
A THEORY OF ABSTRACT DATA TYPES FOR ~ROGRAM DEVELOP~NT:
BRIDGING THE GAP?

T.S.E. Maibaum
Department of Computing
Imperial College of
Science and Technology
London
UK.

Pauio A.S. Veloso
Depto. de Informatica
~IC/RJ, Rio de Janeiro
Brasil.

M.R. Sadler
Department of Computing
Imperial College of
Science and Technology
London
UK.

/ ~ : This paper outlines a logical approach to abstract data types, which
is motivated by, and more adequate for (than algebraic approaches), the
practice of programming. Abstract data types are specified as axiomatic
theories and notions concerning the former are captured by syntactical concepts
concerning the latter. The basic concepts of namability, conservative
extensions and interpretations of theories explain implementation, refinement
and parameterisation. Being simple, natural and flexible, this approach is
quite appropriate for program development.

Ken Words: abstract data types, axiomatic theories, incomplete specifications,
program development, stepwise refinement, implementation, parameterisation,
interpretation, conservative extension, namability.

This paper outlines and illustrates a logical approach to the
specification and implementation of abstract data types (ADT's) and software,
which is directly motivated by, and more adequate for the practice of software
engineering. There is still, we feel, a large gap between existing formal
methods work on theories of ADT's and the actual practice of programming. The
most important aspects of this gap concern the lack of a clear relationship
between formal specification and actual programs and the technical inadequacies
of formal theories of specification and implementation.

Let us look more closely at this gap with reference to examples from the
current literature. Theories of specification and implementation usually do
not give an adequate account of how programs are actually produced to realise
the presented specification and implementation. For example, in [GHM] an
implementation is defined equationally with claims that their equational
definitions can be translated easily into programs in some programming
language. This may be reasonably seen to be the case for functional
(applicative) languages [He'80] and easy examples, but is certainly not the
case for other kinds of languages and more complicated examples. In any case,
what criteria can we use to decide whether this allegedly easy step is actually
correct? This is not discussed. In the algebraic theories [GTW'78, Eh'81,
EKP'79, WPPDB'80, WB'82, SW'82, Ga'83, BG'81], development is kept totally
within the same formalism with no interface defined other than inadequate
statements such as: At the end of the development process, the primitive data
types of a programming language can be used. How they can be used and how
programs are actually produced is never adequately discussed or is left as an
open problem [BG'81].

In [L'79] we can see an informal approach to program specification and
development in the ADT framework which interfaces well with a given programming
language. In fact, descriptions of behaviour are given in a form which is very
close to the language. However, the specifications and development are highly
informal &nd so it is difficult to see how to verify correctness of any of the
steps.

Another aspect of the gap is the difference between what software

*Research partly sponsored by CNPq, FINEP and SERC (UK).

215

engineers feel is required at the specification stage and what formal theories
require one to state. The algebraic theories require details to be specified
which might more often be left as details of implementation (or as we will
point out, may not need to be dealt with at alll). One example is an operation
like choosing an arbitrary element of a set. We would like to say just this
(i.e. have an underdetermined operation) but, for example, the algebraic
theories based on initiality force us to define at the specification level,
which element of the set we will choose. Errors present a similar situation.
Often (when fault tolerance is not an important consideration, for example), we
wish to specify the behaviour under normal conditions of the system we are
developing and do not require anything about error situations. This is what is
expressed by conventional input/output specifications. Algebraic theories
generally require us to give complete specifications and require us to deal
with these abnormal situations at the specification level, either by using
error specifications whose theory is quite complex ([Go'77,Go'83,P'84]) or
partial algebras and definedness predicates which again tend to be complex and
difficult ([BW'82, WPPDB'83]) or else by being somewhat informal [G'77].

Finally, let us turn to the process of implementation/development. This
process is generally seen in terms of the following diagram:

$I >~2 '
t

$2 >~ '
!

S~ co..

SN-I >~N'
!

SN

We wish to implement specification SO and we decide that we wish to use $I as a
basis for a first step in this process. We then enrich (extend) $I by adding
new symbols and properties so that we can realise the operations of SO in terms
of those of $I. This realisation is effected by a translation from SO to $I'
(the extension of $I); for example, theory morphisms in algebraic theories.
The software engineer would mimic this process by writing a cluster of
procedures C01 to implement the operations of SO assuming those of $I as
primitive. It is not clear how he would prove the correctness of his
procedures with respect to the original specification, even if he were
interested, as he has no obvious interface between this implementation step (SO
in $I via $1') and the programming language and its associated logic.

