > _E 
I2 

!2(el) 

is a pushout (i.e. there is a least ~)° F is essentially Z with the 
translations of the formulae defining el by I2 (extended as identity to the 
symbols introduced in el). So the extension el is just carried forward (in 
translation) and all its consequences are still (translated) consequences). 
Then the composition is represented by composirgthe conservative extensions e2 
and I2(e2) and composing the interpretations I2 and II. The methodological 
point to note is that ~, I2, and I2(e1) are automatically constructable and the 
software engineer need not actually worry himself about it! 

5. Parameterisatio~As Interoretation 

If we look back at our abstract program P for sorting we see that it does 
not depend heavily on the exact nature of the elements. In fact, we used more 
properties of sets and sequences (and, in the implementation, lists) than 
properties of the natural numbers, the usage of the latter being confined to a 
small corner. Of course, we have a case of parameterisatior. 

In order to illustrate the main ideas of our approach to parameterisation 
let us consider the simple case of SET of NAT. The idea is that SET of NAT can 
be obtained from the parameterised ADT SET of TQD by substituting NAT for the 
parameter T~. Now, what is S ~ ?  Well, SET of TOD should be the same 
as SET of NAT_ but with the nature of the elements left completely open (except 
for the fact that it has a "less than" ordering, since we intend to use it for 
sorting). So, as far as sets are concerned, we should have the same 

specification as before~ 

To be more precise, the language of SET of TOD is 

ina ,2_cm _$.q 

o 

C n 
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The axioms are those concerning the set symbols i.e~ (7) through (11) plus the 
following (stating that to is to be realised as a total ordering relation). 

(38) (4 i:Tod) -to (i,i) 

(39) (~i,j,k:TQd)to (i,J) & to (j,k) -> to (i,k) 

(40) (~i,j:Tod) to (i,j) v i = j vto (j,i) 

We still have the underlying axioms for equality and for namability. Only 
notice that the namability axiom for sort Tod has the form 

(~i:Anv) (i = C O v i = C I v ... v i = C n v ...) 

This is the only axiom mentioning the constant symbols Co, ..., Cn, .... As 
there are no axioms jointly mentioning some C n with some other symbol, the C_'s 
are not constrained to any particular value in a realisatior~ Their only ro~e 
is naming the elements of a domain of sort TQd. That is why we regard Tod as a 
parameter, subject to the only constraint of having a total order to. In 
particular the only interesting results derivable from this specification are 
those one might call results concerning sets per se and total orders, in 
general. 

Now, how do we pass parameters in order to obtain SET of NAT from 
SET of TOD? This is performed by the assignment p, of sorts 

Tod I-> Nat 

and of symbols 

to l->it 

~i I-> suet(zero) 

s~t 

We extend this assignment p to be the identity on the remaining symbols, 
so that it builds a copy of this part of the language of SET of TOD on top of 
that of NAT. Thus, this mapping will translate identically axioms (7) through 
(11). These axioms together with those of NAT, (I) through (6), will give the 
specification of SET of NAT. Pictorially 

(7) (7) 

Tod 

(11) 

(38) 

(40) 

(11) 

( I )  

(6) 

Nat 

Notice that the translations of axioms (38) through (40), as well as of 
the equality and namability axioms of sort Tod, are theorems of NAT. Thus, the 
outcome is an interpretation of theories, of SET of TOD into SET of NAT. 
Hence, all the results proved about SET of TOD translate into provable 
properties of SET of NAT. 

Similarly, we have the parameterised ADT's SORT of TOD and LIST of TOD. 
Applieatlon of assignment p will build the expected ADT's together with the 
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corresponding interpreta'cions 

S[p] of ~_0~_T. @f TO~D into S O ~ T ~  

and 

Lip] o f _ ~  into LIST of NAT 

In the previous section we gave an implementation of SORT of NAT into 
LIST of NA~. Now, we consider the implementation I[-], which is the same 
except that it is the identity on sort T_~ and its symbols ]~g, Co, C I ... 
This is a "parameterised" implementation of S__ORT of TOD into LIST of TOD. 

In a natural way, the parameter assignment p coupled with this 
"parameterised" implementation I[-] defines the original implementation I[p] of 
SORT of NAT into LIST of NAT. Furthermore, the following diagram (where the 
horizontal interpretations come from parameter passing and the vertical ones 
correspond to implementations) commutes. 

I[-] 

~ORT of TOD S[p] ~ SORT of NAT 

I ~ I[p] 

~IST ~ L[pl  .... ~,,LIST o f  NAT 

The nice practical consequence is that we have the freedom to develop our 
program for sorting in a parameterised fashion and specialise the parameters to 
N~ (or any other suitable data type) when we please. 

6. Conclusion 

We have outlined an approach to ADT's, based on logic which is a natural 
formalisation of what programmers (should) do. 

The key idea is that an ADT is (specified by) a (many-sorted) logical 
theory presented by axioms° Thus, notions concerning ADT's are captured by 
syntactical concepts concerning their theories. In particular, 

the properties of an ADT are (formalised as) the theorems deduced from its 
axioms 

an implementation of an ADT by another ADT is an interpretation of the 
theory of the former into a conservative extension of the theory of the 
latter 

a refinement is an extension, which is a simple implementation 

parameterisation is also an interpretation. 

Thus we need only the familiar logical concepts of (conservative) 
extension and interpretatiom In general, the formulas of an extension are 
input-output specifications of procedures. 

As an illustration of the technical simplicity of our theory, we have the 
fact that parameter passing commutes with implementations. In most approaches 
this result has a somewhat elaborate proof. Here it is an immediate 
consequence of a simple but important result, namely the eomposability of 

impl ementati ons. 
Flexibility is another important asset. We are free to specify just as 

much as we want or need. In particular our specifications can be incomplete, 
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sufficiently complete or even complete in the algebraic sense [G'77, GH'78, 
GTW'78]. This flexibility is very convenient in dealing with errors or 
undefined values. For instance, consider the case of hd n(~. We can decide 
to leave it unspecified but defined. Or we can decide to have an error 
constant to be the value of hd(nil) with the further choice of either 
specifying error propogation or leaving it oper~ In any case we have the well- 
founded relation of "being a subterm" at hand to use in proofs of terminatio~ 

Finally, the usage of simple logical concepts together with the 
flexibility and naturalness of this approach make it quite adequate for program 
development. 
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