Supposing that this first implementation step is done, the software
engineer might then wish to proceed by implementing $I in $2 (via the
extension/enrichment $2'). Having then written the corresponding cluster of
procedures C12, he would then have a collection of procedures (C01 and C12)
which he would say together implemented SO in $2. Moreover, he would expect
that the modularised reasoning he had done (in justifying the steps from SO to
$I via S', the writing of the cluster C01, the step from $1 to $2 via $2' and
the development of the cluster C12) to justify the correctness of the composed
implementation of SO in $2 and use the set of procedures in C01 and C12 as the
programming language realisation of this composition. Unfortunately, most
theories would not allow him to make this assumption! For example, in [Eh'82],
in order to compose SO in $I via $I' with $I in $2 via $2', one is obliged to
"reprogram" SO in $2 via a further extension. So one would have two extensions
of $2:$2' to implement $I and $2" to implement SO. Thus no cluster C01 could
have been written before the compostion as its proof of eorrectness can only be
supplied at the end of the process of implementation when we have finally
reprogrammed SO in SN. So it would seem that we have to keep redoing work we
have already done - proving the correctness of the implementation of SO.
Moreover, in [Eh'82] translations (implementations) do not preserve all

216

properties of the specification SO - only so-called ground properties (formulae
in which no variables appear). Thus, any reasoning about a program P using SO
would hot be valid once an implementation step is taken as invariably this
involves non-ground properties and these may not be preserved. (Actually
algebraic methods are also deficient in another sense with respect to verifying
program properties since reasoning about programs generally requires something
equational logic does not provide -the use of quantifiers. This is
particularly true, for example, in the case of loop invariants in imperative
language programs)~

Again, in [SW'82], implementations do not in general compose. Again,
property preservation is the problem (see counter example on page 485 of
[SW'82]). A technical way of putting this is that the categories of
specifications as objects and translations as arrows/morphisms have too many
such arrows.

To bridge the gap, it is our intention to outline a theory which makes a
better approximation to the objects (specifications) and arrows (translations)
which should be present in order to support the practices of software
engineering, in particular stepwise development and certificatiom

Among the methodological advantages of this method are:

(i) Specifications need say only as much as is thought desirable.
There is an allowance for underdetermined operations and partially
defined operations (if popping the empty stack is never used in a
program, then there is no need to specify what happens in this
situation), thereby simplifying the treatment of errors.

(i) The language of first order logic is a powerful and succinct formalism
compared to the more restrictive formalisms used elsewhere.

(iii) The theory is closer to the usual logics of programs (usually
extensions of first order logic).

(iv) The restrictive notion of sufficient completeness ([Gu'77, Ga'83,
WPPDB'83, WB'82]) is replaced by a more permissive concept, thus
contributing to the ease of use and expressiveness of the formalism.

Among the technical advantages of this method are:

(i) There is a powerful proof theory which, for example, allows the use of
general formulae including quantifiers, justifies the use of
structural induction and the development of canonical forms and
provides a natural basis for proofs of termination for programs using
ADT ' s.

(ii) There is a natural interface between implementation steps and
input/output specifications for programs to realise these steps.

(iii) Implementations always compose and the composition is constructed
directly and automatically from the components. Moreover, the
correctness of the composition is guaranteed by the correctness of the
components. Compostion of implementations is associative and
implementations "commute" with instantiation of parameters in a
parameterised type.

(iv) Implementations preserve a_~ provable properties. Thus, proofs of
correctness of programs remain valid after implementation.

(v) Equality is dealt with as any other predicate (i.e. it is not
interpreted as identity). Thus there is no need as in the algebraic

217

theories, to introduce a "semantic" equality different from the "="
used in equations. This reflects the reality that abstract objects
are often represented by more than one concrete object. These
concrete objects are equivalent but not identical.

The technical justification of these claims is provided elsewhere ([MV'81,
MSV'83, MSV'83a, SM'84]). Here we hope to present our ease for the
methodological benefits of the theory.

2. Namabilitv and Incomnlete Specifications

For a very simple example consider the ADT with one sort (Nat), one
constant symbol (zero) and one unary operation symbol (_S_~) specified by the
following two sentences (with leading universal quantifiers implicit, as
usual) :

(I) - zero = suco(n)

(2) suet(m) = _S/~(n) -> m = n

Notice the occurrence of the binary predicate symbol =. We shall consider
= to be present in every specification together with the usual axioms stating
that the realisation of = is a congruence [E'72]. Also assumed present in
every specification is the following namabilitv axiom

(N) (~ n:Nat) In : zero v n =succ (zero) v ...

. . . v n -- / f i l q ~ (. . . s u o c (e/~r_q . . .) v . . .]

T h i s i s an i n f i n i t a r y s e n t e n c e (i n L ~ , ~) , s t a t i n g t h a t eve ry e l e m e n t of t h e
domain of Nat must be the value of a ground (variable-free) term.

It is well-known, and easy to see, that every model of (1), (2) and (N) in
which = is realised as identity is isomorphic to the standard model N of the
natural numbers. In fact, any model A of the above axioms is such that the
quotient A/=A (where =A is the realisation of = in A) is isomorphic to N. (We
shall not require that = be realised always as identity for reasons to be
clarified in the sequel). One very important consequence of the namability
axiom will be an induction axiom

(~n:Nat)[n = zero v(3m:Na~)[n = sue(m)]]

Now consider the result of enriching the above ADT with a binary predicate
intended to mean "less than". Call it NAT; its language is

zero ,) ~ s~cc

We can specify ,N~ by adding to the above specification, for instance, the
following sentences (which amount to a recursive definition of it)

(3) /&(succ(m),succ(n)) <-> it(m,n)

(4) it(zero, suq~(n))

218

(6) -/~(_~_~9_q(m) ,~)

We remark that this theory is a c~onsgrvative e~tension [Sh'67] of the
preceding one~ for the addition of the new axioms (3)-(6) does not enable the
derivation of any new theorem in the old language, i.e~ without]J~.

A more interesting example is the ADT j~T of NAT, intended to mean finite
sets of naturals. Its language is

Consider the following axioms (where the sorts of the variables are m,n:N~$;
s, t :Set)

(7) [(~n:~[~) .~d~(n,s) <-> b_g~(n,t)] -> s = t

(8) - b_b_e~(n,]2hi)

(9) bel(m,~(s~n)) <-> m = n v bel(m,s)

(10) b_mi(m,zgm(s,n)) <->-m = n & b_~(m,s)

(11) - s = ~t -> A~l(~a(s),s)

Axiom (7) can be regarded (as its converse is a consequence of the
underlying axioms for =) as defining = (short for = Set)in terms of
_~ (onging). That is part of the reason why we do not require = to be
realised as identity. Namely, in a complex data type equality among objects of
a (structured) sort will in general depend upon its component objects, having
to be programmed (of. equality among arrays), rather than being simple logical

identity.

Axioms (8), (9), (10) define, in the same spirit, ohi, ins and rein in
terms of ~. But, in contrast, we give no similar complete definition for
chs. For, we want Cb~ to be an underdetermined operation to choose an element
from a non-empty set. And axiom (11) states just that! Notice in particular,
that it says nothing about _q~(ohi) because at this point we have decided not
to be interested in this particular error situatiom

In order to clarify this let us consider a specific ground term

t = ina(~ma(m~i,.suec(~)) ,zero)

(which denotes the set {0,1}). From the preceding axioms we are able to deduce
(as expected) sentences like

~ t-- ~Ai
t = ins(~(~_~,zero) ,~LO_q(zero))

219

properties of the specification SO - only so-called ~ound properties (formulae
in which no variables appear). Thus, any reasoning about a program P using SO
would bet be valid once an implementation step is taken as invariably this
involves non-ground properties and these may not be preserved. (Actually
algebraic methods are also deficient in another sense with respect to verifying
program properties since reasoning about programs generally requires something
equational logic does not provide - the use of quantifiers. This is
particularly true, for example, in the case of loop invariants in imperative
language programs).

Again, in [SW'82], implementations do not in general compose. Again,
property preservation is the problem (see counter example on page 485 of
[SW'82]). A technical way of putting this is that the categories of
specifications as objects and translations as arrows/morphisms have too many
such arrows.

To bridge the gap, it is our intention to outline a theory which makes a
better approximation to the objects (specifications) and arrows (translations)
which should be present in order to support the practices of software
engineering, in particular stepwise development and certification.

Among the methodological advantages of this method are:

(i) Specifications need say only as much as is thought desirable. There
is an allowance for underdetermined operations and partially defined
operations (if popping the empty stack is never used in a program,
then there is no need to specify what happens in this situation),
thereby simplifying the treatment of errors.

(i)

(iii)

The language of first order logic is a powerful and succinct formalism
compared to the more restrictive formalisms used elsewhere.

The theory is closer to the usual logics of programs (usually
extensions of first order logic).

(iv) The restrictive notion of sufficient completeness ([Gu'77, Ga'83,
WPPDB'83, WB'82]) i~ replaced by a more permissive concept, thus
contributing to the ease of use and expressiveness of the formalism.

Among the technical advantages of this method are:

(i) There is a powerful proof theory which, for example, allows the use of
general formulae including quantifiers, justifies the use of
structural induction and the development of canonical forms and
provides a natural basis for proofs of termination for programs using
ADT's.

(ii)

(iii)

There is a natural interface between implementation steps and
input/output specifications for programs to realise these steps.

Implementations always compose and the composition is constructed
directly and automatically from the components. Moreover, the
correctness of the composition is guaranteed by the correctness of the
components. Compostlon of implementations is associative and
implementations "commute, with instantiation of parameters in a
parameterised type.

(iv)

(v)

Implementations preserve all provable properties, Thus,
correctness of programs remain valid after implementation.

proofs of

Equality is dealt with as any other predicate (i.e. it is not
interpreted as identity). Thus there is no need as in the algebraic

220

We can also deduce, of course, b__e~(_q_~(t),t) and even

c__ha() = ~ v ~t) = ~(ezmr~)

But we cannot deduce either equation of the above disjunetionl In other words,
the above axioms do not enable us to compute a specific natural number as the
value of _qllg(t). And they should notl If they did we would have overspecified
R~, which is still regarded as arbitrary choice. It would be premature at
this level of specification to describe exactly how such an element is to be
picked. This should be left to a future refinement, or perhaps to the
implementation phase, when the consequences of such a decision can be better
evaluated.

But how do we guarantee that ~hs(t) is indeed a natural number? Notice
that, by syntax, _q_~(t) is of sort Nat. And our namability axiom (N)
guarantees that any object of a domain of sort N__gJL (in particular the object
denoted by _q~(t)) is a standard natural number, thus preventing chs(t) from
becoming a non-standard natural number. Compare this with the more
conceptually complicated notions of data and hierarchy constraints in
[BG'79,BG"81, WPPDB'83] and the semantic constraints of [MV'81].

As we have a new sort, we also have the corresponding namability axiom

(V s:~_~) v (s = t)
tinT

where T is an enumeration of all ground terms of sort S_~ and V represents
infinite disjunction. As a consequence we again have a schema of induetior~
More important is the fact that every object of sort S~ has a "normal form"
involving only ~ and ins. which are then the constructor operations [GH'78].
This is again a consequence of the above namability axiom.

In general, a ~f±ea~ion for an ADT consists of a many-sorted first-
order theory presented by a language L and a set of axioms G. For each sort s
in S we assume a binary predicate symbol =s in L. The machinery of the
!o~ie of n~ability has for each sort s in S

the usual equality axioms

a namabiiity axiom (~ x:s) V (x = s t)
tinT

where T is an enumeration of the ground terms of sort s (in addition to the
usual logic axioms). The logic of namability also has an infinitary rule of
inference (a be-rule) which allows us to manipulate the namability axiom to
derive induction schema, normal forms, etc. See [B'77] for details of 4~-
rtLleS.

3. Program Develg_~ment ~sL_Verificatig_~

The proposed approach aims at being partucularly appropriate for program
construction by means of ADT's. As a simple example to illustrate this we
shall consider sortin~ We can formulate it as the construction of a program P
that receives as input a set t of natural numbers and outputs a sequence q of
natural numbers such that is-sort(q,t), where ~s-sort is defined by

(12) ~(q,t) <-> ordered(q) & s~(q,t)

221

Here the language consists of the following sorts and predicates

bel

(the intended realisation of o~c is occurrence of a number in a sequence and
that of orec(m,n,q) is that m occurs in q before n) so that ordered and same
are defined by

(13) qvdered(q) <-> (~m,n:Nat) [l__~(m,n)

&o_qg_q(m,q) & oq~(n,q) -> pre¢ (m,n,q)]

(14) same(q,t) <-> (Vn:Nat) [OqQ(n,q) <-> bel(n,t)]

We now have a natural interface to our programming language as the input output
specification of our sort porgram P is: {~} P {is_sort(q, So)} where S o is
the input set.

For operations we have all those of SET of NAT plus a constant symbol
lmbd of sort Seq such that

(15) - Qec(n, lmbd)

and an operation symbol ordins: (Sea.Nat) -> See partly specified by

(16) ordered(q) -> ordered(ordins(q,n))

(17) occ(m, ordins(q,n)) <-> m = n & occ(m,q)

Given this ADT SORT of NAT it is quite natural to conceive our program P
first as an abstract program that repeatedly removes elements from the input
set and inserts them (respecting their relative order) into an initially empty
sequence. In order to formalise this intuition it is useful to extend the
specification of our ADT by the following definition

(18) is-transf(q,t, So) <-> (~n:Nat)[bel(n, So)
<-> bel(n,t) v occ(n,q)]

We are thus led to the following abstract program

t:=So; q:=imbd;
{ordered(q) & is-transf(q,t, So) }

while -t = p h~ do
n:=chs(t) {bel(n,t)};
q:=ordi~(q,n);
t:=rem(t,n) {~ bel(n,t)}

end

We have already annotated the program with the loop invariant

ordered(q) & is-transf(q, t, s o)

and some assertions following immediately from axioms (10) and (11).

222

In view of (12), she verification conditions [Ma'74] (for partial
correctness) include for instance,

(19) ~ _ ~ (q, t, s o) --> [~(n, t) --> is, tra~g~(~(q, n),
~(t,n), So)]

This (and the other verification conditions) follow easily from the
preceding axiom s~

A usual method to prove termination is that of the well founded set
[Mat74]. Here we can employ the set of ground terms with the well founded
relation of "being a subterm". Indeed we can show, using the normal form of
section 2,

]~(n,t) -> Z.~(t~n) < t

which suffices to guarantee termination.

An advantage of the proposed approach is exactly this: we generally can
employ the syntactical well-founded relation of being a subterm in order to
prove termination, rather than having to create a special well founded set for
almost every program~

Notice that we have proved the total correctness of our program based only
on the ADT specification, thus without needing complete definitions for chs or

In fact, in line with the methodology of program construction by means of
ADT's, we employed an ADT close to the problem That is whY we use ordins and
~rec, not usually thought of as available to manipulate sequences. We shall
take care of this in the next section by implementing the ADT SORT of NAT in
terms of more "concrete" ADT's.

4. Imolementat~~ Refinements) As Interoretationg

The ADT used in the program for sorting is SORT of NAT. We are now going
to implement it in terms of the list of naturals. We will use the ADT

with the following language

zero

Its specification consists of that for ~ plus the following axioms

(20) cons(m,x) = ~_q~(n,y) -> x = y & m = n

(21) A~(_qona(m,x)) = m

(22) ~!(~mz~(m,x)) : x

(23) il(~il) = nil

(Recall that we also have r~mability and = /~ as a congruence). Notice in
particular that we cannot deduce a value for~). All we know from (N) is
that hd~i~ is some natural.

223

We can implement SQRT of NAT into LIST of NAT, sort by sort. Consider
first the sort Set.

The first thing to do is decide which lists will represent sets. Our
intuition tells us we need only those lists with nonrepeated occurrences of
elements. So, we extend LIST of NAT with the

(24) set, reD(x) <-> (~ n:Na$) [is-in(n,x) -> once(n,x)]

where

(25) is-in(n,x) <-> - x = nil & [hd(x) = n v ~(n, tl (x))]

(26) once(n,x) <-> ~ x = nil & [_~(x) = n & - is-in(n, tl(x))]
v [~ hd(x) = n & ~ne~(n, tl(x))])

set-reD is called a relativisation predicate and it is used to delineate those
lists which actually represent a set from those that do not. (It sorts the
wheat from the chaff~).

We now have to extend LIST of NAT by concepts corresponding to those of
SET of NAT: for each symbol Dhi, bel. etc., we introduce in LIST of NAT the
corresponding primed one Phi', bel', etc. For instance

(27) phi ' = nil

(28) ins'(x,m) = y <-> ris-in(m,x) & y = x] v[- is-in(~,x) & y = cons(re, x)]

(29) r~m'(x,m) = y <-> [- is-in(re, x) & y = x]
v [is-in(re, x) & y = tl(x)]

(30) gh~'(x) = m -> is~in(m,x)

(31) bel'(m,x) <-> is-in(m,x)

(32) x = 'S~ Y <->:(~ n Nat) [is-in(n,x) <-> is-in(n,y)]

Notice that : , not being considered a logical symbol realised as
identity, undergoes the same treatment as the other symbols (we employ here =
'Set for clarity). Also notice that some of the above axioms define a primed
symDol in terms of list symbols (e.g. Phi' as nil) but others only give partial
definitions. In particular, notice that we have not yet defined completely how
chs is to operate, nor have we imposed that each set be represented by a unique
list.

Having translated one specification into another, we can write a cluster
of procedures to realise this translation/refinement/implementation. The
procedures correspond in a one to one fashion to the operations and predicates
of the abstract specification being implemente~ Thus, in the example above,
we have procedures defining Dhi', in~', rem', ehs', bel' and = 'Set (as well as
the operations of NAT). We can define the input/output specm-~eations for
these procedures by using (24), ..., (32). For example, the function
(procedure) INS (corresponding to ins and ins') takes arguments m o of sort ~g~
and x o of sort List and has the specification

{set-reD(x o) & nat-r~p(mo)}

INS(Xo, m o)

{(is-in(mo,X o) & INS = x o)
v (- is~in(mo, X o) & INS = cons(mo, Xo)}

224

So the input specification indicates that the function is guaranteed or
expected to work only for concrete representatives of abstract objects while
the output specification is the definiens of the definition of in~' in terms of
list operations. Developing and proving such a program correct can of course
use the logic of the programming language and assume the properties of lists.

Now for the sort ~ it is natural to use a list as representing a
sequence. So the corresponding representation predicate is trivial, and
similarly for equality between sequences.

For the constant, operation and predicate symbols of sort ~.~g, we
introduce, for instance

(33) dg~'(xjm) : y-> 9rdered' (y)
& (Vn:N_~) (~(n,y) <-> n = m v is-in(n,x))

(34) /hT.9~'(m,n,x) <-> - x = nil & [h(_~(x) = m & is-in(n,.~(x)))
v 22_9_q' (m, n,_t~(x))]

Notice that we do not have to worry about symbols like s_A_mLg, etc., that
were introduced by definition. As we will see later, such definitions can be
~earried forward" in implementations in an automatic fashion.

Finally, we can naturally represent the sort ~ of SORT of NAT
identically by the sort ~ of _LIST of NAT. So this part is trivial.

By adding axioms (24) through (34) to LIST of NAT we have built a
conservative extension of the latter. Call this extension
LIST of NAT by SORT o~. Now, each sentence of the language of SORT. gf NAT
can be translated into a corresponding one, its primed and relativised version.
For instance consider axiom (10), which after being written with explicit
leading universal quantifiers is translated to

(35) (Vx:/~_~) (~i,j:~) {set-reD(x) & nat-reD(i) & nat-reD(j)
->[~' (i,2_e.m'(x,j)) <-> i :'N_~3' v _bel'(i,x)]}

The use of relativisation predicates with the translation of quantified
formulae reflects the idea that properties of sets, when translated, are meant
to hold only for lists w~hich really represent sets.

Now, in order to guarantee the correctness of the implementation (and of
our program for sorting) we have to verify that each realisation of LIST of NAT
induces a realisation of .SQRT of NAT. This can be done as follows. Firstly
for each axiom of SORT ~[_~ we verify that its translation is a theorem of
LIST of NAT by SORT of NAT. For instance, (35) follows from LIST of NAT plus
(25), (28) and (32) together with the definition of ='Nat" Secondly, we verify
closure of the relativisation predicates under th--g-corresponding primed
operations. For instance,

(~x:~) (~i:l[~) [~_e~eD(x) & nat-reD(i) -> 9_e~(~'(x,i))]

follows from_LIST of NAT plus (24), (25), (26) and (28), together with the
definition of ='Nat" Thirdly, we have to verify the translation of the
underlying equali y%-~--and namability axioms. For instance, we have to verify
that

(~x,y:~ig_~) (~i:l~) {set, re~(x) & set-rg~(y) & nat-reD(i)
->Ix ='~9-~ y -> ia~'(x,i) :'/~/~g'(y,i)]}

(which states the substitutivity of -'S with respect to /~g') and - S_9_%

225

(V x:List) [set-~'eD(x) -> V (x ='2 t')]
tinT

where t' denotes the translation of t in an enumeration T as before (which
states the namability of set-reD by primed Set operations).

After these verifications we have a correct implemenation of
SORT of NAT bY L~T Qf NAT.

In general, our notion of implementation is a slight generalisation of the
familiar logical concept of interoretation between theories [E'72,Sh'67,VP~81.
A (correct) implementation of an ADT A presented by (LA, G A) by an ADT C
presented by (Lc, G C) consists of a conservative extension A bY C, obtained b~
adding to (LA, G A) partial specifications for the primed symbols of A and the
relativisation predicates for the sorts of LA, together with an interpretation
of the theory A into the theory of A by C.

This notion appears to capture what a programmer does when implementing A
by C: the partial specifications for the primed symbols correspond to the
input-ouput specifications for the procedures he writes to realise the
corresponding symbols of A in terms of the symbols of C. (Notice, in
particular, that the test for equality in A is now realised by a procedure in
C). Also, the relativisation predicates correspond to the representation
invariants of [G'77]. The abstraction mapping or representation function is
implicitly given by the interpretation, which is both a conceptual and
technical advantage.

One should notice that with this implementation we have a proven correct
sorting program receiving sets of naturals represented by lists of naturals and
outputting the corresponding sorted lists. But we have not yet completely
committed ourselves to a particular sorting algorithm, because chs' and ordins'
are still only partly specifie~ (We are committed only to the families of
algorithms of sorting by selection or by insertion [Kn'75,D'77]).

In order to illustrate refinements as interpretations let us consider
refining chs' and ordins'. The former is partly specified by (30) only to pick
an element of a list, whereas the latter is partly specified by (33) only to
insert an element into a list preserving the relative order. Suppose we decide
to refine _qhg' to pick the least element occuring in a list and accordingly
ordins' to insert an element at the head of a list.

This refinement step can be described as the (non-conservative) extension
of LIST of RAT by SORT of NAT by means of the following axioms

(36) ~s'(x) ='i -> ~x :'n~' & oec'(i,x) & (Vj:Nat) (oee'(j,x)
-> i =' j v~'(i,j))]

(37) ordins'(x,i) =, cons(i,x)

(Notice that this still does not assign a value to chs(p_~, which we do not
need for our program).

Alternatively this refinement can be regarded as a simple implementation
of LIST of NAT by SORT of NAT contensions into LIST of NAT by SORT of NAT
(conservatively) extended by (36) with chs" in lieu of .chs' and (37) with
ordins" in lieu of ordi~s', where the interpretation is the identity but for

chs' -> chs" and ordins -> ordins"

We can now illustrate how such implementations compose. Suppose we have
the ADT A implementated in the ADT B by means of the conservative extension C
of ~ and the interpretation of_A into C. Similarly for B interpreted in

226

which is a conservative extension of D. Diagrammatically,

11
A > £

/B > E

T e2
where II and 12 are interpretations and el and e2, conservative extensions
Then there exists ~ such that

I2
c >Z

B > _E
I2

!2(el)

is a pushout (i.e. there is a least ~)° F is essentially Z with the
translations of the formulae defining el by I2 (extended as identity to the
symbols introduced in el). So the extension el is just carried forward (in
translation) and all its consequences are still (translated) consequences).
Then the composition is represented by composirgthe conservative extensions e2
and I2(e2) and composing the interpretations I2 and II. The methodological
point to note is that ~, I2, and I2(e1) are automatically constructable and the
software engineer need not actually worry himself about it!

5. Parameterisatio~As Interoretation

If we look back at our abstract program P for sorting we see that it does
not depend heavily on the exact nature of the elements. In fact, we used more
properties of sets and sequences (and, in the implementation, lists) than
properties of the natural numbers, the usage of the latter being confined to a
small corner. Of course, we have a case of parameterisatior.

In order to illustrate the main ideas of our approach to parameterisation
let us consider the simple case of SET of NAT. The idea is that SET of NAT can
be obtained from the parameterised ADT SET of TQD by substituting NAT for the
parameter T~. Now, what is S ~ ? Well, SET of TOD should be the same
as SET of NAT_ but with the nature of the elements left completely open (except
for the fact that it has a "less than" ordering, since we intend to use it for
sorting). So, as far as sets are concerned, we should have the same

specification as before~

To be more precise, the language of SET of TOD is

ina ,2_cm _$.q

o

C n

227

The axioms are those concerning the set symbols i.e~ (7) through (11) plus the
following (stating that to is to be realised as a total ordering relation).

(38) (4 i:Tod) -to (i,i)

(39) (~i,j,k:TQd)to (i,J) & to (j,k) -> to (i,k)

(40) (~i,j:Tod) to (i,j) v i = j vto (j,i)

We still have the underlying axioms for equality and for namability. Only
notice that the namability axiom for sort Tod has the form

(~i:Anv) (i = C O v i = C I v ... v i = C n v ...)

This is the only axiom mentioning the constant symbols Co, ..., Cn, As
there are no axioms jointly mentioning some C n with some other symbol, the C_'s
are not constrained to any particular value in a realisatior~ Their only ro~e
is naming the elements of a domain of sort TQd. That is why we regard Tod as a
parameter, subject to the only constraint of having a total order to. In
particular the only interesting results derivable from this specification are
those one might call results concerning sets per se and total orders, in
general.

Now, how do we pass parameters in order to obtain SET of NAT from
SET of TOD? This is performed by the assignment p, of sorts

Tod I-> Nat

and of symbols

to l->it

~i I-> suet(zero)

s~t

We extend this assignment p to be the identity on the remaining symbols,
so that it builds a copy of this part of the language of SET of TOD on top of
that of NAT. Thus, this mapping will translate identically axioms (7) through
(11). These axioms together with those of NAT, (I) through (6), will give the
specification of SET of NAT. Pictorially

(7) (7)

Tod

(11)

(38)

(40)

(11)

(I)

(6)

Nat

Notice that the translations of axioms (38) through (40), as well as of
the equality and namability axioms of sort Tod, are theorems of NAT. Thus, the
outcome is an interpretation of theories, of SET of TOD into SET of NAT.
Hence, all the results proved about SET of TOD translate into provable
properties of SET of NAT.

Similarly, we have the parameterised ADT's SORT of TOD and LIST of TOD.
Applieatlon of assignment p will build the expected ADT's together with the

228

corresponding interpreta'cions

S[p] of ~_0~_T. @f TO~D into S O ~ T ~

and

Lip] o f _ ~ into LIST of NAT

In the previous section we gave an implementation of SORT of NAT into
LIST of NA~. Now, we consider the implementation I[-], which is the same
except that it is the identity on sort T_~ and its symbols]~g, Co, C I ...
This is a "parameterised" implementation of S__ORT of TOD into LIST of TOD.

In a natural way, the parameter assignment p coupled with this
"parameterised" implementation I[-] defines the original implementation I[p] of
SORT of NAT into LIST of NAT. Furthermore, the following diagram (where the
horizontal interpretations come from parameter passing and the vertical ones
correspond to implementations) commutes.

I[-]

~ORT of TOD S[p] ~ SORT of NAT

I ~ I[p]

~IST ~ L[pl ~,,LIST o f NAT

The nice practical consequence is that we have the freedom to develop our
program for sorting in a parameterised fashion and specialise the parameters to
N~ (or any other suitable data type) when we please.

6. Conclusion

We have outlined an approach to ADT's, based on logic which is a natural
formalisation of what programmers (should) do.

The key idea is that an ADT is (specified by) a (many-sorted) logical
theory presented by axioms° Thus, notions concerning ADT's are captured by
syntactical concepts concerning their theories. In particular,

the properties of an ADT are (formalised as) the theorems deduced from its
axioms

an implementation of an ADT by another ADT is an interpretation of the
theory of the former into a conservative extension of the theory of the
latter

a refinement is an extension, which is a simple implementation

parameterisation is also an interpretation.

Thus we need only the familiar logical concepts of (conservative)
extension and interpretatiom In general, the formulas of an extension are
input-output specifications of procedures.

As an illustration of the technical simplicity of our theory, we have the
fact that parameter passing commutes with implementations. In most approaches
this result has a somewhat elaborate proof. Here it is an immediate
consequence of a simple but important result, namely the eomposability of

impl ementati ons.
Flexibility is another important asset. We are free to specify just as

much as we want or need. In particular our specifications can be incomplete,

229

sufficiently complete or even complete in the algebraic sense [G'77, GH'78,
GTW'78]. This flexibility is very convenient in dealing with errors or
undefined values. For instance, consider the case of hd n(~. We can decide
to leave it unspecified but defined. Or we can decide to have an error
constant to be the value of hd(nil) with the further choice of either
specifying error propogation or leaving it oper~ In any case we have the well-
founded relation of "being a subterm" at hand to use in proofs of terminatio~

Finally, the usage of simple logical concepts together with the
flexibility and naturalness of this approach make it quite adequate for program
development.

Referenc~

[B'77] J. Barwise,ed: Handbook of Mathematical Logic, Studies in Logic and
the Foundations of Mathematics, Vol°90, North Holland, 1977.

[BG'79] R.M. Burstall, J.~ Goguen: The Semantics of CLEAR, A Specification
Language, (as in D'79)

[BG'81] R.M. Burstall, J.A. Goguen: An Informal Introduction to
Specifications using CLEAR, in: "The Correctness Problem in
Computer Science", eds. R.~ Boyer, J.S. Moore, Academic Press, 1981

[BW'82] M. Broy, M. Wirsing: Partial Abstract Types, Acta Informatica, Vol.
[D'77] J. Darlington: A Synthesis of Several Sorting Algorithms, Imperial

College of Science and Technology, Department of Computing, London,
1977

[D'79] B. Domolski: An Example of Hierarchical Program Specification,
Proc. of 1979 Copenhagen Winter School on Abstract Software
Specifications, LNCS86, Springer-Verlag

[E'72] H.B. Enderton: A Mathematical Introduction to Logic, Academic
Press, New York, 1972

[Eh'82] H-D. Ehrich: On the Theory of Specification, Implementation and
Parameterisation of Abstract Data Types, JACM, Vol. 29, No. I, 1982

[EK'82] H. Ehrig, H-J. Kreowski: Parameter Passing Commutes with
Implementation of Parameterised Data Types, 9th ICALP, LNCS 140,
Spri nger-Verl ag

[EKMP'80] H. Ehrig, H-J. Kreowski, B. Mahr, P. Padawitz: Compound Algebraic
Implementations: an Approach to Stepwise Refinement of Software
Systems, 9th MFCS, LNCS88, Springer-Verlag, 1980
J.V. Guttag: Abstract Data Types and the Development of Data
Structures, Comm. ACM, Vol. 20, No. 6, pp. 396-404, June 1977
J.V. Guttag: Notes on Type Abstraction (Version 2), IEEE TSE, Vol.
6, No. I, 1980
M. Gogolla: Algebraic Specifications with Partially Ordered Sorts,
Teeh~Report 169, Abt~ Informatik, U. of Dortmund, 1983.

Ganzinger: Parameterised Specifications: Parameter Passing and
Implementation, ACM, TOPLAS, Vol. 5, No. 3, 1983
J.V. Guttag and J.J. Horning: The Algebraic Specification of
Abstract Data Types, Aeta Informatica, Vol. 10, No. I, pp. 27-52,
1 978
J.V. Guttag, E. Horowitz, D.R. Musser: The Design of Data Type
Specifications, in "Current Trends in Programming Methodology, Vol.
IV',, Ed. R.T. Yeh, Prentice Hall, 1978
J.A. Goguen, J.W. Thatcher, E.G. Wagner: An Initial Algebra
Approach to the Specification, Correctness and Implementation of
Abstract Data Types, in "Current Trends in Programming Methodology,
Vol. IV", Ed. R.T. Yeh, Prentice Hall, Engiewood Cliffs, 1978
U.L. Hupbach= Abstract Implementation of Abstract Data Types, 9th
MFCS, LNCS88, Springer-Verlag, 1980
P. Henderson: Functional Programming: Application and
Implementation, Prentice-Hall, 1980
C.A~P~ Hoare: Proof of Correctness of Data Representations, Acta
Informatica, Vol. 4, pp. 271-281, 1972

[G'77]

[G'80]

[Go'83]

[Ga'83]

[GH'78]

[GHM'78]

[GTW'78]

[H'80]

[He'80]

[H'72]

230

[J'80] C.~ Jones: Software Development: a Rigorous Approach, Prentice-
Hall, London, 1980

[Kn175] D.E. Knuth: The Art of Computer Programming, Vol. 3, Addison
Wesley, Reading, 1975

[L'79] B. Liskov. ~ Modular Program Construction Using Abstractions, (as in
D179]

[LZ'77] ~. Liskov, S. Zilles: An Introduction to Formal Specifications of
Data Abstractions, in "Current Trends in Programming Methodology,
Vol. I", Edo R.To Yeh, Prentice-Hall, Englewood Cliffs, 1977

IMam74] Z. Manna: The Mathematical Theory of Computation, McGraw-Hill, New
York, 1974

[MV'81] T.&E. Maibaum, P.~.S. Veloso: A Logical Approach to Abstract Data
Types, Technical Report, Department of Computing, Imperial College,
and Departamento de Informatica, PUC/RJ, 1981

[MSV'83] T.S.F~ Maibaum, M~R. Sadler, PoA~S. Veloso: Logical Specification
and Implementation, Technical Report, Department of Computing,
Imperial College, 1983

[MSV'83a] T.S.E. Maibaum, M.R. Sadler, P.AoS. Velosc: A Straightforward
Approach to Parameterised Specifications, Technical Report,
Department of Computing, Imperial College, 1983

[P,84] A~ Poigne: Another Look at Parameterisation Using Suborts, MFCS84,
LNCS176,1 984.

[SM'84] M.R. Sadler, T.S.E. Maibaum: The Logic of Namability, In
preparation

[SW'82] D. Sanella, Mo Wirsing: Implementation of Parameterised
Specifications, 9th ICALP, LNCS140, Springer-Verlag, 1982

[Sh'67] J.R. Schoenfield: Mathematical Logic, Addison Wesley, Reading, 1967
[T'78] W.M. Turski: Computer Programming Methodology, Heyden, London, 1978
[VP'78] P.A.S~ Veloso, T.H.C. Pequeno: Interpretations between Many-Sorted

Theories, 2nd Brasilian Colloquium on Logic, Campinas, 1978
[WB'82] M. Wirsing, M. Broy: An Analysis of Semantic Models for Algebraic

Specifications, in "Theoretical Foundations of Programming
Methodology", eds. M. Broy, G. Schmidt, Reidel, Dordrecht, 1982

[WPPDB'80] M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On
Hierarchies of Abstract Data Types, Technische Univ., Munchen, Inst.
Informatik, 1980

[WPPDB'83] M. Wireing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On
Hierarchies of Abstract Data Types, Acta Informatiea, Vol. 20, Fasc.
~, pp. 1-33, 1983

